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Abstract

We introduce quasiminimal subshifts, subshifts having only finitely many
subsystems. With N-actions, their theory essentially reduces to the theory
of minimal systems, but with Z-actions, the class is much larger. We show
many examples of such subshifts, and in particular construct a universal sys-
tem with only a single proper subsystem, refuting a conjecture of [Delvenne,
Kůrka, Blondel, ’05].
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1. Introduction

One of the most studied classes of subshifts1 in the literature is that of
minimal subshifts. These are precisely the nonempty subshifts containing no
proper nonempty (sub-)subshifts. Some reasons that these subshifts are of
great interest are that every subshift contains a minimal subshift, and many
natural examples of subshifts, such as those generated by primitive substitu-
tions and those generated by Toeplitz sequences, are minimal. We direct the
reader to [1, 2] for a discussion of such systems. More generally, dynamical
systems on compact metric spaces always contain minimal subsystems.

In [3], zero-dimensional dynamical systems with an N-action and an ef-
fective presentation, called symbolic systems, are studied from the point of
view of computational universality. These systems generalize one-sided sub-
shifts whose language is recursive, and also many other symbolic systems

1Here, subshifts are sets X ⊂ SM which are topologically closed, and also closed under
the shift action of M in the sense X ·M ⊂ X, where M is a monoid and S a finite set. In
this paper, we consider the cases M ∈ {N,Z}.
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such as Turing machines, counter machines and tag systems. Given any fi-
nite clopen partition of a space and an ω-regular language of infinite words
with partition elements as letters, the model-checking problem is defined as
the problem of checking whether one of the sequences in the language cor-
responds to a sequence of observations along an orbit. The model-checking
problem for regular languages is the question of whether a finite sequence
of observations in the language can be made in the system. In [3] a system
is called decidable if the model-checking problem for ω-regular languages is
decidable, and universal if its model-checking problem for regular languages
is Σ0

1-complete (that is, the halting problem many-one reduces to it). The
definitions imply that a universal system cannot be decidable,2 but a gap is
left between the two definitions, so that both decidability and undecidability
results are maximally strong.

In the case of subshifts, the model-checking problem for regular languages
amounts to asking whether the intersection of the language of the subshift
with a given regular language is empty, and we use this as the definition,
omitting the details of computable presentations. The main results of this
paper are constructions of subshifts which are universal, and thus ω-regular
languages do not play a major role in this paper, and we only discuss them
for context.

One of the main results of [3] is that if a minimal system is computable,3

then it is decidable in the above sense. This shows in particular that many
non-trivial things can be computed about minimal subshifts, as long as the
forbidden patterns of the subshift can be enumerated. For example, given4 a
Turing machine enumerating the forbidden patterns of a (nonempty) minimal
subshift X over the alphabet {0, 1, 2}, an algorithm can check whether there
exists a subword w of a point of X where the number of 1s differs from the
number of 0s by more than 7.

It is not particularly hard to show that if the forbidden words of X can
be enumerated and X is minimal, then also the words that do occur in X
can be enumerated (see Theorem 7), so that if such w exists, a rather simple

2This is because the model-checking problem of regular languages many-one reduces to
that for ω-regular languages.

3In their paper, computable means recursive, or having ∆0
1 = Σ0

1 ∩ Π0
1 language, but

see Theorem 7.
4It is not explicitly stated in [3] that the algorithm is uniform in the description of the

subshift, but this is clear from their proof.
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algorithm can find it. The algorithm of [3] must be even smarter: if no w
with the above properties exists, then after enumerating some finite number
of forbidden patterns, the algorithm will state this fact.

The algorithm of [3] applies more generally to systems where every proper
subsystem has nonempty interior, and to systems whose limit set is a finite
union of minimal systems. It is interesting to ask where the precise border
of decidability lies, by extending the family of subshifts further, and to this
end the authors also make the following conjecture.

Conjecture 1 ([3]). A universal symbolic system has infinitely many mini-
mal subsystems.

Conversely, this conjecture would imply that a system with finitely many
minimal subsystems has to be non-universal (even if not necessarily decid-
able). Note that this conjecture talks about infinitely many minimal subsys-
tems, but allows us to have any number of subsystems in general. It turns
out that this is not a very strong condition, and as such, the conjecture is
false.

Proposition 1. There exists a recursive universal subshift with finitely many
minimal subsystems.

The proof of this is given in Section 3, Proposition 3. Our example is a
Z-subshift, and we interpret subsystems in the sense of being closed under
the Z-action, while subsystems in the sense of [3] need to be closed under the
induced N-action only. It is easy to see that this does not change the number
of minimal subsystems, although it may change the number of subsystems in
general (see Proposition 4 for details), so that our example also provides an
N-system with the desired properties. Alternatively, one can directly modify
our example to be one-sided.

The subshift is very simple, and we offer multiple variations of it. At
its simplest, the number of minimal subsystems is one, and this subsystem
is just a single point.5 The subshift is countable, and in fact contained
in a countable sofic shift. Alternatively, the subshift can be contained in
a countable SFT, although with slightly more minimal subsystems. The

5The one-point subshift is the simplest minimal subshift, but any minimal subshift can
be used here, though naturally at the expense of countability.
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Cantor-Bendixson rank of the enveloping countable sofic shift is 4. CB-
rank 4, for a countable sofic shift, means that each point contains at most 3
disturbances to periodicity.6 In addition to the subshift being very simple,
also the universality is very strong: not only are intersections with regular
languages Σ0

1-complete, but even the undirected halting problem, the question
of whether two given words u and v occur in the same point, is Σ0

1-complete.
While X has only finitely many minimal subsystems, it has infinitely

many subsystems altogether. In fact, the set of subshifts of X has the cardi-
nality of the continuum (which is the maximal possible). In the abstract and
introduction of [3], the authors state the conjecture in a weaker form, asking
if a universal system should have infinitely many subsystems, without any
mention of minimality. While this was presumably just meant as a shortened
form of the statement of Conjecture 1, it is a natural next question whether
at least this is true.

Question 1. Must universal systems have infinitely many subsystems?

We name this class for easier reference.

Definition 1. A subshift is quasiminimal if it has finitely many subshifts.

The question for us is then whether a recursive quasiminimal subshift can
be universal. One might guess that if X has only finitely many subshifts, then
it must be a quite simple extension7 of the one or more minimal subshifts
it necessarily contains, or perhaps even essentially just a union. It turns
out that, unlike in Proposition 1, whether this is true depends on whether
the acting monoid is N or Z, that is, on whether our subshifts are one- or
two-sided.8

6More precisely, there exists p such that every point x of the subshift satisfies xi = xi+p

for all i ∈ Z \ A, where A is a union of three intervals which all have uniformly bounded
length.

7Here, we use the term extension in the sense of containment (monomorphisms), and
not in the sense of factoring (epimorphisms). This usage is very nonstandard in the theory
of dynamical systems, but it is fitting for quasiminimal systems, since they are inductively
built, in finitely many steps, from smaller quasiminimal systems by adding new points.

8Strictly speaking, we could also consider SZ with an N-action (obtaining a rather
unnatural definition of a subshift), but the convention is that SM uses the natural shift
action of M . This is also required for the dynamical characterization of subshifts as
expansive systems.
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In the case of N-actions, we show that the extensions of minimal subshifts
to quasiminimal ones are rather trivial, and the answer to Question 1 is “yes”.

Theorem 1. A recursive quasiminimal N-subshift is decidable.

This is shown in Corollary 4. The proof is quite short: we characterize
this class, and show that it fits one of the decidability results proved in
[3]. Our main interest is in the case of Z-actions, where the extensions
can be quite complicated. For example, while primitive substitutions give
rise to minimal subshifts, all substitutions satisfying a technical property
(in particular all aperiodic substitutions) give rise to quasiminimal ones, see
Proposition 2. These examples already show that quasiminimality is indeed
quite different from minimality. In fact, in the setting of Z-subshifts, the
answer to Question 1 is “no”.

Theorem 2. There exists a recursive universal quasiminimal Z-subshift.

This follows for example from Theorem 3.
While this answers Question 1 completely in the case of Z-actions, it turns

out to be a bit more intricate than Conjecture 1 – for example, we will see
that the halting problem (whether a clopen set is reachable from another one)
is decidable for a recursive quasiminimal subshift. In fact, given any ordered
finite tuple of words, an algorithm can check whether there exists a point in
the subshift containing those words, in the given order (see Theorem 10). In
particular (though not quite equivalently) we can solve the model-checking
problem for regular languages of the form w1S

∗w2S
∗ · · ·S∗wk where S is the

alphabet of the subshift and the wi are arbitrary words. This class of regular
languages is related to the piecewise testable regular languages.

On the other hand, in Theorem 3 we show that the halting problem along
a clopen set is Σ0

1-complete, that is, the halting problem where we restrict
the path between the given clopen sets to stay in a third clopen set. This
corresponds to the fact that the model-checking problem is undecidable for
local languages, a well-known subclass of regular languages.

We also study countable quasiminimal subshifts. For these, we believe
the model-checking problem for local languages is in fact decidable (Con-
jecture 2), which would show a great difference between the countable and
uncountable cases. We prove the undecidability of the model-checking prob-
lem for piecewise testable languages, star-free languages and what we call
renewal languages (languages obtained as concatenations of a set of words,
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starting and ending in given sets of words), in Theorem 5 and Theorem 4.
The model-checking problem for piecewise testable languages and star-free
ones is dealt with by showing that the “halting problem along a clopen set ex-
cept on exactly k steps” (which we call the counting problem) is Σ0

1-complete,
and the model-checking problem for renewal languages by showing that the
“halting problem in time m mod k” is Σ0

1-complete.
An obvious question is how many proper subshifts exactly do we need to

have to achieve universality, since the result of [3] shows we need at least one.
In the uncountable case, our example has only one minimal subshift (which
can be chosen to be any infinite minimal subshift). This is clearly optimal.
For countable quasiminimal subshifts, the number of nontrivial (nonempty
and non-full) subshifts is two in our example for renewal systems, and we
show this to be optimal in Proposition 8, since countable systems with only
one subsystem are in fact decidable in general. For the particular case of
piecewise testable languages, the optimal number of subshifts is shown to
be 4.

In addition to proving a small gap between decidability and undecidabil-
ity, these constructions are interesting as first explicit examples of quasimin-
imal Z-subshifts. In particular, they show that a quasiminimal Z-subshift
can be quite far from a union of minimal Z-subshifts, and even countable
quasiminimal Z-subshifts can be rather complicated objects. In fact, these
constructions are in some sense representative of the general case, in that
a full characterization of quasiminimal subshifts can be obtained by gen-
eralizing and iterating the constructions of this article. We defer the full
characterization to a later work [4], and prove here only enough structural
results to solve our decidability problems of interest in Section 4.

In addition to results about (non-minimal) quasiminimal subshifts, we
also prove some new undecidability results about minimal subshifts, which
complement the results of [3] in other directions: There is a recursive minimal
subshift whose model-checking problem for context-free languages is unde-
cidable (Theorem 6) and a minimal subshift whose language is recursively
enumerable but not recursive (Proposition 7).

Our main results about subshifts with restricted subsystems are summa-
rized in Table 1. See 2.3 for more information about model-checking and
halting problems.
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Restriction N/Z EPT PT Loc SF Ren Reg CF

one minimal subsystem N/Z U1 U1 U1 U1 U1 U1 U1
substitutive N/Z D1 D1 D1 D1 D1 D1 ?1
Q(X) ∈ N N D2 D2 D2 D2 D2 D2 U5

Q(X) ≤ 2 N/Z D2 D2 D2 D2 D2 D2 U5
Q(X) ≤ 3 Z D5 U2 U2 U2 U2 U2 U2
Q(X) ∈ N Z D5 U2 U2 U2 U2 U2 U2

Q(Y ) ≤ 3 Z D5 D3 D3 D3 D3 D3 D3
Q(Y ) ≤ 4 Z D5 D4 ?2 D4 U3 U3 U3
Q(Y ) ≤ 5 Z D5 D4 ?2 D4 U3 U3 U3
Q(Y ) ≤ 6 Z D5 U4 ?2 U4 U3 U3 U3
Q(Y ) ∈ N Z D5 U4 ?2 U4 U3 U3 U3

Table 1: Summary of our results on subshifts with subsystem restrictions. On the left, X
is any subshift with a recursive language, and Y is any countable subshift with a recursive
language. By Q we mean the number of subsystems, including the subshift itself and the
empty set. The second column specifies whether we are talking about N- or Z-subshifts
(or both). Other columns are model-checking problems for classes of languages, and
the abbreviations stand for ‘elementary piecewise testable’, ‘local’, ‘star-free’, ‘renewal’,
‘regular’ and ‘context-free’ languages, respectively. In the entries, U followed by a number
means the problem is undecidable, and D means decidable. The numbers are explained in
Table 2.

U1 Halting problem is undecidable. Proposition 3
U2 Halting problem along a clopen set is undecidable. Theorem 3
U3 Modular halting problem is undecidable. Theorem 4
U4 Counting problem is undecidable. Theorem 5
U5 Theorem 6
D1 Lemma 3
D2 These follow from results of [3]. Corollary 8
D3 These systems are eventually periodic. Proposition 8
D4 Theorem 12
D5 Theorem 10
?1 Question 2
?2 Conjecture 2

Table 2: Explanations of the uppercase entries.
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2. Definitions and basic observations

2.1. More or less standard definitions

Remark 1. In this article, N = {0, 1, 2, 3, . . .}, and words are 0-indexed.
The empty word is denoted by ε. We give the definitions of subshifts and
related concepts for Z-actions in this section. It is easy to modify them in
the case of N-actions for the few places where we need them, the crucial
difference being that we do not require surjectivity for N-actions. A subset of
SZ, when considered a dynamical system, will always be considered a system
with a Z-action given by the shift, and a subset of SN is an N-system.

Definition 2. A subshift is a compact subset X of NZ, where N has the
discrete topology and NZ the product topology, and which is shift-invariant, in
the sense that σ(X) = X, where σ : NZ → NZ is the shift map σ(x)i = xi+1.

For standard references see [5, 2, 6].
Note that this indeed corresponds (up to symbol renaming) to the usual

definition where a finite set is used in place of N, and closed shift-invariant
subsets are called subshifts. Namely, for any finite S ⊂ N, X ⊂ SZ is a
subshift if and only if X is closed and shift-invariant, since SZ is compact
and Hausdorff, so that its closed subsets are precisely its compact subsets.
On the other hand, no shift-invariant set X ⊂ NZ containing infinitely many
letters is compact, since the open cover {[a]0 | a ∈ N} has no finite subcover.
Accordingly, when we write that X ⊂ SZ is a subshift, we imply that S is
chosen to be some finite alphabet. The induced topology of SZ for finite S is
generated by the cylinders [w]i = {x ∈ SZ | x[i,i+|w|−1] = w} for w ∈ S∗ and
i ∈ Z, which are clopen in SZ. The clopen sets are precisely the finite unions
of cylinders, and can all be represented as [C]i = [w1]i ∪ [w2]i · · · ∪ [wk]i for
some i ∈ Z, n ∈ N and C = {w1, . . . , wk} ⊂ Sn. We write [C] = [C]0.

For words u, v ∈ N∗ (that is, two finite words over N), we write u · v or
uv for their concatenation. For words u, v, v′, w ∈ N∗, we write ∞uv.v′w∞

for the point x ∈ NZ with x[0,|v′|−1] = v′, x[−|v|,−1] = v, and for all i ∈ N,

x[−|v|−(i+1)|u|,−|v|−1−i|u|] = u

and
x[|v|+i|w|,|v|+(i+1)|w|−1] = w.

Note that coordinate 0 is to the right of the decimal point. Often, however,
this position is not relevant, and the decimal point is omitted. We sometimes
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write · · ·u.v · · · when the continuations from u to the left and from v to the
right are easy to guess. For example, x = · · · 0000.0123 · · · is the point
x ∈ NZ where for all i ∈ N we have x−i = 0 and xi = i. Similar notations
are used for points x ∈ NN. Writing −N = {−n | n ∈ N}, for x ∈ N−N and
y ∈ NN we define x.y = z where zi = xi+1 when i < 0 and zi = yi otherwise.

A central pattern of x ∈ NZ is a word x[−n,n] ∈ N∗ for some n ∈ N. For
x ∈ NZ, we write u @ x if x[i,i+|u|−1] = u for some i ∈ Z. We also write u @ v
for two words u, v ∈ N∗ if u is a subword of v. This extends to sets A ⊂ NZ

by u @ A if u @ x for some x ∈ A.
A subshift can also be defined by a set F ⊂ S∗ of forbidden words, in the

sense that if X ⊂ SZ is a subshift, then there exists F ⊂ S∗ such that

X = {x ∈ SZ | ∀u ∈ F : u 6@ x}.

If F can be taken to be finite, then X is called an SFT, and if it can be taken
to be a regular language (a language accepted by a finite-state automaton
[7]), then X is called a sofic shift. Every SFT is sofic, but the converse is not
true. The SFT approximation of order k of a subshift X ⊂ SZ is the SFT Yk
whose forbidden patterns are precisely the words Sk \ Lk(X). Thus, for all
k and m ≥ k, we have Lk(Ym) = Lk(X).

If X and Y are subshifts, a continuous function f : X → Y between them
is called a morphism if f ◦ σ = σ ◦ f . A surjective morphism is called factor
map, and a bijective one is called a conjucagy, or a recoding.

For a point x ∈ NZ, we write Ln(x) for length-n subwords of x, that is,
Ln(x) = {u ∈ Nn | u @ x}, and L(x) =

⋃
n Ln(x). This is called the language

of x. For any set A ⊂ NZ, we write Ln(A) =
⋃
x∈A L(x), and define L(A)

as before. A subshift X ⊂ SZ is uniquely determined by its language L(x),
which is always factor-closed (vwv′ ∈ L(X) =⇒ w ∈ L(X)) and extendable
(u ∈ L(X) =⇒ ∃a, b ∈ S : aub ∈ L(X)).

We often define languages through regular expressions: A word w denotes
the language {w}, and if L1, L2 ⊂ Σ∗, L1L2 = {w1 ·w2 | wi ∈ Li}, L∗ = {w1 ·
w2 · · ·wn | ∀i : wi ∈ L} (including the empty word) and L1 + L2 = L1 ∪ L2.
A regular language is one obtained from finite languages with these three
operations. We write L+ as a shorthand for LL∗.

We also define some standard notions of regularity for infinite words,
though mainly for context, as they are used in the definition of decidability
in [8]. If L ⊂ S∗ we write Lω = {w1w2w3 · · · | ∀i : wi ∈ L}, and a subset of
SN is ω-regular if it is a finite union of languages of the form LKω where L
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and K are regular. A subset of SZ is ζ-regular if it is a finite union of sets of
the form {y.x | y ∈ Y R, x ∈ X} where X and Y are ω-regular and Y R ⊂ S−N

is the set of reversals of points in Y (−N = {−n | n ∈ N}). See [9] for more
information.9

Note that regular languages, ω-regular languages and ζ-regular languages
are all described by a finite expression, and thus we can talk about decision
problems where such languages are given as input. All these languages can
also be represented by (various kinds of) finite-state automata, and there are
conversion algorithms between the representations [9].

Accordingly, for a factor-closed and extendable language L, we write
L−1(L) for the unique subshift X with L(X) = L. We extend this notation
to all extendable languages L by L−1(L) = L−1(Fact(L)), where Fact(L) =
{w | ∃u ∈ L : w @ u} is the factor closure of L. For example, we can write
the (sofic) even shift [5] with forbidden patterns 1(00)∗01 as L−1((1(00)∗)∗),
and the (SFT) golden mean shift with the single forbidden pattern 11 as
L−1((100∗)∗). The orbit of a point x ∈ NZ is O(x) = {σi(x) | i ∈ Z}. The
orbit closure O(x) of x ∈ SZ is the (topological) closure of the orbit of x in
SZ.10 It is easy to see that O(x) is the smallest subshift containing x ∈ SZ.

A substitution is a function τ : A → B∗, where A,B ⊂ N. In our
applications, usually A = N, and B = S where S is the alphabet of a
subshift being discussed. For φ ∈ NZ and τ : N→ S∗, we write

τ(φ) = · · · τ(φ−2)τ(φ−1).τ(φ0)τ(φ1)τ(φ2) · · · .

A weakly transitive point (for X) is a point x ∈ X such that w @ x
holds for all w @ X. If X contains a weakly transitive point, we say X
is weakly transitive. A doubly transitive point (for X) is a point x ∈ X
such that every word w @ X occurs infinitely many times in both tails of
x. If X contains a doubly transitive point, then we say X is transitive. A
weakly transitive subshift need not be transitive. For example, a transitive
subshift is either finite or uncountable (since a countable subshift contains
an isolated point, that is, a singleton open set [10]), but the infinite countable

9In [9], they write ‘rational’ rather than ‘regular’, and their ω-rational languages can
include both finite and infinite words, while they would call our ω-regular languages ω-
rational subsets of SN. Also, their languages ζ-rational languages X ⊂ SZ are really unions
of σ-orbits. Here it makes no difference, as subshifts are also closed under the shift.

10See Section 2.2 for the case where x has infinite alphabet.
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subshift L−1(0∗10∗) = O(∞010∞), called the sunny-side-up subshift is weakly
transitive since it is the orbit closure of the point ∞010∞.

A subshift X ⊂ SZ is minimal if we have Y ∈ {∅, X} for all subshifts
Y ⊂ X. This is equivalent to the fact that X is uniformly recurrent, that is,

w @ X =⇒ ∃n : ∀u ∈ Ln(X) : w @ u.

We write aZ for the point x with ∀i ∈ Z : xi = a. We have O(aZ) = {aZ} =
L−1(a∗). This is an example of a (finite) minimal subshift. Typically, minimal
subshifts are uncountable. Such examples can be found in [2].

There is a canonical way to remove the isolated points of a space (in our
case, a subshift): The Cantor-Bendixson derivative of a subshift X is the
subshift X(1) obtained by forbidding all words w from X such that [w]0 is a
singleton. That is, X ′ = X(1) is X without its isolated points. This process
can be repeated up to any ordinal in an obvious way by transfinite induction,
and the Cantor-Bendixson rank of a subshift X is the least ordinal λ such
that X(λ) = X(λ+1), where X(β) denotes the βth Cantor-Bendixson derivative
of X. The Cantor-Bendixson rank of X is denoted by CB(X), and we call
the set X(CB(X)) the Cantor-Bendixson center of X. The Cantor-Bendixson
center is the unique maximal perfect subspace of X, which is automatically
a subshift. A subshift X is countable if and only if its Cantor-Bendixson
center is empty. We refer to [10] for details.

We need the first few levels of the arithmetical hierarchy [11]. Namely, Σ0
1

is the set of recursively enumerable languages, that is, languages such that
there is an algorithm that halts on words in the language, but not on the
ones outside it. The set of complements of Σ0

1 languages is Π0
1. A language in

∆0
1 = Σ0

1∩Π0
1 is called recursive. Properties that are recursive when encoded

into languages (in some natural way, usually safe to leave implicit) are called
decidable.

We say that a subshift is Π0
1 or Σ0

1 if its language is. There are other
possible definitions for Π0

1 subshifts, and we give a few below.

Lemma 1. For a subshift X ⊂ SZ, the following are equivalent:

• X is Π0
1.

• The set S∗ \ L(X) is Σ0
1.

• There exists a Turing machine M which enumerates an infinite list of
words w1, w2, . . . such that if x ∈ SZ, then x ∈ X if and only if wi 6@ x
for any i ∈ N.
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• There exists a Turing machine M such that the machine Mx (M with
oracle x ∈ SZ) halts if and only if x /∈ X.

We call a point x ∈ SZ computable if there is an algorithm that, given i ∈
Z, computes xi. It is well-known that not all Π0

1 subshifts contain computable
points, see for example [12].

2.2. The ruler sequence

The set M = N ∪ {∞} is the one-point compactification of N, where
U ⊂M is open if either U ⊂ N, or M \ U is finite.

We give the space MZ the product topology, so that it becomes compact
as well. A sequence φ ∈ NZ is called recurrent if every word that appears in
φ appears infinitely many times in both directions. As usual, if every word
appears with bounded gaps, we say φ is uniformly recurrent. We say φ is
Toeplitz if for all i ∈ Z there exists a period p such that φi = φi+kp for all k.
It is easy to see that a Toeplitz sequence is uniformly recurrent. We say φ
has unique singularities if for each m ∈ N there exists k ∈ N such that

φi ≥ k =⇒ ∀j ∈ [i−m, i+m] \ {i} : φj ≤ k.

We give MZ the shift action, and for each φ ∈ MZ obtain a compact space
O(φ) analogously to the case of finite alphabets.11

It is easy to verify that φ is recurrent if and only if φ is doubly transitive in
O(φ), and, more importantly, by Theorem 7 in [1] it is uniformly recurrent if
and only if O(φ) is minimal. The unique singularities property for φ means
precisely that each point of O(φ) contains at most one occurrence of ∞,
as one can verify by a compactness argument. Of course, φ contains only
finitely many distinct symbols if and only if∞ 6@ O(φ) if and only if O(φ) is
a subshift. In particular, if there are finitely many symbols, having unique
singularities is trivial, and recurrence and uniform recurrence correspond to
the usual notions. The same observations hold for the space MN.

We note that neither of uniform recurrence and unique singularities im-
plies the other, as one can easily verify by examples.

We will essentially just need one recurrent sequence with unique singu-
larities in our constructions. The proofs are particularly easy for the ruler
sequence φ ∈ NN,

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 . . . ,

11We note that this is not the usual way to compactify subshifts with infinite alphabets.
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that is, φ = n0n1n2 . . . where ni is the largest integer k with 2k|i+ 1. This is
sequence A007814 in the OEIS database [13].

Note that for all j such that j @ φ we have that {i ∈ N | φi = j} is a
semilinear set, that is, a finite union of translates of submonoids of N. More
precisely, for the ruler sequence φ, we have

{i ∈ N | φi = j} = {n2j+1 + 2j − 1 | n ∈ N}.

It follows that the ruler sequence is Toeplitz (thus uniformly recurrent) and
has unique singularities.

We note some basic combinatorial properties of the subwords of the ruler
sequence φ, whose proofs we omit. If φi = ` = φj where i < j, then there

exists k ∈ [i, j] such that φk = ` + 1. It follows that if w @ X = O(φ), then
there exists a unique maximal symbol wi = k in w. For each k ∈ N, there
is a unique maximally long word u ∈ L(X) with u2k−1 = k and ∀i : ui ≤ k,
and this u satisfies |u| = 2k+1 − 1.

Given a word w ∈ L(X) with ∞ 6@ w, all possible extensions to longer
words of X are obtained by the following process: First, take the maximally
long word u ∈ L(X) with maxi ui = k = maxiwi. We have u = vwv′ for a
unique choice of v, v′, and v (v′, resp.) is the unique extension of w in L(X)
of length |v| to the left (of length |v′| to the right, resp.). If w = u, then the
extensions of w to words in L(X) of the form awb with a, b ∈ N are precisely
those of the forms (k + 1)w` and `w(k + 1), where ` > k + 1.

For example, consider the word w = 3. To obtain its extensions, we
first deterministically extend it to u = 010201030102010. Here, we have
v = v′ = 0102010. We now choose a side on which to write 4. Choosing
the left side, we obtain 4010201030102010. On the other side, we can choose
any number greater than or equal to 5. Choosing 5 and performing the
deterministic extensions, we obtain the word

010201030102010 4 0102010 3 0102010 5 0102010301020104010201030102010

(where some spaces have been added for clarity). This is the unique maxi-
mally long word with maximal symbol 5.

Although φ ∈MN, we can take its limit points also in MZ in the obvious
way, and in the orbit closure of φ in MZ, there is a computable point ψ where
∞ does not occur. That is, ψ ∈ NZ. One such example is

ψ = . . . 01020103010201040102.010301020105010201030102010 . . . ,
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which is constructed by starting with 0 and repeating the following steps,
keeping the original 0 at coordinate 0:

• Extend on the right by the smallest symbol not yet found in it.

• Extend deterministically, as much as possible.

• Extend on the left by the smallest symbol not yet found in it.

• Extend deterministically, as much as possible.

2.3. Model-checking and halting problems

The following definitions are those from [3], adapted to the case of sub-
shifts and adapted to the two-sided case.12

Definition 3. Let X ⊂ SZ be a subshift. The model-checking problem of
X for ζ-rational languages is to decide, given a ζ-regular language Y ⊂ SZ,
whether X ∩Y 6= ∅. The model-checking problem of X for regular languages
is to decide, given a regular language L ⊂ S∗, whether L(X) ∩ L 6= ∅.

These are chosen as the natural problems for defining decidability and
universality in [3], and we take the same view.

Definition 4. A subshift X ⊂ SZ is decidable if its model-checking problem
for ζ-regular languages is decidable. It is universal if its model-checking
problem for finite-state automata is Σ0

1-complete.

In the few places where needed, in the one-sided case we use the same
definitions, with ω-regular languages in place of ζ-regular ones. In [3], the
definition of decidability for N-actions is through Muller automata, which
define precisely the ω-regular languages. In an earlier version of this article,
we stated that we use Muller automata also over Z, but in fact as noted in
[9], Muller automata in their usual form do not really generalize to two-sided
points (though there are other automata that do). Thus, we use the standard
notions of ω- and ζ-regularity instead.

12In [3], these definitions are given not just for subshifts, but for the more general class
of “effective symbolic systems”, which in the case of subshifts correspond to ones with a
recursive language. Although we do not require recursivity a priori, our examples have
recursive languages.
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A difference in the definition of [3] is that the regular languages are over
clopen sets instead of letters of the alphabet. One way to formulate this is
that, instead of asking whether L(X)∩L 6= ∅ for a given regular language L,
we ask whether L(φ(X))∩L 6= ∅ for a factor map φ : X → Y where Y ⊂ T Z

is a subshift and L ⊂ T ∗ is a regular language. If X is recursive, it is easy to
see that this does not change the definitions of universality and decidability,
since a finite-state machine is smart enough to look at the subshift through
a factor map (we skip the easy proof).

It is worth noting that the complexity of a subshift is often defined to
be the complexity of its language, or coincides with it. For example, a Π0

1

subshift is a subshift whose language is Π0
1. For decision problems, “decid-

able” is a synonym for “recursive”, but “decidable subshifts” in the sense of
the previous definition form a much smaller class than “recursive subshifts”
(decidability implies that the language is recursive, but not vice versa). We
will refer to subshifts whose language is recursive exclusively as recursive
subshifts.

Finally we note that we make no claim that a subshift X ⊂ SZ is decidable
if and only if the corresponding one-dimensional subshifts Y ⊂ SN and Z ⊂
S−N consisting of left and right tails of points in X (see Proposition 4) are
individually decidable. (In fact we believe this is not the case.)

In practice, to show undecidability, one (many-one) reduces the halting
problem of Turing machines to the model-checking problem for regular lan-
guages, and usually the reduction will be far from surjective, in the sense that
the regular languages produced by the reduction are of a specific form. By
considering these different forms, one can get more fine-grained information
on the degree to which the subshift is decidable. For this general definition,
it is useful to include clopen sets, since, when restricting to small classes
of regular languages, we may not be able to simulate factor maps (or even
conjugacies), leading to dynamically unnatural decision problems.

Definition 5. Let C =
⋃
i Ci be a class of regular languages, where each Cm

is over the alphabet [1,m] ⊂ N. The model-checking problem for C and a
subshift X is, given a language L in Cm for some m and a presentation of X
as a union of clopen sets X = [C1]∪· · ·∪ [Cm], to decide whether there exists
a word w ∈ L and point x ∈ X such that σi(x) ∈ [Cwi ] for all i ∈ [0, |w| − 1].

When the union [C1]∪ · · · ∪ [Cm] is disjoint, this is equivalent to checking
L(φ(X)) ∩ L 6= ∅ for a factor map φ : X → Y where Y is some subshift,
and universality of a subshift means that its model-checking problem for the
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whole class of regular languages is Σ0
1-complete. It is convenient to allow the

union to be non-disjoint, and to even allow Ci = Cj for some i 6= j, as this
makes it easier to show that the halting problems we define correspond to
model-checking problems. One could also define these problems for partitions
only (as was done in an earlier draft of the paper), and in the subshift setting
it would also make sense to consider expansive partitions only.

Definition 6. The star-free languages over [1,m] are the closure of finite
languages over [1,m] under concatenation, complementation (with respect to
[1,m]∗) and union.13 By an elementary piecewise testable language over
[1,m], we mean a language of the form a1S

∗a2S
∗a3S

∗ · · ·S∗ak where S =
[1,m], ai ∈ S for all i ∈ [1, k], and a piecewise testable language over [1,m]
is any Boolean combination of elementary piecewise testable languages. A
local language over [1,m] is a language of the form (AS∗ ∩ S∗B) \ S∗FS∗,
where A,B ⊂ S and F ⊂ S2. By a renewal language we mean one of the
form UW ∗V where U,W, V ⊂ S∗ are finite sets of words.

We occasionally use the following shorthands for these: ‘EPT’, ‘PT’,
‘Loc’, ‘SF’, ‘Ren’, ‘Reg’ and ‘CF’ stand for ‘elementary piecewise testable’,
‘piecewise testable’, ‘local’, ‘star-free’, ‘renewal’, ‘regular’ and ‘context-free’
languages, respectively.

In the case of star-free languages and piecewise testable languages, it is
important to parametrize the class of languages with the alphabet [1,m], and
consider languages over [1,m] when the space is fully covered by m clopen
sets, because the alphabet S = [1,m] plays a special role in the definitions
– for local languages and renewal languages, this is not necessary. Because
S∗ = ∅C , piecewise testable languages and local languages are both star-
free. Because S∗a =

⋃
b∈S bS

∗a ∪ a, we see that also languages of the form
S∗a1S

∗a2S
∗a3S

∗ · · ·S∗akS∗ are piecewise testable.

Example 1: An example of a star-free language over the alphabet [1, 2] is
L = 21∗2 = 2(∅C2∅C)C2. The language L is not local, but 21∗3 over the
alphabet [1, 3] is, by setting A = {2}, B = {3}, F = {12, 22, 31, 32, 33}.
Neither of these is elementary piecewise testable, but 2(1 + 2)∗2 is over the
alphabet [1, 2]. These are all renewal languages (over any alphabet), while
2(1+2)∗2(1+2)∗2 is elementary piecewise testable and star-free but not local

13That is, they are defined by generalized regular expressions without using Kleene star.
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EPT PT

Loc

SF

Ren

Reg⊆

⊆ ⊆

⊆ ⊆

Figure 1: Inclusions between the classes of languages we define.

or a renewal language. The language 2(11)∗2 is renewal, but is not EPT, PT,
Loc or SF. 4

From the observations above, we obtain the inclusions in Figure 1; note
that C ⊂ D for language classes C and D implies that the model-checking
problem for C many-one reduces to that of D.

The star-free languages are a well-studied class of regular languages, and
were also essentially studied in the context of dynamical systems in [8] (an
earlier version of [3]), as definability in temporal logic corresponds to star-
freeness [14] (although this connection was not made explicit). “Elementary
piecewise testable” is not a standard term, but piecewise testable languages
are again well-studied (although there are many variations of the basic idea
in the literature). Local languages are important in the theory of regular
languages, as they are to regular languages what vertex shifts are to sofic
shifts. We could have equally well used locally testable languages, where
we specify the sets of legal length-k prefixes, suffixes and subwords. These
languages correspond more directly to SFTs, but the difference is mostly
irrelevant for dynamical considerations. We do not know of an occurrence
of renewal languages in the literature, but they are an obvious “language
version” of the well-studied class of sofic shifts called renewal systems.14

Another approach to decidability is to consider problems of reachability
between clopen sets. We talk about the following problems:

Definition 7. In the following problems, defined for a subshift X, we are
given clopen sets [C], [D], [E], [F ] and numbers k,m, or a subset of these
inputs, and need to decide whether there exists a point x ∈ X, j ∈ Z and
A ⊂ [1, j − 1] with |A| = k, or a subset of these, with particular properties.

• In the undirected halting problem, properties x ∈ [C] and σj(x) ∈ [D].

• In the halting problem, properties j ∈ N, x ∈ [C] and σj(x) ∈ [D].

14One can imagine many other such language versions as well, and we do not claim this
to be the “correct” one – for the purpose of this article, it is mainly a mnemonic.
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• In the halting problem along a clopen set, properties j ∈ N, x ∈ [C],
σj(x) ∈ [D] and ∀i ∈ [1, j − 1] : σi(x) ∈ [E].

• In the counting problem, properties j ∈ N, x ∈ [C], σj(x) ∈ [D],
∀i ∈ [1, j − 1] \ A : σi(x) ∈ [E] and ∀i ∈ A : σi(x) ∈ [F ].

• In the modular halting problem, properties j ∈ N, j ≡ k mod m with
x ∈ [C] and σj(x) ∈ [D].

• In the modular halting problem along a clopen set, properties j ∈ N,
j ≡ k mod m with x ∈ [C], σj(x) ∈ [D] and ∀i ∈ [1, j − 1] : σi(x) ∈ E.

The halting problem was also defined in [3], and for Turing machines,
considered as a dynamical system (with moving tape or moving head, see
[15]), it essentially corresponds to the usual halting problem. It is easy to see
that the halting problem many-one reduces to the model-checking problem
for all of EPT, PT, Loc, SF, Ren and Reg, since, using a clopen cover with
m clopen sets, of which the first corresponds to [C] and second to [D], it
amounts to the model-checking problem for 1[1,m]∗2, which is in all of the
language classes.

The halting problem along a clopen set many-one reduces to the model-
checking problem for any of our classes, except EPT.15 This is because it
corresponds to the model-checking problem for the language 12∗3, by again
naming clopen sets suitably, and this language is Loc, Ren and Reg trivially,
and a bit of work shows that it is also PT and thus SF: We have

12∗3 = {1, 2, 3}∗ ∩ 1[1,m]∗ ∩ [1,m]∗3 ∩ ([1,m]+([1,m] \ {2})[1,m]+)C ,

and on the right, every individual expression can be easily written as a
Boolean combination of EPT languages.

The counting problem is a special case of the model-checking problem
for PT as well (and thus reduces to SF): For a1, a2, a3, a4 ∈ S, the lan-
guage L ∩ L′ ∩ Lk ∩ LCk+1 is piecewise-testable, where L = {a1, a2, a3, a4}∗,
L′ = a1(S

+(a1 + a2)S
+)Ca2 (shown to be PT similarly as above), and Li =

(S∗a4)
iS∗ is the language of words containing at least i occurrences of the

symbol a4.
Finally, the modular halting problem (along a clopen set or not) is a spe-

cial case of the model-checking problem for renewal languages: For a1, a2, a3 ∈

15Theorem 3 shows it does not reduce to EPT.
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S, set u = a1a
k
3, v = a2 and w1 = am3 . Then uw∗1v is a renewal language.

We note that this is not a special case of the model-checking problem for
star-free languages, and indeed should not be: a well-known characterization
of star-freeness of a language is that it is recognized by a finite state machine
that does no modular counting [16].

2.4. The generating order

The following object is very useful in studying subshifts, and was intro-
duced in [10] in the context of countable multidimensional SFTs.

Definition 8. The pattern preorder of a subshift X ⊂ SZ is the order x ≤
y ⇐⇒ L(x) ⊂ L(y).

We will, instead, talk about the subpattern poset, meaning the preordered
set with elements X and the pattern preorder as the preorder. If x ≤ y ≤ x,
we write x ∼ y.

We wish to extend this relation to finite words as well. An obvious way
to do this would be to define u ≤ v ⇐⇒ L(u) ⊂ L(v), so that u ≤ v ⇐⇒
u @ v. However, the following definition is more useful:

Definition 9. The generating (pre-)order of a subshift X has elements L(X)
and preorder u ≤X v ⇐⇒ (∀x ∈ X : v @ x =⇒ u @ x).

By compactness, u ≤X v means that there exists k ∈ N such that

∀x ∈ X : x[0,|v|−1] = v =⇒ u @ x[−k,|v|+k−1].

We again talk about the generating poset to mean the preordered set L(X)
with the generating preorder.

Abusing notation, for a word u and a point x, we write x ≤X u if v ≤X u
for all v @ x. When X is clear from context, in particular when u and v are
explicitly chosen from X, we write u ≤ v for u ≤X v.

Lemma 2. Let X be a Π0
1 subshift. Then, given u, v it is semidecidable

whether u ≤X v. In fact, there is an algorithm that, given u, v with u ≤X v,
computes hu,v such that

|w| ≥ |v|+ 2hu,v ∧ w[hu,v ,hu,v+|v|−1] = v =⇒ u @ w.
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Proof. If u ≤ v, then all long enough legal patterns of X containing v in the
center contain u as well. By compactness, the same is true for some SFT
approximation of X, which we eventually find by enumerating forbidden
patterns of X. This yields hu,v as a side-product.

The poset induced by the ≤X-order on words is not a conjugacy invariant.
However, ≤X extends naturally to clopen sets by [C] ≤X [D] ⇐⇒ x ∈
[D] =⇒ O(x)∩ [C] 6= ∅, and the poset of clopen sets is obviously conjugacy
invariant. It is a direct corollary of the previous lemma that [C] ≤X [D] is
semidecidable for given cylinders [C] and [D].

3. Quasiminimality and undecidability

In this section, we present our constructions of universal subshifts men-
tioned in Section 1 and prove their correctness. The decidability results
complementing them are given in Section 4. To get up to speed, we begin
with some simpler examples. First, we give a few examples of quasiminimal
but non-minimal subshifts which are in a sense already well-known: sub-
shifts generated by letter-to-word substitutions. Then, we give a universal
subshift with finitely many minimal subshifts, but infinitely many subshifts
in total, already proving Proposition 1 and refuting Conjecture 1. Then, we
present our main constructions: universal quasiminimal subshifts. We con-
clude this section with a minimal subshift whose model-checking problem for
context-free languages is Σ0

1-complete.

3.1. Non-universal quasiminimal examples

In this section, we consider classical symbol-to-word substitutions on a
finite alphabet S. It is well-known that a primitive substitution, that is, a
substitution τ : S → S∗ such that

∃n : ∀a, b ∈ S : b @ τn(a),

generates a minimal subshift (in the sense defined below). A non-primitive
substitution does not necessarily generate a minimal subshift, but it usually16

generates a quasiminimal subshift. We show some examples, and sketch
the proofs of their quasiminimality. These examples are very similar to the
universal examples we construct later.

16Below, we give a proof under some assumptions on the substitution.
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Definition 10. Let τ : S → S∗ be a substitution, define the subshift Xτ ⊂ SZ

that it generates by

x ∈ Xτ ⇐⇒ ∀j, k ∈ N : ∃a ∈ S, ` ∈ N : x[j,k] @ τ `(a).

First, we give an example of a countable quasiminimal system which is
not a union of minimal systems.

Example 2: Let τ be the substitution (0 7→ 0; 1 7→ 010). Then we have
τn(0) = 0 and τn(1) = 0n10n for all n ∈ N. Clearly, the substitution then
generates the sunny side up subshift O(∞010∞). Since this subshift is the
union of the orbits of ∞010∞ and ∞0∞, it is countable, and its only proper
nontrivial subsystem is L−1(0∗). 4

The points need not be eventually periodic:

Example 3: Let τ be the substitution (0 7→ 00; 1 7→ 11; 2 7→ 20; 3 7→ 2301).
Clearly, the only points where infinitely many central patterns are subwords
of τn(0), τn(1) or τn(2) are 0Z and 1Z. Thus, we only need to find out the
limit points of τn(3). We have

τn(3) = 20n−120n−22 · · · 202 3 010011022122023123 · · · 02n−1

12n−1

.

Since there is only one occurrence of the symbol 3 in this word, there is a
unique point in Xτ where 3 occurs. In a proper subsystem, then, a finite
subset of the symbols {0, 1, 2} occurs. The proper subshifts of Xτ can be
seen to be the countable sofic shifts

L−1(0∗),L−1(1∗),L−1(0∗20∗),L−1(0∗1∗),L−1(1∗0∗)

and their finite unions. In particular, Xτ itself is countable. 4
The following uncountable example is the basis of the more general con-

struction in Lemma 4.

Example 4: Let τ be the substitution (0 7→ 00; 1 7→ 101). Then one can show
by induction that τn(0) = 02n and

τn(1) = τn−1(1)02nτn−1(1) = 102φ0102φ1102φ21 · · · 102φk1

where φ is the ruler sequence and k = 2n−2. Clearly, L−1(0∗) is a subsystem.
We claim that it is in fact the only subsystem.

Namely, we show that if x ∈ Xτ contains the symbol 1, then it is weakly
transitive. Suppose x0 = 1 (by shifting x if necessary). For any k, by
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definition of Xτ we must have that x[−k,k] @ τn(1) for some n. We note
that the ruler sequence has unique singularities, and thus does not contain
subwords of the form ab where a, b ∈ N and both are arbitrarily large – in fact,
every second symbol in it is 0, and thus every second gap between two symbols
1 is of length 1. Taking a suitable k and considering the word τn(1) such
that x[−k,k] @ τn(1), we see that either x−2 = 1 or x2 = 1. For concreteness,
suppose we are in the second case. Again, due to unique singularities, the
ruler sequence does not contain words of the form a0b where both a and b
are arbitrarily large, and in fact one of them is always 1. This means, again
taking suitable k and looking at the corresponding τn(1), that either x−4 = 1
or x2+4 = 1. For concreteness, suppose we are in the second case. The only
extension of 01 to the right by one symbol in the ruler sequence is 010, so
again looking at τn(1) for large n, we see that x8 = 1, and x[0,8] = 101000101.

We repeat this deduction infinitely many times: We look at the finite
part of x already considered by the process, and observe, using the unique
singularities of the ruler sequence, that it cannot be the case that all the 1s
in x are in this part, and in fact the already filled part must be continued
by 02`1 to the right or 102` to the left, for suitable `. We then extend this
word deterministically using the properties of the ruler sequence given in
Section 2.2.

If we eventually fill the whole point x with this deducion process (so that
we find the new 1 from both the left and the right side infinitely many times),
then x corresponds in a one-to-one fashion to a point ψ ∈ NZ in the orbit
closure of the ruler sequence. If only one side is filled, then one can check
that x is in the orbit closure of either

∞0.102φ0102φ1102φ2102φ31 . . .

or
. . . 102φ3102φ2102φ1102φ01.0∞,

and in either case it generates the whole subshift Xτ . 4
We believe that all substitutions generate quasiminimal systems. In the

following, we show this under an additional condition: Let τ : S → S+ be a
substitution and let S` = {a ∈ S | |τn(a)| → ∞}, the set of long symbols. If
for some m,

w @ Xτ ∧ |w| ≥ m =⇒ S` ∩ L1(w) 6= ∅,

then we say long symbols are syndetic in Xτ .
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Proposition 5.5 of [17] shows that the above condition holds automatically
if Xτ contains no periodic points, and in Proposition 5.6 they show that if
this condition holds, then the number of minimal subshifts contained in Xτ

is at most |S|. We show a similar result for the set of all subshifts.

Proposition 2. If τ : S → S+ is a substitution and long symbols are syndetic
in Xτ , then Xτ is quasiminimal.

Proof. For each n ≥ 1 and x ∈ Xτ there exists y ∈ Xτ such that x = τn(y)
(up to shifting x). Namely, each subword of x occurs in τ k(a) = τn(τ k−n(a))
for arbitrarily large k and a long symbol a, and we obtain y as a limit point
of τ k−n(a). Let m be such that every word of length m in Xτ contains a long
symbol. Let Z ⊂ Xτ be a subshift, and for each n ∈ N, associate to Z the
following set:

Wn(Z) = {w ∈ Sm+1 | ∃x, y ∈ Xτ : x ∈ Z ∧ x = τn(y) ∧ w @ y}.

Note that for each n, Wn can have at most 2|S|
m+1

distinct values. Thus,
if Z1, Z2, . . . , Z2|S|m+1

+1 are subsystems of Xτ , we must have two indices i 6= j
such that Wn(Zi) = Wn(Zj) for infinitely many n. It is enough to show that
this implies L(Zi) = L(Zj), since subshifts with the same language are equal.

Thus, suppose that Z, Y are subshifts of Xτ with Wn(Z) = Wn(Y ) for
arbitrarily large n. Let u @ Z be arbitrary. Let k be such that |τ k(a)| ≥ |u|
whenever a is a long symbol, and choose n ≥ k such that Wn(Z) = Wn(Y ).
Since τ(S) ⊂ S+, τ can only increase the length of words, and thus we have
|τn(a)| ≥ |u| for all long symbols a.

Choose a point z ∈ Z such that u @ z, and let z = τn(y) where y ∈ Xτ .
Since long symbols are syndetic in Xτ and |τn(a)| ≥ |u| for long symbols a, it
is easy to see that there is a subword w of y of length m+ 1 with u @ τn(w).
By the assumption Wn(Z) = Wn(Y ), w is also a subword of some y′ ∈ Xτ

such that τn(y) ∈ Y , so u @ Y .
This shows u @ Y , and since u @ Z was arbitrary, we have L(Z) ⊂ L(Y ).

Symmetrically, we obtain L(Y ) ⊂ L(Z), which concludes the proof.

The upper bound we obtain for the number of subsystems 2S
m+1

, where
m is the bound for the length of the gap between two long symbols. In the
case that all symbols are long, we have m = 1, and obtain the upper bound
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2|S|
2

for the number of subsystems. The next example shows that this is in
the right ballpark.17

Example 5: Let k ∈ N, let S = {a, b1, . . . , bk}, and define the substitution τ
with τ(bi) = b2i for all i ∈ [1, k] and τ(a) = w, where w ∈ {b1, . . . , bk} is such
that bibj @ w for all i, j ∈ [1, k]. It is easy to see that Xτ = L−1(

⋃
i,j b
∗
i b
∗
j).

Choose a subset K ⊂ [1, k], and a subset

J ⊂ {(i, j) ∈ [1, k]2 | i 6= j}

such that (i, j) ∈ J =⇒ {i, j} ⊂ K. For such (K, J), let

YK,J = L−1(
⋃
i∈K

b∗i ∪
⋃

(i,j)∈J

b∗i b
∗
j).

We note that we can determine the sets K and J from YK,J , and if Y is
a subshift of Xτ , then Y = YK,J for some (K, J) with the above properties.
Thus, to compute the number B(k) of subsystems of Xτ , we only need to
compute the number of pairs (K, J) with these properties. The number of
such pairs is just the number of directed graphs whose vertices form a subset
of [1, k].

Letting A(j) = 2j(j−1) be the number of directed graphs with vertices
[1, j], we have

B(k) =

(
k

0

)
A(0) +

(
k

1

)
A(1) +

(
k

2

)
A(2) + · · ·+

(
k

k

)
A(k).

Of course, B(k) ≥ A(k) = 2j(j−1), so there exists a substitution on an alpha-
bet of k symbols with B(k − 1) ≥ 2(k−1)(k−2) subsystems. 4

In the OEIS database, B(i) is the sequence A135756, and the first few
values are

B(0) = 1, B(1) = 2, B(2) = 7, B(3) = 80, B(4) = 4381, B(5) = 1069742.

We note that the upper bound for the number of subshifts of Xτ which are
unions of minimal subshifts is 2|S| by the result of [17]. For |S| = 6, the

17We only look at the case m = 1 for simplicity, but one can add short symbols between
long symbols in the word τ(a) = w in the example, to get roughly 2|S`|2|S\S`|m−1

subshifts,
for a partition S = S` ∪ (S \ S`).
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number of such subsystems of Xτ is at most 26 = 64, but one can have
B(5) = 1069742 subsystems in total by the previous example.

Example 3 and Example 4 both have the property of syndetic long sym-
bols, as all symbols are long. Example 2 does not have this property, as 0 is
not a long symbol, but clearly the subshift does not change if the image of 0
is changed to 00. However, we believe there is no substitution with syndetic
long symbols generating a subshift conjugate to Xτ where

τ = (0 7→ 0; 1 7→ 10; 2 7→ 021),

where the point generated by the symbol 2 is

...0000002110100100010000100000...

Of course, even though long symbols are not syndetic, it is not very hard
to show that this subshift is quasiminimal. In general, one might be able to
obtain a proof for general substitutions by analysing the proof of Proposi-
tion 5.5 in [17] in more detail.

We show that the model-checking problem for regular languages is decid-
able for these systems. It seems plausible that this can be extended consid-
erably, see Section 5.

Lemma 3. Given a substitution τ : S → S∗, a symbol a ∈ S and a regular
language L, it is decidable whether τn(a) ∈ L for some n ∈ N. In particular,
it is decidable whether L(Xτ ) ∩ L = ∅ for a given regular L.

Proof. We may assume L ⊂ S∗. Let A be a nondeterministic finite state
automaton for L with state set Q, initial state qs, final state qt and transition
function δ ⊂ Q× S ×Q, and extend δ to a relation δ ⊂ Q× Sn ×Q for all
n in the usual way:

(q, w, q′) ∈ δ ⇐⇒ (q, w0, q0), (q0, w1, q1), · · · , (qn−2, wn−1, q′) ∈ δ

For all s ∈ S, let R ∈ ((2Q×Q)S)N be defined by

(q, q′) ∈ (Ri)s ⇐⇒ δ(q, τ i(s), q′).

We can compute Ri for each i easily from the definition of δ, and Ri takes
its value in the finite set (2Q×Q)S. The set (2Q×Q)S is finite, so let t, p be such
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that Rt = Rt+p. Then, R′t = Rt′+p for all t′ > t as well: writing w = τ t
′−t(s),

we have

(q, q′) ∈ (Rt′)s ⇐⇒ δ(q, τ t
′
(s), q′)

⇐⇒ δ(q, τ t(w), q′)

⇐⇒ δ(q, τ t+p(w), q′)

⇐⇒ δ(q, τ t
′+p(s), q′)

⇐⇒ (q, q′) ∈ (Rt′+p)s,

where the second ⇐⇒ follows because Rt = Rt+p, so that

δ(q, τ t(a), q′) ⇐⇒ δ(q, τ t+p(a), q′)

for all a ∈ S, and the third ⇐⇒ because this extends to all words w ∈ S∗
by the inductive definition of δ ⊂ Q× Sn ×Q.

Now, to check whether τn(a) ∈ L for some n, it is enough to check whether
(qs, qt) ∈ (Ri)a for some i ∈ [0, p + t − 1]. The second claim is proved by
checking whether we have τn(a) ∈ S∗LS∗ for some n and a ∈ S.

3.2. Universal non-quasiminimal examples

We present our (non-quasiminimal) example of a universal recursive sub-
shift with finitely many minimal subsystems.

Proposition 3. There exists a recursive subshift X ⊂ {0, 1, 2, 3}Z which is
contained in a countable SFT, has finitely many minimal subsystems, and
has a Σ0

1-complete halting problem. Every minimal subsystem of X consists
of a single unary point.

Proof. Enumerate the deterministic Turing machines as T1, T2, T3, . . .. We
define a subshift by X = O({xi | i ≥ 1}), where

xi = ∞0.1i2i+h(i)3∞,

if the machine Ti halts exactly after h(i) ∈ N steps, and xi = ∞0.1i2∞ if it
never halts.

This is a recursive subshift: First, all words a∗b∗ for a ≤ b ∈ {0, 1, 2, 3}
are in L(X). Let i, j, k, ` ≥ 1 be arbitrary. The word 0i1j2k is in L(X) if
and only if Tj does not halt in the first k steps, which is decidable. The word
0i1j2k3` is in L(X) if and only if Tj halts exactly after k − j steps, which is
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decidable. The word 1j2k3` is in L(X) if and only if some word of the form
01j

′
2k3` is in L(X), where j ≤ j′ ≤ k, which we can check by running all the

machines Tj′ for at most k steps.
The subshift X is contained in the countable SFT L−1(0∗1∗2∗3∗), because

each of the points xi is in this subshift. The only periodic points in X are
the points ∞a∞ for a ∈ {0, 1, 2, 3}. Since a minimal subshift is either finite or
uncountable, the only minimal subsystems of X are these singleton subshifts.

The undirected halting problem of X is Σ0
1-complete because solving the

halting problem for the clopen sets [01i2]0 and [3]0 is equivalent to solving
the halting problem of Ti.

We make a few remarks about this subshift, omitting the easy proofs.

1. This subshift has Cantor-Bendixson rank 3. Countable subshifts of
Cantor-Bendixson rank 1 are finite, and those of rank 2 are sofic [18],
so this is the minimal possible rank for a countable universal subshift.

2. By forbidding the single letter 3 from the subshift X, we obtain a
system Y whose language is not decidable, since 01k2 @ Y if and only
if Tk never halts. Thus, while X is recursive, one could say it is not
hereditarily recursive, as it contains a Π0

1 subshift which is not recursive.
(Compare this with Corollary 2.)

3. The subshift X has only finitely many minimal subshifts, but more
than one. By using the points

xi = ∞0.10i20i+h(i)30∞

in the proof, the enveloping countable SFT of Cantor-Bendixson rank 4
changes into a countable sofic shift with the same CB-rank, and there
will be only one minimal subsystem (which is a fixed point).

4. We do not have to use minimal subshifts consisting of a single fixed
point – we can use a periodic point, or more generally any minimal sub-
shift: If, in the points xi = ∞0.10i20i+h(i)30∞, we replace the maximal
subwords of the form 0k by (any!) subwords of length k of a minimal
subshift Y over an alphabet disjoint with {1, 2, 3}, it is easy to check
that the only minimal subsystem of O({xi | i ≥ 1}) is Y . Choosing
the minimal subshift and the words suitably, the subshift can be made
recursive as well.

5. A classical tool for studying minimal systems are the Bratteli-Vershik
systems. It was proved in [19] that every minimal system is conjugate
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to such a system. In fact, the result of [19] applies more generally
to systems containing exactly one minimal subshift, and thus to our
example. Such systems are called essentially minimal systems. The
classes of essentially minimal systems and quasiminimal systems are
incomparable.

6. In Proposition 9 of [3], it is shown that if the limit set of a symbolic
dynamical system is a finite union of minimal systems, then it is de-
cidable. As we are concerned with two-way subshifts, the limit set of
a subshift is equal to the subshift itself. We note, however, that the
asymptotic set (the union of limit points of individual configurations)
and its nonwandering set (the points whose neighborhoods all return
to themselves) of X are both finite unions of minimal systems: in fact,
these sets are finite, and can again be taken to be singletons.

As discussed in the introduction, our system is a Z-system, and one could
also ask whether Conjecture 1 is true for N-systems, where a priori there are
more subsystems. Since minimal systems are clearly surjective, and mini-
mality is a property of the language of a subshift (uniform recurrence), the
following proposition shows that Proposition 3 resolves the case of N-actions
too. If X ⊂ SN is a one-sided subshift, we say it is surjective if the left shift
σ : X → X is surjective.

Proposition 4. For any subshift X ⊂ NZ let

c(X) = {y ∈ NN | ∃x ∈ N−N : x.y ∈ X}.

For any surjective subshift X ⊂ NN, let

e(X) = {x ∈ NZ | ∀i ∈ Z : x[i,∞) ∈ X}.

These operations preserve the language of the subshift, and thus c(e(X)) = X
for any surjective N-subshift, and e(c(X)) = X for any Z-subshift.

The operations c and e and their correspondence are well-known, although
we do not know an explicit reference for the precise statement above.

3.3. Uncountable universal quasiminimal examples

We now move on to our quasiminimal examples in the case of Z-actions,
from which one can obtain results in the case of N-actions from the previous
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proposition, when only surjective subsystems are considered. The case of N-
actions and non-surjective subsystems is dealt with in Section 4.2. First, we
give our example of a universal (uncountable) quasiminimal subshifts, giving
our first proof of Theorem 2. In this case, we can construct a subshift whose
halting problem along a clopen set is undecidable, and thus so is the model-
checking problem for local languages, piecewise testable languages, star-free
languages and renewal languages. Our example has only one proper subshift,
which can be chosen rather freely.

Theorem 3. For any recursive infinite minimal subshift Y , there exists a
recursive transitive uncountable quasiminimal subshift X for which the halt-
ing problem along a clopen set is Σ0

1-complete, such that the only nontrivial
subsystem of X is Y .

To prove Theorem 3, we need a few lemmas. The first is a method of
constructing quasiminimal subshifts.

Lemma 4. Let Y ⊂ SZ be a quasiminimal subshift. Let φ ∈ NZ be uniformly
recurrent with unique singularities, and let τ : N → aL(Y ) be a substitution
where |τ(n)| n→∞−→ ∞, where a is a symbol not in S. Then X = O(τ(φ)) ⊂
(S∪{a})Z is transitive and quasiminimal, and in fact every proper subsystem
of X is a subsystem of Y .

Proof. If Z is a subshift of X where a does not occur, then clearly it is also
a subshift of Y . Thus, we only need to show that there are finitely many
subshifts of X where a does occur. In fact, we show the stronger fact that
a ∈ x =⇒ O(x) = X. For this, suppose that a ∈ x.

If a occurs infinitely many times in both tails of x (that is, {i ∈ Z | xi = a}
is unbounded from both above and below), then by |τ(n)| n→∞−→ ∞ and a
compactness argument, we have x ∈ O(τ(φ′)) for some φ′ ∈ O(φ) ∩ NZ.
Namely, since x ∈ O(τ(φ)), for any j, j′ such that xj = xj′ = a, we find i, i′

such that x[j,j′] = τ(φ[i,i′])a. There are finitely many choices for the word
φ[i,i′] for each pair j, j′, so letting j → −∞ and j′ → ∞ and passing to a

suitable subsequence, we obtain x ∈ O(τ(φ′)) for some φ′ ∈ O(φ).
Because φ is uniformly recurrent, φ′ contains all its finite patterns, and

thus O(x) contains all finite patterns of X, which implies O(x) = X.
Next, suppose a occurs infinitely many times in one tail of x, but not

the other. These cases are (more or less) symmetric, so we suppose x0 = a,
xi 6= a for all i < 0, and {i ∈ N | xi = a} is unbounded from above. Now,
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a compactness argument like the one above shows that there exists a point
φ′ ∈ O(φ) such that φ′−1 =∞, xN = τ(φ′N), and x(−∞,−1] is some limit point
of the suffices of words τ(n). Because φ uniformly recurrent, all its finite
words appear in the one-way point φ′N, and thus also in x. Again, O(x) = X.

Finally, we show that a cannot occur finitely many times. Namely, sup-
pose xj = a, x` = a, and xi 6= a for all i /∈ [j, `]. Then a compactness

argument shows that there is a point φ′ ∈ O(φ) with |φ′|∞ ≥ 2. This is a
contradiction, since φ was assumed to have unique singularities.

The transitivity of X is clear from the definition.

Definition 11. We say a subshift X ⊂ SZ is right-perfect if the subshift
c(X) = {y | ∃x : x.y ∈ X} is perfect, that is, if it has no isolated points.

In other words, X is right-perfect if every word of X has at least two
incomparable extensions to the right.

Lemma 5. Let Y ∈ [0, k − 1]Z be a nonempty right-perfect subshift with a
recursive language. Then, there exists a recursively enumerable infinite prefix
code u1, u2, . . . of words in Y such that (uj)[0,|uj |−2] = (uj+k)[0,|uj |−2] for all
j, k ≥ 1.

Of course, symmetrically, there exists such a suffix code if Y is left-perfect.

Proof. Note that a right-perfect nonempty subshift is infinite (even uncount-
able). Enumerate the words of Y as V1 = v1, v2, . . ., first ordered by length,
and then lexicographically among words of each length. Let u1 = ua be the
first one-symbol extension of a word of Y on this list which has at least two
one-symbol extensions, ua and ub. Let V2 be the subsequence of V1 of words
beginning with ub. Having chosen u1, . . . , uj and restricted our list to Vj+1,
choose again the lexicographically smallest one-symbol extension of a word of
Y which has at least two one-symbol extensions in Vj+1, and restrict to Vj+2

accordingly. Since Y is right-perfect, this process continues forever, and the
resulting set of words is clearly a prefix code. The condition on compatible
prefixes is automatic in the construction.

Proof of Theorem 3. Suppose Y ⊂ [1, k]Z. The subshift X will be over the
alphabet [0, k].

Enumerate the deterministic Turing machines as T0, T1, T2, . . .. Let φ ∈
NZ be a computable point in the orbit closure of the ruler sequence.
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Using Lemma 5 and the fact that an infinite minimal subshift is left- and
right-perfect, take recursively enumerable prefix and suffix codes of words ui
and vi of Y , respectively. Let h : N → N be a computable infinite-to-one
dovetailing of the natural numbers (for example, the ruler sequence). Now,
let x = τ(φ), where τ is the substitution

i 7→ 0uh(i)wivh(i), if Th(i) does not halt before step i.
0uh(i)wivh(i)+1, if Th(i) halts before step i.

where each wi is a word of length at least i such that uh(i)wivh(i) @ Y , chosen
in such a way that i 7→ wi is computable, and as i runs over the natural
numbers, all words of Y beginning with uh(i) appear as prefixes of words

uh(i)wi infinitely many times (and similarly for wivh(i)). Let X = O(x) ⊂
[0, k]Z.

Clearly, X is transitive, and Y is its subsystem. By Lemma 4 it is quasi-
minimal and all nontrivial proper subsystems are subsystems of Y – thus
equal to Y by minimality. The halting problem along a clopen set is unde-
cidable for X because Tj eventually halts if and only if L(X)∩L 6= ∅, where
L = 0uj[1, k]∗vj+10.

To show that the subshift is recursive, note that given any word 0u0
where u ∈ [1, k]∗, we can easily check whether there exists n ∈ N such that
τ(n) = 0u. Suppose then that we are given a word t00t10t20 · · · 0tk, where
ti ∈ [1, k]∗. Using the properties of the sequence φ, we can compute two
extensions of this word, one beginning with 0 and one ending in 0, such that
every extension agrees with one of them. Thus, we may assume the given
word is w = 0t00t10t20 · · · 0tk.

Such a word is in the language ofX if and only if u = τ−1(0t00t10t20 · · · 0tk−1)
is well-defined and u @ φ holds, and either tk begins with one of the words
uh(i) or it is a prefix of the unique one-way limit x ∈ [1, k]N of the words ui.
These conditions are easily seen to be decidable.

3.4. Countable universal quasiminimal examples

The case of countable quasiminimal subshifts is also interesting. For such
subshifts, we show that both the modular halting problem and the counting
problem are undecidable, so that the model-checking problems for piecewise
testable languages, star-free languages and renewal languages are undecidable
as well. In Section 4, we complement these results by showing that in each,
the number of subsystems is optimal, and the model-checking problem for
local languages (and thus the halting problem along a clopen set) is decidable.
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First, we show that if nonzero symbols are asymptotically spaced far apart
in x, then x generates a quasiminimal countable subshift.

Lemma 6. Let x ∈ ({0} ∪ S)Z be such that

∀n : ∃m : (xj = xj′ 6= 0 ∧ j 6= j′ ∧ |j| ≥ m =⇒ |j − j′| > n).

Then X = O(x) is a countable weakly transitive quasiminimal subshift whose
proper subshifts are among the subshifts of L−1(0∗S0∗). If x is computable
and m = m(n) is computable in n, then X is recursive.

Proof. Every limit point of x is easily seen to be in L−1(0∗S0∗), so X is
contained in O(x) ∪ L−1(0∗S0∗). Thus, X is countable and quasiminimal,
and its proper subshifts are among the subshifts of L−1(0∗S0∗).

Suppose then that x and m are computable. For each ∞0s0∞ /∈ X, let
ks be the maximal |i| such that xi = s (given to the algorithm by a look-
up table). Given w, if w is not a word in L−1(0∗S0∗), then w contains
two nonzero symbols spaced n apart, so w @ X if and only if w occurs
in x[−m(n)−|w|,m(n)+|w|]. If w ∈ 0∗, or w ∈ 0∗s0∗ and ∞0s0∞ ∈ X, then
w @ X. If w ∈ 0∗s0∗ and ∞0s0∞ /∈ X, then w @ X if and only if w @
x[−ks−|w|,ks+|w|].

We begin with the case of modular halting problem. We first show the
result for the modular halting problem along a clopen set, as the proof illus-
trates the main idea, but is easier.

Proposition 5. There exists a recursive countable weakly transitive quasi-
minimal subshift X ⊂ {0, 1}Z for which the modular halting problem along a
clopen set is Σ0

1-complete, and which has exactly two subsystems L−1(0∗10∗)
and L−1(0∗).

Proof. Enumerate the deterministic Turing machines as T0, T1, T2, . . .. Let
h : N→ N be the ruler sequence and let pi denote the ith odd prime number
(so p1 = 3). Let τ be the substitution

i 7→ 102i , if Th(i) does not halt before step i.

10ph(i)2
i
, if Th(i) halts before step i.

We let x = ∞0.τ(0123...) and X = O(x).
The modular halting problem of this subshift is clearly undecidable, as the

distance of two symbols 1 along symbols 0 can be divisible by pj if and only if
Tj eventually halts. The required properties of X follow from Lemma 6.
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Theorem 4. There exists a recursive countable weakly transitive quasimin-
imal subshift X ⊂ {0, 1}Z for which the modular halting problem is Σ0

1-
complete, and which has exactly two subsystems L−1(0∗10∗) and L−1(0∗).

Proof. Enumerate the deterministic Turing machines as T0, T1, T2, . . .. Let
h : N→ N be the ruler sequence. Let p(i) denote the ith odd prime number,
and define the primorial of n ≥ 2 to be n# = 2p(1)p(2) · · · p(`) where ` is
maximal such that p(`) ≤ n. Thus, n# is the product of primes up to n. Let
f : N→ N be an increasing recursive function satisfying p(f(i−1))p(f(i−1)) ≤
p(f(i)) for all i. Let τ be the substitution

i 7→ 10p(f(i))#−1, if Th(i) does not halt before step i.
10p(f(i))#+p(f(i))#/p(f(h(i)))·ki−1, if Th(i) halts before step i,

where 0 < ki < p(f(h(i))) is minimal such that

p(f(i))#/p(f(h(i))) · ki ≡ 1 mod p(f(h(i))).

Note that such ki exists because p(f(i))#/p(f(h(i))) is not divisible by
p(f(h(i))).

We let x = ∞0.τ(0123...) and X = O(x). To show that the modular
halting problem is Σ0

1-complete, we show that there exist two symbols 1 with
distance ` ≡ 1 mod p(f(j)) if and only if Tj eventually halts. First, if Tj does
halt, then j = h(i) for some i such that Tj halts before step i. Then,

10p(f(i))#+p(f(i))#/p(f(j))·ki−11 @ x,

where ` = p(f(i))# + p(f(i))#/p(f(j)) · ki ≡ 1 mod p(f(j)) by the choice of
ki and because j ≤ i.

Let us show that if Tj never halts, then no such distance ` occurs. First,
note that if Tj does not halt, then the distance between the ith and (i+ 1)th
symbol 1 produced by the construction is divisible by p(f(j)) by construction
whenever i ≥ j. Thus, if there is a distance ` ≡ 1 mod p(f(j)) between two
symbols 1 in x, then it is among the first j symbols, that is, the distance must
occur between two symbols 1 in the word τ(12 · · · (j − 1)) · 1. The distance
is never 1, so it must be at least p(f(j)) + 1. However, we have

|τ(1 · · · (j−1))·1| ≤ 2j|τ(j−1)| = 2jp(f(j−1))# ≤ p(f(j−1))p(f(j−1)) ≤ p(f(j)),

by the assumption on f .
This shows that the modular halting problem is undecidable. The other

properties again follow from Lemma 6.
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Of course, the growth rate for the distances between consecutive symbols
1 is not optimal, but we are not aware of essentially simpler substitutions for
which the proof is equally short.

We note that just like we could take an arbitrary infinite recursive minimal
subshift as the unique minimal subshift in the proof of Theorem 3, one could
of course use any infinite subshift of the form L−1(u∗vu∗) in the place of
L−1(0∗10∗), although small additional complications arise if |u| 6 | |v|.

Next, let us consider the counting problem. For this, we need four sub-
systems.

Theorem 5. There exists a recursive countable weakly transitive quasimin-
imal subshift X for which the counting problem is Σ0

1-complete, and which
has exactly four subsystems, L−1(0∗(1 + 2)0∗), L−1(0∗20∗), L−1(0∗10∗) and
L−1(0∗).

Proof. Let Ti be an enumeration of Turing machines and h and infinite-to-one
computable mapping. Let τ be the substitution

i 7→ 20i, if Th(i) does not halt before step i.
2(0i1)h(i)0i, if Th(i) halts before step i,

We let x = ∞0.τ(0123...) and X = O(x). The counting problem is clearly
Σ0

1-complete, because there exists a point that travels from the cylinder [2]
back to itself along [0] visiting [1] exactly j times if and only if Tj eventually
halts. The other properties again follow from Lemma 6.

3.5. Model-checking for context-free languages

In [3], it is shown that the model-checking problem of regular languages is
decidable for minimal systems, and in this section, we have shown that this
problem is undecidable for more complex subshifts. In another direction, we
could ask how far we must step from the class of regular languages to find
undecidable model-checking problems for recursive minimal subshifts.

We show that the model-checking problem is hard at least for context-free
languages. Our example is a subshift of the Dyck shift (with labels {1, 2, 3}),
the subshift of S = {[1, [2, [3, ]3, ]2, ]1}Z where the parentheses are balanced,
in the sense that the process of recursively erasing subwords of the forms [s]s
for s ∈ {1, 2, 3} never introduces a subword of the form [s]s′ with s 6= s′.

The language of the Dyck shift is the set of factors of the Dyck language
L generated by the context-free grammar A 7→ AA|[aA]a|[bA]b|[cA]c|ε. A de-
terministic push-down automaton M for it is obtained by pushing s on input
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[s, and popping the corresponding symbols on closing brackets (rejecting the
word if these do not match). For two words u, v over S which occur as sub-
words of words in L, write u ∼ v if the two words correspond to the same
element of the syntactic monoid of L. (In other words, they close the same
parentheses, and leave the same parentheses open).

Theorem 6. There exists a recursive minimal subshift X whose model-
checking problem for context-free languages is Σ0

1-complete.

Proof. For s ∈ {1, 2, 3} let [0i = [i, and ]0i = ]i. Let W0 = {[01, [02, [03, ]03, ]02, ]01}.
Inductively, supposeWi = {[i1, [i2, [i3, ]i3, ]i2, ]i1} is defined, and each word inWi is
a concatenation of words of Wi−1, and contains all concatenations uv of words
u, v ∈ Wi−1 such that uv is a subword of a word of L. We also inductively
suppose that each w ∈ Wi corresponds to one of the symbols a ∈ S of the
original alphabet in the sense that the push/pop action corresponding to a is
performed on w when reading the very last symbol, and during the reading
of proper prefixes, no existing data on the stack is popped, and all words put
on the stack begin with 3. More precisely, we suppose the words in Wi are
of the same length ni, and for all s ∈ {1, 2, 3}, ([is)[0,ni−2] ∼ (]is)[0,ni−2] ∼ ε,
([is)ni−1 = [s and (]is)ni−1 = ]s, and if the stack of M initially contains v, then
after reading any proper prefix of a word u ∈ W i, the stack contains either
v or v3w for some word w.

We define Wi+1 as a concatenation of words of Wi, respecting the induc-
tive assumptions. Let T1, T2, T3, . . . be an enumeration of Turing machines,
and let h : N → N be a computable infinite-to-one mapping. Let ui be any
word with ui ∼ ε containing all legal concatenations of pairs of words in Wi.
For example,

ui =
∏

s,s′∈{1,2,3}

[is[
i
s′ ]
i
s′ ]
i
s[
i
s′ ]
i
s′

is such a word, no matter what order the pairs s, s′ are listed in.
Now, if Th(i) does not halt in i steps or less, we define

[i+1
s = [i3ui]

i
3[
i
s, and ]i+1

s = [i3ui]
i
3]
i
s.

If Th(i) does halt in i steps or less, we define

[i+1
s = [i3([

i
1)
h(i)[i2]

i
2(]

i
1)
h(i)ui]

i
3[
i
s, and ]i+1

s = [i3([
i
1)
h(i)[i2]

i
2(]

i
1)
h(i)ui]

i
3]
i
s.

We let
Wi+1 = {[i+1

1 , [i+1
2 , [i+1

3 , ]i+1
3 , ]i+1

2 , ]i+1
1 }.
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The subshift X is defined as the set of limit points of (say) the words [j1 as
j →∞.

Now, define Lk ⊂ L as the language defined by the automaton Ak, which
simulates the deterministic push-down automaton A for the Dyck language,
but additionally inspects the k + 2 top symbols of the stack after every step
for the word 31k2. The automaton accepts the word w if and only if w ∈ L,
and 31k2 was seen on the top of the stack during the execution.

We claim that X is minimal, recursive and for j sufficiently large, its
language intersects Lj if and only if Tj eventually halts. For minimality,
simply note that if u @ X, then u @ [i1 for some i (by definition). This word
appears in every word of Wi+1 and every point of X is a concatenation of
these words.18 To show X is recursive, we note that given any word w we
can check whether w ∈ L(X) by computing the sets Wi until their lengths
exceed that of w. Then by the choice of ui, every word of length |w| that
appears in X appears in Wi+1.

19

Now, note that if Tj eventually halts, then certainly Lj intersects the
language of X because for any large enough i with h(i) = j, [i3([

i
1)
h(i)[i2@ [i+1

a

and [i3([
i
1)
h(i)[i2 ∼ [3([1)

h(i)[2, which pushes the word 31j2 on top of the stack
of M .

Conversely, suppose j is large. If there exists a subword of X where
31j2 appears on top of the stack during the run of A on the word, then in
particular there exists such a word which is a subword of some [i+1

s or ]i+1
s .

Choose the minimal such i, and suppose that it occurs in v = [i+1
s (the case

of a closing bracket being similar). Let k be minimal such that 31j2 is on
the top of the stack after reading v[0,k]. If v[0,k] is not a concatenation of
words of Wi, then the automaton has read a proper prefix of a word of Wi

up to coordinate k. By the inductive assumption, it has then written a word
beginning with 3 on the stack, or nothing. In the first case, the word 31j2
was written on top of the stack while reading that word of Wi, so i is not
minimal. In the second case, reading the prefix did not modify the stack, so
k is not minimal.

In the remaining case, we have read some concatenation of words of Wi.
It is clear by the construction that 31j2 is written on top of the stack after

18We note that for this argument, there is no need to have all legal pairs of symbols in
ui, only all symbols, although the definition of X is more robust if all pairs occur.

19For this, on the other hand, having all pairs in ui is essential.
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reading some such prefix if and only if Tj halts or this happened because
for some prefix [i3u of [i3ui]

i
3[
i
s wrote this on top of the stack. Since u is

a concatenation of at most 54 words of Wi, j > 54 is enough to prevent
this.

4. Quasiminimality and decidability

In this section, we give various decidability results, which complement
the results of the previous section. We take a rather high-level approach to
decidability, and usually only describe the logical deductions the algorithm
must make to determine the right answer.

4.1. Decidability in the general case

One could say that it is a folklore result that a minimal Π0
1 subshift has

a recursive language; we are not aware of a reference that states and proves
this explicitly, although the proof is given in multiple places. The result is
shown in [20] in the case of multidimensional SFTs, and the proof works in
general. It is also essentially shown in [21], but the connection is not made
very explicit. We give a proof below.

Theorem 7. A minimal Π0
1 subshift (over N or Z) is recursive.

Proof. Given an alphabet S, a word w ∈ S∗ and a Turing machine enumer-
ating the forbidden patterns of a nonempty minimal subshift X over S, we
show that it is decidable whether w @ X.

If w 6@ X, then an algorithm can eventually detect this by the assumption
that X is Π0

1. If w @ X, then by uniform recurrence, there exists n such that
w @ u for all u ∈ Ln(X). By compactness, there exists k such that the SFT
Y defined by the first k forbidden patterns v1, v2, . . . , vk enumerated by the
given Turing machine defining X satisfies Ln(Y ) = Ln(X). It follows that
after enumerating the first k forbidden patterns, the algorithm has found an
SFT Y such that X ⊂ Y and w @ u for all u ∈ Ln(Y ), and can deduce that
w @ X (on the assumption that X is nonempty).

The algorithm is uniform in the given Turing machine and given word,
though only when restricted to inputs that define nonempty subshifts. It is in
fact easily seen to be undecidable whether a given Turing machine defines an
empty subshift or a nonempty minimal subshift: the given Turing machine
may output the forbidden patterns of any Π0

1 minimal subshift as long as
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another simulated Turing machine does not halt, and forbid every symbol if
it does halt.

The following is shown in [3]. The proof is based on analyzing the basins
of attraction of clopen sets, and observing they are clopen. We believe the
proof easily adapts to Z-subshifts by considering basins of attraction for σ
and σ−1 separately, but this is beyond the scope of the article.

Theorem 8. A minimal Π0
1 subshift X ⊂ SN is decidable.

The model-checking problem of regular languages reduces to the model-
checking problem for ω-languages, so we have the following corollary.

Corollary 1. If X is minimal Π0
1 subshift over N or Z, then its model-

checking problem for regular languages is decidable.

In the rest of this subsection, we restrict to Z-subshifts.
We show that (a non-uniform version of) Theorem 7 holds for the class

of quasiminimal subshifts as well, in Theorem 9 below. As a quasiminimal
subshift contains only finitely many subshifts, it is natural to approach such
subshifts by induction on the number of proper subshifts they have, and we
give the following notation for this.

Definition 12. For X quasiminimal, define

Q(X) = |{Y | Y ⊂ X, Y is a subshift}|.

The empty subshift and the subshift itself are also counted: if X is
nonempty and minimal, then Q(X) = 2, and Q(∅) = 1. We define Q like
this, instead of counting only the interesting (proper) subsystems, as it has
a natural interpretation as the cardinality of the subsystem lattice.

We need the following basic structural results.

Definition 13. If w @ X and u ≤X w for all u @ X, then w is called a
generator (for X).

Lemma 7. Let X be quasiminimal. Then X has a generator if and only if
it is not the union of its proper subshifts.

Proof. First, we suppose that X is the union of its proper subshifts. Then,
whenever w @ X, there must exist a proper subshift Y ( X with w @ X.
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If Y ( X, then u 6@ Y for some u @ X, which implies u 6≤X w. Thus, no
w @ X is a generator for X.

Now, suppose X is not the union of its proper subshifts. Let Y ( X be
the union of its proper subshifts. Note that since X has only finitely many
proper subshifts, Y = Y1∪· · ·∪Yk for some k and subshifts Yi ( X, and thus
Y is itself a proper subshift of X. Let w be any word that occurs in X but
not Y . Then there exists no proper subshift Z of X containing w. It follows
that, for any u @ X, the subshift of X where u is forbidden does not contain
w, which means u occurs in every point of X containing w. It follows that
u ≤X w.

Note that if w is a generator for X, then since u ≤X w for any u @ X,
any point x containing w must contain every word u @ X, that is, every
point x ∈ X containing w is weakly transitive (in particular, X is weakly
transitive).

Lemma 8. If X is quasiminimal and Y is a subshift of X, then there exists a
finite list of words v1, v2, . . . , vk such that Y is obtained from X by forbidding
the words vi. In particular, every subshift of a Π0

1 quasiminimal subshift is
Π0

1.

Proof. Let Yi be the ith SFT approximation of Y , and consider the subshifts
Zi = Yi ∩ X. We have

⋂
Yi = Y , and thus also

⋂
i Zi = Y . The Zi are a

decreasing sequence of subshifts of X, and thus for some j we have Zj = Zj+k
for all k ≥ 0. It follows that Y = Zj. Since Yi is an SFT, Yi ∩X is obtained
from X by forbidding a finite set of words. The latter claim is then trivial:
the Turing machine outputting the forbidden words of a subshift Y ⊂ X first
outputs the finitely many words vi, and then the forbidden words of X.

Theorem 9. A quasiminimal Π0
1 subshift X ⊂ SZ is recursive.

Proof. We proceed by induction on Q(X). First, if Q(X) = 1, then X = ∅
and there is nothing to prove. Suppose then that Q(X) > 1, and let u ∈ S∗.
We have to decide whether u @ X. By the induction hypothesis and the
previous lemma, for any proper subshift Y ( X it is decidable whether
u @ Y . If u @ Y for some proper subshift, then the algorithm may conclude
u @ X. Also, if u 6@ X, we can semidecide this by enumerating the forbidden
words of X by the assumption that X is Π0

1. The case that is left is that
u @ X and u 6@ Y for any proper subshift Y ⊂ X.
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In such a case, the union Y of all proper subshifts of X does not equal
X. By Lemma 7, there exists a generator w @ X such that w @ x ∈ X
implies that x is weakly transitive in X. We may assume this w is known to
the algorithm, by way of a look-up table. Thus, by compactness, there exists
n ∈ N such that x[0,|w|−1] = w implies x[i,i+|u|−1] = u for some i ∈ [−n, n],
for all x ∈ X. This must also hold in a suitable SFT approximation of X,
obtained by running the Turing machine defining X for sufficiently many
steps. Once such n and an SFT approximation Z is found, the algorithm can
conclude u @ X.

Remark 2. An important point is that the generator w was needed in the
algorithm, and one cannot compute it directly from a Turing machine defin-
ing X (as one can verify by an easy counterexample). Indeed, one can hardly
compute anything from such a representation, because it cannot even be de-
cided if the Turing machine defines an empty subshift. Thus, the result is
not uniform in X. However, like in the case of Theorem 7 (where we sup-
plied the information of whether the subshift is empty), the algorithm is at
least somewhat uniform, as we only need the lists of forbidden words (the
lists (v1, . . . , vk) given by Lemma 8) defining the proper subshifts of X and
the lists of generators for all subshifts of X. An easy example shows that in
the case of general quasiminimal subshifts, knowing whether the subshift is
empty is not enough to determine whether a given word u is in the subshift.
However, it is an interesting question exactly what “shape information” is
needed.

A trivial corollary of the previous result and Lemma 8 is that recursive
quasiminimal subshifts are hereditarily recursive, that is, all their subshifts
are recursive.

Corollary 2. All subshifts of a recursive quasiminimal subshift are recursive.

Note that in the previous section, we essentially defined our Π0
1 subshifts

by giving a computational process that outputs a point, and we then showed
that one has an algorithm for recognizing whether a given word occurs in
the point. Just the fact that the point was given by a computational process
does not automatically imply that there is a such an algorithm, but it does
automatically follow that the subshift has at least a recursively enumerable
language. Thus, we could not have hoped to find a Π0

1 quasiminimal subshift
which is not recursive with this technique, and indeed, by Theorem 9, there
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is no such subshift. We can strengthen this observation slightly, and prove
Proposition 6, which states that all quasiminimal Π0

1 subshifts are obtained
as orbit closures of computable points. We first need a few lemmas.

Lemma 9. Let X be a subshift whose language is recursively enumerable.
Then the computable points are dense in X.

Proof. Given any word u @ X, we construct a Turing machine that enumer-
ates a sequence of words u1, u2, u3, · · · @ X such that u1 = u and for each
i, there exists a and b such that ui+1 = auib. The Turing machine starts
by setting u1 = u, and constructs the sequence by enumerating words of X,
and extends the last word of the sequence chosen so far, ui, to ui+1 = auib,
whenever a word v @ X properly containing auib is enumerated. From such
a Turing machine, one easily obtains a computable point in X with central
pattern u.

Lemma 10. If X is a Π0
1 quasiminimal subshift, then it is a finite union of

orbit closures of computable points.

Proof. Suppose that the claim fails for some Π0
1 quasiminimal subshift X.

Enumerate the words of X as u1, u2, . . .. Let x1 be a arbitrary computable
point in X. Inductively, let uk(j) be the first word on the list u1, u2, . . . such

that uk(j) 6@ Yj−1 = O(x1) ∪ O(x2) ∪ · · · ∪ O(xj−1). Such uk(j) can always
be found, since otherwise X = Yj−1, a contradiction. Let then xj be a
computable point containing uk(j). It follows that Y1 ( Y2 ( · · · is an infinite
increasing sequence of subshifts of X, which contradicts quasiminimality.

The following proposition is subtly stronger.

Proposition 6. If X is a Π0
1 quasiminimal subshift, then there exists a finite

set {x1, x2, . . . , xk} of computable points with distinct languages such that for
every x ∈ X we have L(xi) = L(x) for some i ∈ [1, k].

Proof. A Π0
1 quasiminimal subshift has finitely many subshifts, which are all

Π0
1 and quasiminimal. We apply the previous lemma to each of them, and

take the union of the finitely many sets of points obtained. To obtain distinct
languages, repeatedly remove xj from the set if L(xi) 6= L(xj) for some i 6= j.
Now, suppose that there is a point x ∈ X such that L(xi) 6= L(x) for all
i ∈ [1, k]. Then, for each i, either x contains a word ui such that ui 6@ xi,
or xi contains a word vi such that vi 6@ x. Define a subshift Y of X by
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forbidding the vi, and choose a subword w of x containing all the ui. Then,
x is a point of Y containing a word w which is not in any of the xi. This is
a contradiction, since we applied the previous lemma also to Y .

This proposition suggests a small tangent to the discussion. The following
proposition shows that the previous result is not a characterization of Π0

1

quasiminimal subshifts, and also shows that there is no symmetric version of
Theorem 7 for “Σ0

1 subshifts”. The result is presumably well-known, but we
are not aware of a reference for it.

Proposition 7. There exists a computable point x ∈ {0, 1}Z such that O(x)
is minimal and not Π0

1.

Proof. We only need to describe a minimal subshift whose subwords are
recursively enumerable, as such a subshift contains a computable point, and
every point in a minimal subshift generates it.

Let W0 = {0, 1}. For each i, we will define Wi to be a set of two words
of the same length such that every (bi-)infinite concatenation of words of Wi

has a unique partition into words of Wi, and both words of Wi are contained
in both words of Wi+1. For any list of sets with these properties, we obtain
a minimal subshift by taking the limit points of the words Wi in the obvious
way. We denote by `i the maximal number such that for some w ∈ Wi, the
word w`i ∈ X occurs in some concatenation of words of Wi+1. We make sure
`i is always finite, and strictly smaller than the length of the words w ∈ Wi+1.
We will not define these words by a direct induction, but by a computational
process, and the process may change the definition of Wi arbitrarily late in
the process of constructing these sets – the reader should think of the Wi as
variables in the programming sense of the word in the following.

The property of unique partitions is clearly true for W0 = {0, 1}. If Wi =
{w1, w2} (where w1 < w2 in lexicographical order) satisfies this property,
and u, referred to as the cover-up, is any concatenation of words in Wi, then
we set Wi+1 = {wi1w

q−i
2 w1u | i ∈ {1, 2}} where q = 2|u| + 3. These words

will have the property of unique partitions, contain both words of Wi, and
certainly `i < |w1w

q−1
2 w1u|, as required. Note also that `i > |u|, and if u is

the empty word ε, then `i = 3.
Now, we describe the algorithm that constructs the sets Wi+1, if Wi is

the last set of words computed so far. The algorithm sets Wi+1 = {u1, u2},
where u1 and u2 are any two words constructed as above from the words of
Wi and the cover-up u = ε. Every time it computes a new set Wi, it outputs
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the words of Wi, and all their subwords, in lexicographical order, as words
occurring in X. While constructing these words, the algorithm dovetails
the computation of all Turing machines T1, T2, . . .. If the kth machine halts
and the machine has, up to that point, computed the sets Wi for i ≤ K
(where we may assume K > k), then the algorithm changes the definition
of Wk: If Wk−1 = {w1, w2} and WK = {u1, u2} (and w1 < w2 and u1 < u2
in lexicographical order), let u = u1u2, and define Wk as in the previous
paragraph with cover-up u, so that every word of the new set Wk contains
the word u. Furthermore, since we previously had `k−1 ≤ |w| for w ∈ Wk,
the new value of `k−1 is strictly larger, as `k−1 > |u|, u = u1u2 and ui ∈ WK .

The crucial point is that since the algorithm changed its mind about the
contents of Wk, all the subwords of words in Wi for i ≥ k it has output so
far have been ‘wrong’, in the sense that they were being output as subwords
of Wi for the wrong i. Of course, the output does not actually contain the
index i, so the output is still correct – these words are now words of Wk,
and will still be legal words of the subshift X we obtain in the end. This is
because we covered up the lie with a suitable choice of u.

It is clear that the sets Wj all converge, as once those Turing machines
Ti with i ≤ j have halted which will eventually halt, the contents of Wj will
never change. The sets obtained in the limit still satisfy the properties we
asked for, and thus the limit of these sets of words is a minimal subshift by a
standard argument. The subshift has a recursively enumerable language by
construction.

Finally, let us show the language of the subshift is not Π0
1. For this, simply

observe that if we had a decision algorithm for the language of X, we could
decide, for each i one by one, whether the machine Ti ever halts. Namely,
assuming we know whether the machine Ti halts for all i < j, we can deter-
mine whether Tj eventually halts as follows: we run the algorithm described
above until it has computed the sets Wi for all i < j (and recomputed them
as many times as necessary, whenever the machines Ti with i < j halt). Let
Wj−1 = {w1, w2}, in lexicographical order. Now, the machine Tj eventually
halts if and only if w4

2 occurs in the language of X (due to the choice of the
`i).

We note that it does not follow from the previous proof that the language
of the subshift constructed is Σ0

1-complete for many-one reductions, only
Turing reductions.

We can strengthen Theorem 9 further, and show that even the halting
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problem of a quasiminimal subshift is decidable (compare this with Propo-
sition 3). More precisely, we show that the model-checking problem for ele-
mentary piecewise testable languages is decidable, and the halting problem
follows as a special case. First, we state the obvious.

Lemma 11. The generating poset and subpattern poset of a quasiminimal
subshift are finite.

Proof. Let X be quasiminimal. If x ∈ X, then Y = O(x) is a subshift of
X with L(Y ) = L(x), and X has finitely many subshifts, so the subpattern
poset is finite. Let {x1, x2, . . . , xk} ⊂ X be a finite set of representatives such
that ∀x ∈ X : ∃i : L(x) = L(xi).

The inequality u ≤X v means that whenever v @ x for x ∈ X, then also
u @ x. Associate to each u ∈ L(X) the tuple B(u) = (b1, b2, . . . , bk) ∈ {0, 1}k
where bi = 1 ⇐⇒ u @ xi. If B(u) = B(v), then u ≤X v ≤X u holds, so the
generating poset of X is finite.

Theorem 10. If X ⊂ SZ is a quasiminimal Π0
1 subshift, then the model-

checking problem of X for elementary piecewise testable languages is decid-
able.

Proof. Restated in terms of clopen sets, we are given [C1], [C2], . . . , [C`], and
we need to decide whether all of these are visited in order by a single point.
We can deal with each of the finitely many tuples T = (t1, . . . , t`) ⊂ (S∗)`

with ti ∈ Ci separately, and check for such a tuple whether there exist x ∈ X
and i1 < . . . < i` ∈ Z such that x[ij ,ij+|tj |−1] = tj for all 1 ≤ j ≤ `. We denote
this condition by T @ X.

Let w1, w2, . . . , wk be a finite set of representatives for the elements of
the generating poset. To each word u, we associate hu ∈ N such that in
every extension of u of length hu, the unique wi with wi ∼ u occurs, given
by Lemma 2.

We may suppose these words, and their mutual ordering, are known to
the algorithm. Now, let T = (t1, . . . , t`) be given. We may again assume
Q(X) > 1, and prove the decidability of T @ X by induction on Q(X). We
do a similar case analysis as in Theorem 9. By the induction hypothesis, for
any proper subshift Y ( X it is decidable whether T @ Y , so we suppose
T 6@ Y for all proper subshifts Y of X. If X is the union of its proper
subshifts, the algorithm can decide T @ X by checking whether T @ Y for
all Y ( X, so we assume this is not the case. As above, denote by Y ( X
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the union of all proper subshifts of X and let w ∈ S∗ be a generator for
X (known to the algorithm). Now, choose a point x ∈ X which contains
w, so that x is weakly transitive in X. We may assume all of the words ti
appear in x, since if ti 6@ x, then ti 6@ X, which the algorithm can prove by
enumerating forbidden patterns of X.

If w appears infinitely many times in x (which we may assume is known
to the algorithm), the algorithm only needs to prove ti ≤X w for all i (which
is possible, since ≤X is semidecidable, and w is a generator): then the words
ti in fact appear in x in every possible order, and thus T @ X. Suppose
then that w only appears once. Then x is an isolated point, so that the only
points with the same subwords as x are in the orbit of x. Furthermore, w is
an isolating pattern. Let YL and YR be the subshifts generated by the left
and right tail of x.

Now, let u = ti for some i, let u ∼ wj, and let h = hu. Now, if the unique
wj with wj ∼ u occurs in YL, then u appears infinitely many times in the left
tail of x. Otherwise, we can compute a bound on how far to the left of w the
word u can appear: wj occurs at most m steps to the left of w for some m
(which we may assume is known to the algorithm by way of a look-up table),
and then u cannot appear m + hu steps to the left of the origin. Similarly,
we can semidecide that u appears infinitely many times to the right, or find
a bound on how far to the right of w it can appear. Since the language of X
is recursive, we can now easily decide whether T @ X.

The halting problem is the subcase where there are only two clopen sets.

Corollary 3. The halting problem of a quasiminimal Π0
1 subshift is decidable.

We give a simpler direct proof of this as well, using more external infor-
mation. The simpler proof works for any fixed tuple length (with larger and
larger look-up tables), but not in general.

Direct proof of Corollary 3. Let w1, . . . , wk be representatives of the gener-
ating poset, and let H(i, j) be the answer of the halting problem for the
cylinders [wi], [wj]. Given any two words u, v, we find wi and wj such that
u ∼ wi and v ∼ wj. Using the fact that X is recursive, we can check whether
some x ∈ X moves from [u] to [v] in at most

|wi|+ hu,wi + hwi,u + |wj|+ hv,wi + hwi,v

steps (and if yes, answer ”yes”). If not, the answer to the halting problem is
H(i, j).
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Remark 3. By Theorem 10, we can decide T @ X for any tuple T , and thus
we can certainly decide P (P1(X), P2(X), . . . , Pk(X)) where P is an arbitrary
Boolean formula and the Pi(X) are statements of the form Ti @ X for tuples
of words Ti. In contrast, we saw in Theorem 5 that for piecewise testable
languages, the Boolean closure of elementary piecewise testable languages,
the model-checking problem is undecidable. This may seem contradictory,
but it only means that

P ((∃w @ X : P1(w)), (∃w @ X : P2(w)), . . . , (∃w @ X : Pk(w)))

is decidable for Π0
1 quasiminimal subshifts, while

∃w @ X : P (P1(w), P2(w), . . . , Pk(w))

is undecidable, where we write Pi(w) ⇐⇒ Ti @ w.

4.2. Quasiminimal subshifts with N-actions

Most of our study has been about quasiminimal subshifts X ⊂ SZ with
the Z-action given by the shift map. We now show that quasiminimal N-
subshifts are in fact decidable (when subsystems are not required to be sur-
jective). See Figure 2 for an illustration.

Theorem 11. Let X ⊂ SN be a subshift. Then X is quasiminimal if and
only if there exist finitely many minimal subshifts Y1, Y2, . . . , Yk, finitely many
points x1, . . . , x` and m such that X =

⋃
i Yi ∪ {x1, . . . , x`} such that for all

i ∈ [1, `], either σ(xi) ∈
⋃
i Yi or σ(xi) ∈ {xi+1, . . . , x`}.

Proof. The “if” direction is easy to verify. Suppose then that X is quasimin-
imal. We show that X is the of required form.

Since each σi(X) is a subsystem, we must have σm+1(X) = σm(X) for
some m, and we write Y = σm(X). We claim that there are only finitely
many points outside Y . Namely, if x ∈ X, then σm(x) ∈ Y . If ` is the least
number such that σ`(x) ∈ Y , then

O(x) = {x, σ(x), . . . , σ`−1(x)} ∪ Y ′

is a subshift of X for some subshift Y ′ ⊂ Y (it is closed as a union of ` + 1
closed sets, and shift-invariant by definition). Thus, each point x ∈ X \ Y
is contained in a subshift of X which contains only finitely many points of
X \ Y . If X \ Y were infinite, this would imply that X is not quasiminimal.
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Y1 Y2 Y3

Figure 2: A typical quasiminimal N-subshift. The Yi are the minimal subshifts and the
small circles are the points xi and their images in

⋃
i Yi.

For x, y ∈ X \ Y , write x ≺ y if σi(x) = y for some i ∈ N. Since
σm(x) ∈ Y , we cannot have x ≺ y ≺ x unless x = y, so ≺ is a partial order
on X \ Y . We obtain the points x1, . . . , x` by extending it to a total order.

Let Y1, Y2, . . . , Yk be the minimal subsystems of X. The list is finite by
quasiminimality. We now show that every point x ∈ Y is uniformly recurrent,
thus in

⋃
i Yi. Suppose this is not the case. Then there exists a word w @ x

which either occurs finitely many times in x, or occurs infinitely many times
but with arbitrarily long gaps. In the first case, y = σi(x) contains only one
copy of w at y[0,|w|−1] = w, and in the second, we find a limit point y ∈ O(x)
with this property. Since y ∈ Y , then by a compactness argument it has an
infinite chain of preimages

· · · σ7→ y4
σ7→ y3

σ7→ y2
σ7→ y1 = y

with yi ∈ Y for all i. Then Xi = O(yi) is a subshift of Y containing exactly
i points where w occurs, and thus the Xi are an infinite family of subshifts
of X, contradicting quasiminimality.

We see that the case of N-actions looks very different than that of Z-
actions.

Corollary 4. Let X ⊂ SN be recursive and quasiminimal. Then X is decid-
able.

Proof. Lemma 8 of [3] states that a system whose limit set is a union of
finitely many minimal systems is decidable. By the above theorem, it is
clear that quasiminimal N-subshifts have this property.
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4.3. Decidability in the countable case

We first show that, for pretty much trivial reasons, having only a single
minimal subshift implies decidability in the countable case (even without
assuming, a priori, that the subshift is Π0

1). In particular, the subshift in
Theorem 4 has the optimal number of subsystems.

Proposition 8. Let X ⊂ SZ be a countable subshift with Q(X) ≤ 3. Then
X = O(∞uvu∞) for some words u, v, and thus decidable. Its model-checking
problem for context-free languages is also decidable.

Proof. The case Q(X) < 3 is trivial, so suppose Q(X) = 3. The CB-
derivative X ′ of X is a proper subshift of X. We must have Q(X ′) < Q(X),
and thus X ′ is a countable minimal subshift. This implies X(2) = ∅, so the
CB-rank of X is 2. Every countable subshift with CB-rank 2 is generated
by a single point which is eventually periodic in both directions [12, 18], and
since X has only one minimal subshift X ′, the repeating patterns in both
tails must be equal. Both decidability of such a subshift, and the decidabil-
ity of the model-checking problem of context-free languages then follow by
observing that such X is sofic and its language is thus regular. In particular
we note that the intersection of a context-free language with a regular lan-
guage is context-free, and the emptiness problem is decidable for context-free
languages.

By Theorem 5, there exists a recursive countable quasiminimal subshift
X for which the counting problem is Σ0

1-complete. We needed 4 proper
nontrivial subsystems for this, that is, Q(X) = 6. We show this is optimal.
We begin with the following recoding argument.

Definition 14. Suppose X is countable and quasiminimal. We say X is
in normal form if the following holds. There exists a finite set of words
w1, . . . , wn, wn+1, . . . , wn+m such that

• the words wi are over disjoint alphabets and L1(wi) = |wi| for all wi,

• every point x ∈ X has a representation as a bi-infinite concatenation
of the words wi (which is automatically unique),

• for j ∈ [1, n], the point xj = wZ
j is in X,
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• for each j ∈ [n + 1, n + m], there is (up to shifting) a unique point
xj ∈ X with wj @ xj but wk 6@ xj for k > j, and wj occurs only once
in xj, and

• every point of X is in the orbit of one of the points xj.

Furthermore, each of the points xj with j ∈ [n+ 1, n+m] is of the following
form: xj = xLj .wjx

R
j , where either xRj = uNi for some i ∈ [1, k], or we have

xRj = (wh1)
`1 wk1 (wh2)

`2 wk2 (wh3)
`3 wk3 (wh4)

`4 . . . ,

where for all i, hi ∈ [1, n], ki ∈ [n + 1, n + j − 1] and `i > 1 and symmetric
conditions hold for xLj .

It is easy to see that a subshift X in normal form with fixed n,m contains
precisely n minimal subsystems.

Lemma 12. Let Y be countable and quasiminimal. Then Y is conjugate to
a subshift in normal form.

Proof. We construct the conjugacy inductively on Q(Y ), so that if Z ⊂ Y
and Z ⊂ Y ′, then the conjugacies from Y and Y ′ to their recoded versions
X and X ′ have the same restriction to Z. This is guaranteed if we always
directly modify the conjugacy obtained for subsystems when building the
conjugacy for the full system in the induction step.

If Y is countable and minimal, then it is clearly already of the form ∞w∞

as required (w1 = w, n = 1 and m = 0). If Y is the union of its proper
subsystems, then we apply the inductive assumption to the subsystems, and
observe that the conjugacy extends to the full system because the conjugacies
agree in the intersections.20

Suppose then that Y is not minimal, and not a union of proper subsys-
tems. Then it contains a generator w, which we may assume is an isolating
pattern, because isolated points are dense in a countable subshift. Let y be
the unique point containing w. Then w occurs only finitely many times in
y, since Y is not minimal. Let φ be the conjugacy obtained for the union
Z of proper subsystems of Y . Suppose φ has radius r, and suppose t is the
maximum length of the words wi obtained for Z. There exists c > 2r + t

20More precisely, this follows from the Pasting Lemma.
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such that y(−∞,−c] and y[c,∞) both extend to points of the (2r + t)th order
SFT approximation of Z.

This lets us apply φ in the tails of y: we define ψ by ψ(x)i = φ(x)i if w 6@
x[i−c−|w|,i+c+|w|], and ψ(x)i = aj if x[i+j,i+j+|w|−1] = w for j ∈ [−c− |w|, c+ 1],
where the aj are new symbols not used by φ. Then ψ is of the desired form,
up to possibly extending the words surrounding the new word over the aj
to full ones (there are unique such extensions since the words wj are over
disjoint alphabets and |L1(wj)| = |wj|). We increase m by 1, let wn+m be
the new word over the symbols ai, and xn+m = ψ(y).

The conditions on the forms of points in Lemma 12 of course do not
automatically guarantee that the subshift is quasiminimal – for this, one
needs strong additional properties for the sequences hi, `i, ki in the left and
right tails of the points xj. The precise conditions for this are somewhat
complicated. We note that in particular typically the gap sequence `i does
not tend to infinity. This is because the tail of a point xj may occasionally get

close to another point xk with n < k < j (which happens if O(xk) ⊂ O(xj)).
In such a case, one will see some short gaps `i, since there are typically short
gaps in the representation of xk. Conversely, when we see short gaps `i (far
enough away from the central pattern uj), this must mean some word uk
must be nearby, where n < k < j.

Theorem 12. Suppose X is countable and Q(X) ≤ 5. Then the model-
checking problem of star-free languages is decidable for X.

Proof. We perform a small case analysis to reduce to the interesting case that
the lattice of subshifts of X is isomorphic to ({0, 1, 2, 3, 4}, <). As usual, in
a model-checking problem we may assume X is not the union of its proper
subshifts. Thus, there exists a generator w @ x, which we may take to be
isolating. By forbidding w from X, we obtain a proper subshift Y with
Q(Y ) ≤ 4.

First, suppose Y is the union of proper subshifts, then we must have
Y = L−1(a∗+ b∗) for some (possibly equal) words a, b. Namely, if Y contains
at least two minimal subsystems L−1(a∗) and L−1(b∗), it contains their union
(because Y ⊂ O(x)), which already gives 4 subsystems. It is impossible for
Y to contain only one minimal subsystem {∞a∞}, as then Y would contain
at least two distinct points left- and right-asymptotic to ∞a∞, and thus their
union, which gives 5 subsystems. If Y = L−1(a∗ + b∗), it is easy to see that
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x is left asymptotic to ∞a∞ and right asymptotic to ∞b∞ or vice versa, and
it follows that X is decidable.

Suppose then that Y is not a union of proper subshifts, and thus Y =
O(y). Since the maximal proper subshift Z of Y satisfies Q(Z) ≤ 3, we
have Z = L−1(u∗vu∗) for some words u, v. Thus, the subpattern poset of
Z is isomorphic to ({0, 1, 2}, <), that of Y is isomorphic to ({0, 1, 2, 3}, <),
and that of X is isomorphic to ({0, 1, 2, 3, 4}, <). In particular, X has only
one minimal subsystem, so we may assume X is in normal form with n =
1,m = 3, since the hardness of model-checking problems is preserved under
conjugacy.

Let L be a given star-free language. We may suppose L = S∗LS∗, as
this does not change the answer to the model-checking problem, and S∗LS∗

is star-free whenever L is. Using the algebraic characterization of star-free
languages, let p be such that for all words u, up−1 ∼ up in the syntactic
monoid of L. We show that we can compute the central pattern and repeating
patterns for an eventually periodic point x′ such that some u ∈ L occurs in
x′ if and only if some v ∈ L occurs in xn, which gives the answer since model-
checking problems are easy to solve for eventually periodic points, and xn is
a weakly transitive point for X.

The important general observations here are the following: First, if x =
yLu

p+1yR for any word u and any tails yL and yR, then due to the assumption
L = S∗LS∗ and the choice of p, the point x′ = yLu

pyR satisfies the model-
checking problem for L if and only if x does. Furthermore, if we start with a
point x and repeatedly contract a occurrences of (p+1)th powers up+1 to up,
then as long as all such contractions happen strictly to the right or strictly
to the left of the origin, the infinite tails are always shifted towards the origin
in such contractions, then we obtain a well-defined limit y ∈ SZ (every cell is
at a finite distance from the origin, and thus only finitely many contractions
can change its value), and the language of y will satisfy the model-checking
problem for L if and only if the original point does.

We explain how to perform the contraction process to the right tail of x4
(in the notation of Definition 14), so that we obtain an eventually periodic
point in the limit. The left tail is handled symmetrically, to obtain the
eventually periodic point for which we then solve the model-checking problem
of L. Let j be maximal such that wj occurs in x4 infinitely many times to the
right. Our contraction process contracts the right tail of x4 to w4(uwjv)∞

for suitable words u, v.
If j = 1, then x4 is already eventually periodic to the right, and we are
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done. Suppose then that j > 1. Since w4 is an isolating pattern, we have
j < 4. We may assume no wr with r > j appears to the right of the central
pattern w4 of x4 by modifying a finite part of the conjugacy (or otherwise
restricting our attention to a suitable tail).

Consider the case j = 2. Then, letting hi, `i, ki be as in Definition 14 for
the point x4 (whence hi = 1 for all i), in fact ki = 2 for all i and `i →∞ as

i→∞. In this case, we can compute s such that w2w
p−i′
1 w2 for i′ > 0 cannot

occur in the right tail of x4 beyond the coordinate s. Such s exists, because
otherwise there is a right limit point of x4 where w2 occurs twice, but w3

and w4 do not occur, and X, being in normal form, does not contain such
a point. We can compute s as in the proof of Theorem 10 using Lemma 2.
Now, we simply contract, one by one, each `i with large enough i (say, i > s)
to p. The new right tail (to the right of w4) is then of the form

xR4 = w`11 w2w
`2
1 w2w

`3
1 w2 · · ·w`s1 w2w

p
1w2w

p
1w2w

p
1 . . . ,

and we can compute such a new tail from the description of the language L.
The case that is left is j = 3. We apply the reasoning of the previous

paragraph to x3. We observe that in x3, either the right tail is periodic with
repeating pattern w1, or we have `′i → ∞ where `′i is the sequence of gaps
in the representation of x3, and the corresponding claim is true also on the
left. In particular, for some h and h′, further than h away from w3 in x3, no
pattern w2w

p−i′
1 w2 for i′ > 0 occurs, and in either (x3)[−h′,−h] or (x3)[h,h′], the

word w2 occurs at least p times. The existence of h follows as in the previous
paragraph, and h′ exists because O(x2) ⊂ O(x3).

We can now compute s such that for each i ≥ s, either `i, `i+1 > p and
ki = 2, or ki′ = 3 for some i′ with |i′ − i| < h. Take s further large enough
that the distance between two occurrences of w3 is at least 2h′ + 2h. Now,
by the assumption on h and h′, between any two occurrences of w3, there
are at least p occurrences of w2 separated by wp+i

′

1 for some i′ ≥ 0. We

contract each wp+i
′

1 to wp1, and then the maximal pattern (w2w
p
1)t between

the w3 to (w2w
p
1)p. Clearly, we obtain the same distance and intermediate

word between any two occurrences of w3, and we can compute this repeating
pattern.

5. Some open problems

We showed in Section 3.1 that every substitution generates a subshift
which has a decidable model-checking problem for regular languages. It
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seems likely that one can prove the decidability of model-checking for ω- and
ζ-regular languages similarly. While this would be an interesting result, we
feel the following is a more interesting generalization:

Question 2. Is the model-checking problem for context-free languages decid-
able for subshifts generated by substitutions?

One can naturally extend context-free languages to infinite words, just
like regular languages. As with regular languages, there are multiple ways
to do this, and it is an interesting question whether their model-checking
problems are always decidable for substitutive subshifts. We give a rough
description of the approach of [22], where the Muller context-free languages
or MCFL, are defined. We take the family of countable finitely branching
trees where each node carries a label from a finite set, the possible sets of
children of each node are determined by a local rule, and for each infinite
childward path, the set of labels occurring infinitely many times is an element
of a prescribed set (the Muller condition). The language associated to it is
the subset of countable totally ordered sets labeled by S (written S#), defined
by taking the induced ordering and labeling of the frontier, and restricting
to words over terminal symbols.

For the model-checking problem, one should further intersect with SZ.
Thus, we are interested in the model-checking problem for the MCFL lan-
guages contained in SZ. These languages are essentially bi-infinite concate-
nations of context-free languages governed by a suitable finite-state machine.

It is known to be decidable whether a subshift generated by a substitution
is finite. Recently, this was shown for the more general class of substitutive
images of subshifts generated by substitutions [23, 24], called HD0L. The
image of a quasiminimal subshift in a non-erasing substitution is quasimini-
mal, and thus these subshifts fit into our framework (at least in the case of
syndetic long symbols). Which model-checking problems are decidable for
this class?

In the topic of countable quasiminimal subshifts, it seems that the proof
of Theorem 12 extends to show that in general, when the lattice of sub-
shifts of X is totally ordered and X is countable and recursive, then its
model-checking problem for star-free languages is decidable. However, the
contraction process becomes harder to describe.

The condition Q(X) = 3 automatically means X is at least weakly tran-
sitive and its maximal proper subshift is minimal. Further, subshifts with
Q(X) = 3 can be seen to split into the following 4 types:
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1. X is countable,

2. X is uncountable but contains an isolated point,

3. X has no isolated point but its maximal proper subshift is finite, or

4. X has no isolated point and its maximal proper subshift is infinite.

As Proposition 8 shows, decidability questions are trivial for subshifts of type
1, and the proof of Theorem 3 shows that almost nothing is decidable for
subshifts of type 4.

Problem 1. Which model-checking problems are decidable for subshifts of
type 2 or 3?

We conjecture that in the countable case, the model-checking problem is
decidable for local languages in general.

Conjecture 2. Let X be a countable quasiminimal recursive subshift. Then
the model-checking problem of X for local languages is decidable.

Another interesting direction is the study of decidability when restricting
to minimal systems, but considering the model-checking problem of harder
languages. We gave an example of a minimal subshift whose model-checking
problem is Σ0

1-complete for context-free languages accepted by a determin-
istic pushdown automaton. For this, we used a subshift of the well-known
Dyck shift. The high-level idea giving nonregularity in this example is the
balancing of brackets, which inherently requires the use of a full stack. We
do not know whether there are examples where the stack contains only unary
symbols. A slightly more formal way to ask this question is the following.

Question 3. Is the model-checking problem of languages accepted by one-
counter machines decidable for every minimal Π0

1 subshift?

The precise definition of one-counter machines used in the question is left
implicit – it is part of the question, as we do not know what implications such
choices have. The question is also interesting for strictly ergodic subshifts –
minimal subshifts where words occur with well-defined frequencies. Here, one
might (perhaps mistakenly) expect that on long enough words, the counter is
decremented or incremented at a roughly constant rate. All we know about
one-counter machines is that a variant of the language anbn is unlikely to
yield a hard model-checking instance, since for any word w, wn can occur in
an infinite minimal subshift for only finitely many n.
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Of course, there are many natural classes in both formal language theory
and complexity theory which fall between regular and context-free languages.
Further decidability and undecidability results for the model-checking prob-
lem for minimal systems for any such class might be an interesting research
direction.
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