
Recognizing Dynamic Fields in Network
Traffic with a Manually Assisted Solution⋆

Jarko Papalitsas, Jani Tammi, Sampsa Rauti, and Ville Leppänen

University of Turku, 20014 Turku, Finland
{jastpa,jasata,sjprau,ville.leppanen}@utu.fi

Abstract. Payloads of packets transmitted over network contain dy-
namic fields that represent many kinds of real world objects. In many
different applications, there is a need to recognize and sometimes replace
these fields. In this paper, we present a manually assisted solution for
searching and annotating dynamic fields in message payloads, specifically
focusing on web environment. Our tool provides a simple and intuitive
graphical user interface for annotating dynamic fields.

1 Introduction

Messages transmitted over network contain dynamic fields that often
correspond to many kinds of real world objects, for example names and
cities. In many cases, such as when we want to edit these fields or filter
some of them out, we need to recognize and possibly replace parts of
message payloads. An example of a real world application of dynamic
field recognition would be deceiving a malicious adversary by providing
him or her false information in a response message by altering the values
of dynamic fields [1, 2].
The challenge here, especially in the diverse web environment, is that
message payloads come in many different forms and it is impossible to
create a solution that would automatically recognize all dynamic fields
in all messages conforming to different kinds of application-specific pro-
tocols. Because such automatic protocol-independent recognition is in-
feasible [11], we present a manually assisted solution for recognizing and
annotating dynamic fields in message payloads. Our solution works with
protocols running on top of HTTP in the web environment.
In this paper, we present a solution that recognizes dynamic fields based
on previously recorded transactions (request-response pairs). The user
can then revise and confirm these fields using a graphical user interface.
Once the dynamic fields have been recognized and revised, the recorded
transactions are altered and replayed according to our needs, for example
to feed fallacious information to a malicious adversary. Because this solu-
tion involves recording and replaying transactions, we call it the ”record
and play” -approach (see also [3]).

⋆ The authors gratefully acknowledge the support of The Scientific Advisory Board
for Defence (MATINE).

The rest of the paper is structured as follows. In Section 2, the chal-
lenge of automatic field recognition is explained more closely. Section 3
discussed the infeasibility of fully automatic detection of dynamic fields
in messages. Section 4 introduces our solution for dynamic field recogni-
tion, including the graphical user interface for manual field annotation.
Finally, Section 5 concludes the paper.

2 Dynamic field detection

Our approach to entity recognition (see also [7, 10]) is based on the idea
that the interesting parts of the data which include possible entities
are the ones varying between similar traffic extracts. The data we are
looking for is mostly named entities in custom formats. We want to
preserve the non-entity parts of data valid for re-use without the need
for interpreting the custom formats. The custom formats can be HTML,
JSON or XML for example. As such, more traditional methods such as
plain string matching the entities or matching with regular expressions
are not suitable for our purposes [8]. This paper focuses on the problems
and solutions that arise from recognizing these fields using data from
multiple transactions. To explain the challenges and solutions following,
some of the terminology used will be explained next with help of Figure 1.
Plain recorded data in database is saved in request-response transaction
pairs. The header and contents of the transactions are called transac-
tions, transaction samples or simply samples in this paper. Depend-
ing on the context it may also only refer to the response header and
contents.
As similar samples are grouped together by a suitable method – in our
example case of HTTP protocol we use the string matched URL path
– the static resources are pruned out by using a combination of length
and binary comparison. After these operations, we are left only with
dynamic resources. The dynamic resources are further processed with
similarity analysis where SequenceMatcher of Python difflib [9] is used
to determine the similarity of the sample in relation to others.
As stated above, a dynamic resource is a group of samples with speci-
fied amount of minor differences. These differences are called dynamic
fields and they are property of a dynamic resource. Every sample within
dynamic resource contains dynamic field instances that include the
offset and size of the dynamic field within that specific sample. It could
be said that the dynamic field is a manifestation of multiple dynamic
field instances. Figure 1 as a whole represents a dynamic resource with
one sample visible. The dynamic fields are represented by ordinals (#1,
#2…). Other instances of the dynamic fields #1 and #5 are listed by
their content.
Different dynamic fields may contain same information with each other.
For this purpose an entity object is used to describe the connections be-
tween multiple dynamic fields. As in the previous example, the dynamic
fields still contain multiple instances (values). The Figure 2 visualizes
the connections between these objects. As an example, let there be an
entity called “First Name”, the entity can appear multiple times in the

Fig. 1. Dynamic resource, sample and dynamic field

recorded content and as such has multiple dynamic fields assigned. The
value of the entity “First Name” will still vary between samples (oth-
erwise it would not be dynamic). For this reason the dynamic field has
multiple values or as we called them, dynamic field instances.

3 Why automatic field detection is not feasible

In our approach, a solution functionality akin to a diff tool – display-
ing the differences between two files – is used to detect the dynamic
fields, but with few twists. First, the comparison must span all samples
simultaneously [5] so that a field that is without content in some sam-
ples will still be marked into all sources (start and end offsets set to
equal). In other words, the problem is to find the longest common sub-
sequence (LCS) of multiple strings, which is an NP-hard problem [12].
Second, multiple content specific LCS diff implementations are needed
for improved dynamic field detection (see below for detailed description
on detection problem). In what follows, we will discuss why such a so-
lution also requires manual assistance when detecting dynamic fields in
message payloads.
Given enough variance in samples, the success rate of field detection
improves towards logically sound results. Let us consider the following
example:

Jani Tammi

Fig. 2. Entities, dynamic fields and their values (instances)

Jarko Papalitsas

With only two samples to compare, what logically appears as either one
field surrounded by tags or two fields separated by white space and sur-
rounded by bold typeface tags, is identified by a field detection algorithm
as four fields and five static delimiters (highlighted parts represent dy-
namic fields). The fourth dynamic field exists in the first name, just after
the second i-character and before tag, but its content is empty.
Having more variance improves the results as can be seen by adding one
more name to our sample set:

Jani Tammi
Jarko Papalitsas
Ville Leppänen

The lack of common characters should now let the algorithm correctly
identify two dynamic fields surrounded by tags. But what if names are
treated as one field in the web application we are dealing with? It is a
structural property of a full name to contain a space character between
the first name and the family name. Data might contain a sample that
deviates from this and yields us a result indicating just one dynamic
field, but no strategy should be built trusting that an abnormal sample
that guarantees the correct result will be present.
What about a system where names are treated separately as a first name
and family name? While it would not be an issue if either value can be
undefined (in which case, for that sample, that field simply appears as
empty), we would have undesired results if the formatted output of the
service chooses to omit separators between these fields.
This example has been greatly simplified to make understanding the
issue easier, but it should still sufficiently explain why operator input

is necessary to verify the results of automatic detection and manually
merge or divide fields in order to achieve more accurate field data.
Does this always matter and could some less than perfect field identifica-
tion results just be accepted without laborious corrections? According to
our experiences, in the situations where the range of input and output
are finite and they are represented within the sample data, and when
such fields do not represent entities that we are interested in, they can
be left as they are. Let us consider a service that offers two languages.
Sample data will produce a great number of dynamic fields for variance
of two. For example, with Finnish and English:

<a href”=/”index >Etusivu
<a href”=/”index >Front page

This is an example of static page content in two languages, making it
appear as two dynamic fields. The input (a query string specifying the
display language) and output (string shown above) range is finite and
they do not represent real world entities that we would want to change.
In this case, when the association is drawn between the input parameter
and field results by a separate algorithm, it makes no difference to the
results if the generated content is parsed in one or two pieces. In either
case, the client receives exactly the same output.
There are borderline cases where the data actually represents entities,
but the output variance is finite due to logical constraints (and not only
within the scope of sample space). For example, a gender might be lim-
ited to two alternatives and bilingual UI would make that field dependant
on (at last) two input parameters, producing four possible output values.
What is not finite is the input range because while the language param-
eter may have just two values, the parameter(s) that identify the person
are subject to entity faking and can have undefined variance from the
perspective of the gender field.
We chose an approach where we deal with only two types of dynamic
fields. Those that represent real world entities and those that do not.
In the cases where we want to replace the existing field values, entity
faking (value generation) is responsible for providing content even with
unexpected input values, but this leaves open a question how to deal
with unexpected input parameters to dynamic fields that are essentially
reduced into look up tables of known input values and output values. Our
current approach is to simply pick at random one of the known outputs
an add this new input–output pair into the look up table.

4 A solution for manually assisted field
detection

As the automatic dynamic field detection needs assistance and has rel-
atively high complexity [12], manual field annotation is required. For
possible further processing, being able to recognize which field instances
are related to each other is essential. In practice, this means that in ad-
dition to finding the dynamic field instances from the transactions (in

other words the non-static parts of a transaction), they need to be linked
together via their dynamic fields.
Every dynamic field instance in every transaction needs to be marked
(their offset and size specified) and they need to be linked together via
the dynamic field common to each other to be comparable. The amount
of manual work is of course dependent on the level of assistance given
by the tool and previously performed automatic detection.

4.1 A GUI for manual annotation
Our current method for achieving manual dynamic field marking is a
graphical user interface built using GTK 3 [4]. The graphical user inter-
face should be compatible with the previously specified workflow, where
multiple transactions within one dynamic resource is detected in order
to find dynamic fields. While our implementation is currently very basic
in its nature, it is also easy to use and intuitive. More advanced solutions
to the problem will be also proposed in this section.
In our current implementation, the previously created database of trans-
actions can be opened and preprocessed if not previously done. After
detecting the dynamic records, they can be found on the dynamic re-
sources menu as seen in Figure 3. The resources are ordered by the host
and accessed by their path.

Fig. 3. List of the detected dynamic resources

After selecting the desired dynamic resource, dynamic fields belonging to
the resource are shown on the sidebar alongside with the dynamic field
instances associated to the currently selected transaction. The selected
transaction is shown on the text buffer with the dynamic parts high-
lighted in yellow. The selected dynamic field instance, in turn, is shown

with dark blue background. This is shown in Figure 4 where Field 2 is
selected and corresponding instance is highlighted in the text buffer.

Fig. 4. Previously detected dynamic resources visualized

New dynamic fields can be added to the dynamic resource simply by
clicking “Add” as in Figure 5. A new entry appears in the list of dy-
namic fields with no reference to any dynamic field instance. Selecting
the dynamic part of characters from text buffer and clicking the “Link”
button as in Figure 6 will add a reference between the dynamic field and
the instance belonging to the shown transaction.

4.2 Challenges and potential improvements
The main challenge in the graphical user interface is to present mul-
tiple transactions of a dynamic resource in a sensible manner as the
amount of possible transactions for one dynamic resource is relative to
the amount of visits on that resource during recording phase. For exam-
ple, the amount of transactions can be as low as two transaction or it
might be fifty.
Our current solution is a simple solution to the problem but probably not
the most efficient way to allow manual annotation. Currently our system
lists all the available transactions for the selected dynamic resource in
one menu. When selecting a transaction from the menu, the dynamic
fields are kept on the sidebar but the links to the dynamic field instances
are updated to reflect the newly selected transaction.
While being an intuitive and clear way of handling multiple transactions,
our current solution does not always result in the most efficient workflow.

Fig. 5. Adding a new dynamic field to a resource

Fig. 6. Linking the selected field instance to a dynamic field

It drives the user to process the resources transaction by transaction
rather than dynamic field instance by dynamic field instance first. The
problem with this approach is that the dynamic field instance may grow
in size depending on the other instances, meaning that the old instances
need to be upgraded after the first pass.
One solution for avoiding the multi-pass problem is to present all the
transaction samples simultaneously, in a similar fashion to a diff tool.
While this approach will make it easier to annotate all field instances
at once, the clarity will suffer when having a large number of samples.
Figure 7 gives an idea what such user interface paradigm could look like.
Here, multiple samples are presented in an open source multi-way diff
tool Diffuse [6].

Fig. 7. Side-by-side comparison of six transaction samples

A third solution to the problem could be one where the software would
prompt every field instance of the dynamic field after the first one was
entered. This way the context would not constantly switch and the user
could concentrate on one dynamic field at the time.
Some other assistive methods could be also implemented. For example,
when selecting a dynamic field instance, the program could automatically
check the other samples with the same characters before and after the
field and suggest all the matches or alert if there are not at least one
match in every field instance.
Currently, the manual workload is labour intensive. The improvements
mentioned above, combined with possible future work on assistive meth-
ods for field detection, could positively affect the scalability of our system
though. While the tool works only for saved offline data, the primary fo-
cus in our system is not to analyze the live traffic, but to detect the fields
and simultaneously generate a template of the static content to be later
on modified.

5 Conclusions

In this paper, we have described the challenge of detecting dynamic fields
in the payloads of messages transmitted over the network. Dynamic field
detection has many potential applications. It can be used for deception
when values of dynamic fields are altered in order to deceive a malicious

adversary. Several network traffic analysis approaches might also benefit
from recognizing dynamic fields. Finally, some message filtering solutions
also require understanding of the message structure.
We have demonstrated that this problem cannot be satisfactorily solved
with fully automatic field detection. We have therefore devised and im-
plemented an easy-to-use graphical user interface to facilitate manual
annotation of dynamic fields. While we have previously identified many
ways to further improve our tool, we believe our approach provides a
simple and intuitive way to recognize and annotate dynamic fields and
provides a good foundation further work in this field.

References

1. M.H. Almeshekah and E.G. Spafford. Planning and Integrating De-
ception into Computer Security Defenses. In Proceedings of the
2014 workshop on New Security Paradigms Workshop, pages 127–
138. ACM, 2014.

2. F. Cohen and D. Koike. Misleading attackers with deception. In Pro-
ceedings from the Fifth Annual IEEE Information Assurance Work-
shop, pages 30–37. IEEE, 2004.

3. W. Cui, V. Paxson, N. Weaver, and R.H. Katz. Protocol-independent
adaptive replay of application dialog. In Proceedings of the 13th
Annual Network and Distributed System Security Symposium, 2006.

4. Gnome Developer. GTK+ 3 Reference Manual.
https://developer.gnome.org/gtk3/3.0/.

5. R.W. Irving and C.B. Fraser. Two algorithms for the longest com-
mon subsequence of three (or more) strings, pages 214–229. Springer
Berlin Heidelberg, 1992.

6. D. Moser. Diffuse homepage. http://diffuse.sourceforge.net/.
7. D. Nadeau, P.D. Turney, and S. Matwin. Unsupervised named-

entity recognition: Generating gazetteers and resolving ambiguity.
In Proceedings of the 19th International Conference on Advances in
Artificial Intelligence: Canadian Society for Computational Studies
of Intelligence, AI’06, pages 266–277. Springer-Verlag, 2006.

8. J. Papalitsas, S. Rauti, and V. Leppänen. A comparison of record
and play honeypot designs. In Proceedings of the 18th Interna-
tional Conference on Computer Systems and Technologies, Comp-
SysTech’17, pages 133–140, New York, NY, USA, 2017. ACM.

9. Python Software Foundation. difflib.
10. S. Sekine and C. Nobata. Definition, Dictionaries and Tagger for Ex-

tended Named Entity Hierarchy. In LREC, pages 1977–1980, 2004.
11. J. Tammi, S. Rauti, and V. Leppänen. Practical Challenges in Build-

ing Fake Services with the Record and Play Approach. Accepted for
publication, 2017.

12. Q. Wang, D. Korkin, and Y. Shang. A fast multiple longest common
subsequence (mlcs) algorithm. IEEE Transactions on Knowledge
and Data Engineering, 23(3):321–334, 2011.

