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Abstract: The safe disposal of the spent nuclear fuel is the important part of the nuclear power
production. In this paper, we model the geological disposal in Finland covering objectives related
to the interim storage, the encapsulation facility, the disposal facility, and the costs. A notable
fact is that all the fuel types used in Finland are taken into account. The resulting optimization
model is of a multiobjective nonlinear mixed integer type having eight objectives. The model is
solved with the interactive method utilizing the special type of the achievement scalarizing functions.
From this, we obtain a disposal schedule giving amounts of canisters to encapsulate in each time
period. The results obtained are analyzed from the practical point of view.

Keywords: achievement scalarizing functions; interactive method; multiobjective optimization; spent
nuclear fuel disposal

1. Introduction

In Finland, the nuclear power covers the notable share of the electricity production. However, this
process also produces the spent nuclear fuel which needs to be permanently disposed of safely. In the
field of the geological disposal [1], Finland is one of the pioneers by starting the geological disposal in
2020s [2]. In this paper, we aim to produce a schedule in terms of amounts of canisters disposed of
periodically in order to dispose of all the spent nuclear fuel in Finland.

Most of the practical applications contain more than one aspect to be optimized, and, usually,
at least some of these aspects are conflicting meaning that the problem in question is a multiobjective
one. This leads us to make compromises, and the compromise solution of the multiobjective problem
is called Pareto optimal. Typically, the multiobjective problem has several Pareto optimal solutions
being all mathematically equally good. However, they may differ much in practice. Therefore, we are
interested in finding the most desirable solution for the decision maker. This aim is succeeded in
including the decision maker in the solution process. One way to do this is the utilization of interactive
methods [3–9] such that the solution process moves from one Pareto optimal solution to another based
on the decision maker’s wishes. This lets us to avoid calculating all the Pareto optimal solutions.

This paper is inspired by the study [6] where the multiobjective nonsmooth (i.e., nondifferentiable)
mixed integer nonlinear programming (MINLP) problem modeling the case of the geological disposal
with one fuel type is presented. In addition to the model, the multiobjective interactive method utilizing
two-slope parameterized achievement scalarizing functions (MITSPA) is proposed. This method is then
applied to the disposal model. In total, the model in [6] contains nine objectives related to the interim
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storage, the encapsulation, the area of the disposal facility, and the costs. As a result, the number of
canisters to encapsulate at each time period is obtained. These schedules are then analyzed together
with the objective function values.

The schedule for the final disposal of the spent nuclear fuel is studied also in [10] minimizing
the total costs of the disposal in Finland with a single-objective mixed integer linear programming
(MILP) and, in [11], where the area of the disposal facility is aimed to minimize with a linear
transportation model. Another optimization related study to design the disposal facility is in [12]
giving the multiobjective MILP problem optimizing the nuclear waste placement in the disposal facility,
and in [13], the optimal initial condition for the disposal facility is investigated with multiobjective
optimization. The disposal schedule can be utilized, for example, when the loading of canisters is
optimized [10,14–17]. The final disposal related aspects in terms of optimization is discussed also from
several other points of view, like the placement of the disposal repository [18], to route the transfer
of the nuclear waste [19,20], to optimize the shut down date of the reactor [21,22], or from the safety
point of view: the optimization of the nuclear safeguards [23,24] and the safety assessment of nuclear
waste repositories [25].

The aim in this paper is to extend the model presented in [6] and apply it to the real world case
considering all three types of the spent nuclear fuel needed to be disposed of in Finland. The new
model is then solved by using MITSPA [6]. Multiobjective optimization seems to be a reasonable way
to approach this problem. Even if the disposal is a notable investment economically, by minimizing
only costs we may omit better solutions, for example, from the safety point of view. Furthermore,
by optimizing not only the costs but also the cost factors, we may obtain more confidence for the
decision-making. Compared with [6], which is designed mainly from the academic perspective,
this study is carried out for the real world requirement. This is amongst the first studies using
such data that the final disposal could be started based on it. Due to the real and updated data,
the model in [6] has been heavily modified. For example, with the accurate data of the storage facilities,
the storage of the spent fuel assemblies can be modeled more practically. Along with three fuel types,
the creation of the schedule has more aspects to consider, like the disposal order of the fuel types or
the possibility to have the hiatus during the disposal. Furthermore, the analysis of the results in this
paper have a more practical approach.

In this paper, we present the case study of the final disposal of the spent nuclear fuel in Finland.
In Section 2, we describe the final disposal process and in Section 3 this process is modeled as
a multiobjective nonsmooth MINLP problem. The method used to solve the model is briefly reviewed
in Section 4 and the numerical experiments are discussed in Section 5. Finally, some concluding
remarks are given in Section 6.

2. Final Disposal of the Spent Nuclear Fuel in Finland

Nuclear power has a major role in the electricity production in Finland covering approximately
32% of the domestic electricity production. Indeed, in 2018, the total electricity production was
67.5 TWh from which 21.9 TWh was generated by the nuclear power [26]. At the moment, there are
four nuclear reactors operating in Finland and the fifth begins the operation in the near future increasing
the portion of the nuclear power of the domestic electricity production. Here, we consider the fuel
assemblies irradiated in these five reactors even if there are plans for the sixth reactor in Finland.
The current nuclear power plants are owned by the companies Fortum Power and Heat Oy (Fortum)
and Teollisuuden Voima Oyj (TVO). In Finland, the power companies are responsible also for the final
disposal of the spent nuclear fuel. In order to perform this task, Posiva Oy, owned by Fortum and
TVO, was established in 1995.

Posiva needs to follow the legislation by the Ministry of Economic Affairs and Employment
and the operation is controlled by the Radiation and Nuclear Safety Authority (STUK). The most
important constraints for the disposal process are determined by the authorities, like the regulatory
guides on nuclear safety and security by STUK [27]. For the purposes of this study, the most important
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safety aspects are the thermal dimensioning of the spent nuclear fuel repository, the criticality, and the
radiation safety. The thermal dimensioning needs the investigation of the relation between the canister
spacing and their heat powers [28] while the radiation safety can be taken into account in this context
by forcing the minimum cooling time for the spent nuclear fuel [29]. It is worth noticing that in
this paper no additional criticality safety analyses were established in order to simplify the analysis.
Nevertheless, the criticality safety will be covered in the disposal production, for example, with the
burn-up credit and loading curve criterion.

In Finland, the final disposal of the spent nuclear fuel is based on the KBS-3 (Kärnbränslesäkerhet,
nuclear fuel safety) concept [30] developed by Swedish Nuclear Fuel and Waste Management Company
(SKB). The concept relies on the multiple barriers isolating the spent nuclear fuel from the environment
and these barriers are illustrated in Figure 1. At the beginning of the disposal process, the spent
fuel assemblies are stored in Olkiluoto’s and Loviisa’s interim storages until they can be disposed of.
From the interim storage, the fuel assemblies are transferred to the encapsulation facility, where they
are loaded in canisters. After that, the canisters are transferred to the underground disposal facility for
the final disposal. In the following, we briefly discuss the properties of the fuel assembly and follow
the journey of the fuel assembly from the reactor to the bedrock.

Figure 1. Multiple release barriers of the KBS-3 concept—Posiva Oy [31].

2.1. Reactor and Spent Nuclear Fuel Types

Currently, there are two nuclear power plants in Finland, one in Olkiluoto and the other in Loviisa.
In Olkiluoto, two Boiling Water Reactors (BWR) Olkiluoto 1 and Olkiluoto 2 are in operation, and the
third reactor, namely Olkiluoto 3, being that a European Pressurized Water Reactor (EPR) is starting
operation in the near future. In Loviisa, two Russian-type Pressurised Water Reactors (VVER-440),
Loviisa 1 and Loviisa 2, are in operation. Loviisa 1 was the first reactor starting the operation on 1977,
and Olkiluoto 3 is planned to be the last of these five reactors to be in operation such that it will be
permanently shut down in the 2080s.

All the reactors use uranium dioxide as a fuel. However, each reactor type needs its own type
of the fuel such that, for example, the geometry and the mass varies. In total, three different types of
the spent nuclear fuel are produced in Finland. The spent nuclear fuel type produced by the reactors
Olkiluoto 1 and 2 is referred as OL1-2, by reactors Loviisa 1 and 2 as LO1-2, and by reactor Olkiluoto
3 as OL3. In Figure 2a, the accumulated uranium mass for each fuel type is illustrated. Figure 2a
contains the best estimate case i.e., uranium mass forecasts for the each, OL1-2, LO1-2, and OL3,
with the total of roughly 5500 tU, whereas the licensing case is 6500 tU.

Since all the reactors in Finland use the uranium dioxide fuel matrices, the main differences for
the decay heat production of different fuel types are caused by the uranium mass and the burnup
(see Figure 2). The burnup tells how much energy is produced from one mass unit of the uranium,
and, in Figure 2b, the average discharge burnup for each fuel type is presented. As we see, the average
discharge burnup of all fuel types is increased during the time. The higher burnup, or an increase in
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the uranium mass, leads to the higher decay heat power of the fuel assembly, which again increases
the cooling time since the decay heat power of a canister is limited. The decay heat power of a fuel
assembly for each fuel type is exemplified in Figure 2c based on the representative fuel characteristics
given in [32]. Note that the difference between OL3 and OL1-2 and LO1-2 is due to the larger uranium
mass of the fuel assembly of OL3. These decay heat power curves have similar shape for each fuel
type and also the cooling of canisters of different fuel types is similar. Indeed, in Figure 2d, how much
cooling time each fuel type needs with different burnups is illustrated in order to reach their nominal
canister powers.

(a) The accumulated uranium masses (b) The average discharge burnup

(c) Decay heat power of a fuel assembly (d) Cooling time with different burnups

Figure 2. Operation history and forecasts of reactors and properties of the spent nuclear fuel [33].

2.2. Interim Storage

The part of the fuel assemblies in the reactor is changed annually. Once the fuel assemblies are
removed from the reactor, they produce a large amount of radiation and decay heat. During the
first years, this production decreases rapidly when the fuel assembly is in water absorbing radiation
and cooling down the fuel together with the cooling system. Indeed, the radioactivity of the fuel
assembly decreases to the level that is less than the percent from the radioactivity when the reactor
is shut down. Thus, the assemblies are stored in water pools located in the reactor hall for a few
years and then they are transferred to the interim storage. Before the spent fuel assemblies can be
disposed of, they must be stored in the interim storage for decades. The calculation of the storage time
begins when the reactor is shut down such that the fuel assembly can be removed from the reactor.
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Although there is the minimum storage time stated by the safety [29], the storage time of the fuel
assemblies is usually longer.

The interim storages locate in the reactor facility areas such that OL1-2 and OL3 are stored in
Olkiluoto and LO1-2 in Loviisa. Both storages contain several water pools. The spent fuel assemblies
are placed in racks and only one type of the fuel can be stored in one pool. The storage capacity
needed depends on the operating license of the reactor and the disposal pace. With the current
estimated operating license [34], the interim storage in Loviisa has enough pools, but, in Olkiluoto,
some additional pools might be needed. Then, a new pool with racks can be built. However, once the
pool used to store OL1-2 is empty, it is possible to change the racks and store OL3 in the same pool.
In the model, the racks are obtained for the whole pool at once. The interim storage is in use until the
last fuel assembly is transferred to the encapsulation facility.

2.3. Encapsulation Facility

In the encapsulation facility, the fuel assemblies are loaded in canisters. Each fuel type has its
own canister type, but they all have the same basic structure: the copper overpack and the iron inside.
However, the dimensions, the shapes of the fuel assembly positions, and the capacity of the canister
vary for each fuel type.

The fuel assemblies must be selected for a canister such that the decay heat power of the canister
does not exceed the limits (see Figure 2d). The decay heat power of the canister is calculated as a sum
of the decay heat powers of the fuel assemblies. In order to decrease the decay heat power of the
canister, empty assembly positions can be utilized.

Only one type of the fuel can be encapsulated at one time. In the investigations of this paper,
the encapsulation begins in 2025 and the order of the fuel types is fixed such that the encapsulation
begins with the part of OL1-2 and continues with LO1-2. All LO1-2 must be encapsulated at once.
After that, the rest of OL1-2 is encapsulated. Lastly, all OL3 is encapsulated. During the production,
it is possible to have one hiatus. If a hiatus is included, it is between the second part of OL1-2 and OL3.
In those years when the encapsulation is not on the hiatus, there is a minimum number of canisters
that must be encapsulated. The upper bound of the yearly canister production can be exceeded by
involving a two-shift work. However, the two-shift work is not allowed at the first year of the new fuel
type and the upper bound for yearly canister production is lower at the first year of the encapsulation
and at the first year after the hiatus.

2.4. Disposal Facility

After the canister is encapsulated, it is transferred to the disposal facility located more than 400 m
under the ground. The schematic picture of the disposal facility is given in Figure 3. The canisters
are placed in the vertical disposal holes on the floor of the disposal tunnel although the horizontal
positioning is considered as well [30]. The disposal tunnels are connected with central tunnels. In the
model, the central tunnel is built as a pair and the disposal tunnels locate on both sides of the central
tunnel pair.

At each disposal tunnel, only one fuel type can be disposed of, and, in the model, each disposal
tunnel has the same length. The total length of the disposal tunnels depends on the number of canisters
and the canister spacing. However, the disposal tunnels need to be planned for a slightly higher
number of canisters than actually needed since there might be places in the bedrock where the disposal
hole cannot be drilled.
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Figure 3. The schematic layout of the disposal facility—Posiva Oy [31].

The length of the central tunnel depends on the total number of the disposal tunnels, the disposal
tunnel spacing, and the length of the hiatus. Indeed, each year on the hiatus increases the length of
the central tunnel such that the heat wave caused by the canisters disposed of before the hiatus can
be taken into account. Furthermore, there exist brittle fault zones with varying classifications in the
bedrock of Olkiluoto where disposal holes or disposal tunnels cannot be built. If the disposal facility
area needs to be expanded over the brittle fault zone, the corresponding amount of the central tunnel
needs to be built.

Besides the fixed minimum and maximum values, in order to define a suitable canister and
disposal tunnel spacing, the surface temperature of the canisters needs to be taken into account.
In [28], different canister and disposal tunnel spacings and powers of the canister are investigated
such that the surface temperature of the canister stays at a suitable level (see Figure A1 in Appendix B).
These calculations are utilized when the relation between the power of the canister, the distance
between disposal tunnels, and the distance between canisters is approximated for each fuel type in
this paper.

In order to ensure the long-term safety, the last phase of the disposal is to fill the disposal facility.
The disposal tunnels are filled with bentonite and clay; meanwhile, the canisters are placed in the
disposal holes. Once the disposal tunnel is filled, they are sealed with a plug. After all the disposal
tunnels are sealed, the central tunnel is filled with bentonite and clay.

3. Mathematical Model

In [6], a multiobjective nonsmooth MINLP model with nine objectives for the disposal of the
spent nuclear fuel is proposed. The aim there is to produce a disposal schedule in terms of the
number of canisters disposed of in each time period. The model adopts the final disposal in Finland
in the general level, but the limitation of the model is that it involves only one type of a fuel. In this
study, the model presented in [6] is developed further to contain all three fuel types used in Finland.
Due to this extension, a possibility for a hiatus is included for the new model. Additionally, the new
model is adjusted to the situation in Finland taking into account, for example, the storage facilities
more accurately.

The model in [6] and the model presented here have some differences also in objectives. Via more
accurate information on the storage of the fuel assemblies, the objective related to the maximum
storage amount is now updated to minimize the total number of new water pools in the interim
storage. The total number of objectives of the new model is eight leaving the objective minimizing
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the maximum storage time out. This is done in order to reduce the size of the model since now we
are able to omit several binary variables. However, the minimization of the average storage time
is still included as the objective. The rest of the six objectives are also still included: minimize the
total number of canisters, the disposal ends as early as possible, minimize the operation time of the
encapsulation facility, minimize the length of the disposal tunnels and central tunnel, and minimize
the total costs. All of these objectives are adjusted for the case of several fuel types.

In the following model description, the fuel type 1 refers to OL1-2, the fuel type 2 to LO1-2,
and the fuel type 3 to OL3. Recall that OL1-2 and OL3 are used in Olkiluoto and LO1-2 in Loviisa.
We assume that no fuel assemblies have been disposed of yet and the decay heat power of the fuel
assemblies from one removal from the reactor are considered as average decay heat powers from that
removal. The disposal schedule is divided in periods whose length can be adjusted. The starting time
of the disposal is fixed and the last possible disposal period is given.

3.1. Parameters

We begin by introducing the parameters involved in the model. The size of the model is defined
by the following three parameters:

I total number of removals from the reactor
J total number of disposal periods
Z length of the disposal period.

These parameters relate to the following set of indices: the set of removals from the reactor
I = {1, . . . , I} and the set of periods J = {1, . . . , J}. Furthermore, we introduce the set of fuel types
L = {1, 2, 3}.

The following set of parameters define some properties of fuel assemblies:

Mi,l number of assemblies of the fuel l ∈ L belonging to the removal i ∈ I
Pi,j,l decay heat power of an assembly of the fuel l ∈ L belonging to the removal i ∈ I in the period

j ∈ J [W]
Ol last period when the reactor for the fuel l ∈ L is in operation
Ai,j,l storage time of an assembly of the fuel l ∈ L belonging to the removal i ∈ I in the period

j ∈ J [period]
R minimum storage time of an assembly [period]
Nl number of removals before the first period of the fuel l ∈ L.

Features of the disposal and central tunnels are denoted with the following parameters:

Q effective length of the disposal tunnel [m]
Qr coefficient taking into account the true length of the disposal tunnel
Qh coefficient taking care of the rejected disposal holes
Dct maximum length of the central tunnel before the brittle fault zone [m]
Dadd additional amount of central tunnel to transit over the brittle fault zone [m]
Dh annual amount of the central tunnel to build during the hiatus [m]
Dclow lower bound for the distance between two adjacent canisters [m]
Dcup upper bound for the distance between two adjacent canisters [m]
Ddtlow lower bound for the distance between two adjacent disposal tunnels [m]
Ddtup upper bound for the distance between two adjacent disposal tunnels [m]
M amount of the central tunnel available after the transition over the brittle fault zone [m].

Next, we give some parameters related to the canisters:

Ulow minimum number of canisters disposed of in one period
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Uup maximum number of canisters disposed of in one period
V decrease in the maximum canister capacity in the first period of the encapsulation
W increase in the maximum canister capacity due to the two-shift work
Kl capacity of a canister for the fuel l ∈ L
Plow

l lower bound for the power of the canister for the fuel l ∈ L [W]
Pup

l upper bound for the power of the canister for the fuel l ∈ L [W]
S the last disposal period when the encapsulation can be on the hiatus.

In order to model the water pools and racks, we need the following parameters:

Bas
l capacity of the pool for the fuel l ∈ L \ {2} [assemblies]

B number of pools for OL1-2 at the beginning of the first period
Br number of pools with racks for OL1-2 at the beginning of the first period
Oup maximum number of additional pools in Olkiluoto
Bup

j,l maximum number of pools for the fuel l ∈ L \ {2} in the period j ∈ J
Bup

l maximum number of pools needing racks for the fuel l ∈ L \ {2}.

Finally, the cost parameters are

C
iso f f
l maintenance cost of the interim storage for the fuel l ∈ L \ {1} when the reactor is off [e]

Cison
l maintenance cost of the interim storage for the fuel l ∈ L \ {1} when the reactor is on [e]

Cr
l cost to build racks for one pool for the fuel l ∈ L \ {2}[e]

Cp cost to build one pool [e]
Cst

l storage cost of one assembly of the fuel l ∈ L in period [e]
Cc

l cost of the canister for the fuel l ∈ L [e]
Cef maintenance cost of the encapsulation facility per period [e]
Ch maintenance cost of the encapsulation facility per period during the hiatus [e]
Cef ts portion of the encapsulation facility cost if two-shift work is in use
Cef on cost of turning on the encapsulation facility after the hiatus [e]
Cef ch cost of changing the fuel type in encapsulation [e]
Cdt

l cost of the disposal tunnel of the fuel l ∈ L per meter [e]
Cct cost of the central tunnel per meter [e].

3.2. Continuous Variables

The model has J(3I + 11) + 13 continuous variables which all are assumed to be nonnegative.
These variables are:

xi,j,l number of assemblies of the fuel l ∈ L belonging to the removal i ∈ I disposed of in the period
j ∈ J

rj,l equals 1 if the disposal of the fuel l ∈ L begins at the period j ∈ J
pj,l summed powers of assemblies of the fuel l ∈ L disposed of in the period j ∈ J
eon

j equals 1 if the encapsulation begins at the period j ∈ J
eo f f

j equals 1 if the encapsulation ends at the period j ∈ J
h length of the possible hiatus [period]
ql period when the last canister of the fuel l ∈ L is disposed of
yj,l number of canisters for the fuel l ∈ L disposed of at the period j ∈ J
pmax

l maximum canister power of the fuel l ∈ L [W]
dc

l distance between two adjacent canisters of the fuel l ∈ L in a disposal tunnel [m]
ddt

l distance between two adjacent disposal tunnels of the fuel l ∈ L [m].
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Note that some of these variables, such as the number of canisters, have integer or even binary
nature but they are relaxed as continuous variables to ease the computation.

3.3. Binary Variables

In the model, we have 4J + 1 binary variables given below:

sj,l fuel l ∈ L is disposed of in the period j ∈ J
wj two-shift work in the period j ∈ J
c transition over the brittle fault zone

3.4. Integer Variables

Besides binary variables, the model involves also 2J + 3 integer variables dedicated to model the
water pools and racks. The integer variables used are:

ul number of pools needing racks for the fuel l ∈ L \ {2}
o total number of additional water pools in Olkiluoto
vj,l number of pools for the fuel l ∈ L \ {2} needed in the period j ∈ J

3.5. Objectives

The eight objectives of the model are:

min o (1)

min
∑i∈I ∑j∈J ∑l∈L Ai,j,l xi,j,l

∑i∈I ∑l∈L Mi,l
(2)

min ∑
j∈J

∑
l∈L

yj,l (3)

min max {ql | l ∈ L} (4)

min ∑
j∈J

∑
l∈L

sj,l (5)

min Qr ∑
l∈L

Qhdc
l ∑

j∈J
yj,l (6)

min
1
Q ∑

l∈L
ddt

l Qhdc
l ∑

j∈J
yj,l + 2DhZh (7)

min
3

∑
l=2

Cison
l Ol +

3

∑
l=2

C
iso f f
l (ql −Ol) + Cpo + ∑

l∈L\{2}
Cr

l ul + (Cef on − Cef ch)( ∑
j∈J

eon
j − 1)

+Cef ch( ∑
j∈J

∑
l∈L

rj,l − 1) + ∑
l∈L

Cst
l
( Nl

∑
i=1

∑
j∈J

(Ai,j,l + i− Nl)xi,j,l +
I

∑
i=Nl+1

∑
j∈J

Ai,j,l xi,j,l
)

+ ∑
l∈L

Cc
l ∑

j∈J
yj,l + (Cef − Ch) ∑

j∈J
∑
l∈L

sj,l + Ch max {ql | l ∈ L}+ Qr ∑
l∈L

Cdt
l Qhdc

l ∑
j∈J

yj,l

+Cct(
1
Q ∑

l∈L
ddt

l Qhdc
l ∑

j∈J
yj,l + 2DhZh) + CctDaddc + Cef ts ∑

j∈J
Cef wj. (8)

Note that the objectives (4) and (6)–(8) are nonlinear and additionally the objectives (4) and (8) are
nonsmooth (i.e., nondifferentiable). The first objective (1) minimizes the total number of the additional
water pools in the interim storage in Olkiluoto. With the objective (2), the average storage time of the
fuel assemblies in the water pools is minimized. The next three objectives focus on the encapsulation
facility such that the objective (3) minimizes the total number of canisters, the objective (4) minimizes
the ending time of the disposal, and the objective (5) minimizes the number of disposal periods when
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the encapsulation plant is in operation. The objective (6) minimizes the total length of the disposal
tunnels and the objective (7) minimizes the length of the central tunnel. There is a minimum distance
that must be between the central tunnel and the first canister in a disposal tunnel. This extra length of
a disposal tunnel is taken into account with the coefficient Qr. It is also worth noticing that, in practice,
the central tunnel is built in pairs (see Figure 3), but, in the model, the variable corresponds to only
one tunnel.

The last objective (8) minimizes the total costs. The first two terms specify the maintenance cost
of the interim storages depending on whether the reactors are on or off in the corresponding reactor
facility areas, the next two terms indicate the cost related to the water pools and the racks in there,
and the next two terms take into account the cost caused by the turning on the encapsulation plant
after the hiatus and the cost of changing the fuel type. The seventh term defines the storage cost of
fuel assemblies followed by the canister cost. The cost related to the use of the encapsulation facility is
given in the ninth and the tenth term. The building costs of disposal and central tunnels are captured
in the eleventh and the twelfth terms, respectively. The last two terms in respective order are the cost
of the possible transition over the brittle fault zone, and the cost of the two-shift work. All the costs are
taken into account from the first period onwards.

3.6. Constraints—Interim Storage

There are 3I + 5J linear constraints related to the interim storage:

∑
j∈J

xi,j,l = Mi,l , i ∈ I , l ∈ L (9)

Nl+j

∑
i=1

(Mi,l + xi,j,l −
j

∑
k=1

xi,k,l) ≤ Bas
l vj,l , l ∈ L \ {2}, j = 1, . . . , I − Nl (10)

∑
i∈I

(Mi,l + xi,j,l−
j

∑
k=1

xi,k,l) ≤ Bas
l vj,l , l ∈ L \ {2}, j = I − Nl + 1, . . . , J (11)

vj,1 + vj,3 ≤ o + B, j ∈ J (12)

vj,1 ≤ u1 + Br, j ∈ J (13)

vj,3 ≤ u3, j ∈ J . (14)

The constraint (9) ensures that all the fuel assemblies are disposed of. The constraints (10) and
(11) keep track of the pools needed in Olkiluoto considering the cases before and after all the removals
from the reactor are done, respectively. The amounts of additional pools in Olkiluoto are considered in
the constraint (12). Additionally, (13) defines the pools needing racks for OL1-2 and (14) for OL3.

3.7. Constraints—Encapsulation Facility

In total, there are 25J + 7 + ∑l∈L ∑I
k=k̂(k + R − Nl), where k̂ = max {1, Nl − R + 1} linear

constraints related to the encapsulation facility. First, we focus on constraints determining the operation
times of the encapsulation facility:

s1,1 = 1 (15)

∑
j∈J

eon
j ≤ 2 (16)

∑
l∈L

s1,l = eon
1 (17)

∑
l∈L

sj,l − ∑
l∈L

sj−1,l ≤ eon
j , j ∈ J \ {1} (18)

∑
j∈J

eo f f
j ≤ 2 (19)
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eo f f
1 = 0 (20)

eo f f
J ≥ ∑

l∈L
sJ,l (21)

∑
l∈L

sj−1,l − ∑
l∈L

sj,l ≤ eo f f
j , j ∈ J \ {1} (22)

j(
j

∑
k=1

eon
k − 1) + j(eon

j − 1)−
j−1

∑
k=1

keo f f
k ≤ h, j ∈ J (23)

ql ≥ j · sj,l , j ∈ J , l ∈ L. (24)

The constraint (15) determines that the encapsulation begins at the first disposal period with
OL1-2 and the constraint (16) guarantees that the encapsulation has at most one hiatus. With the
constraints (17) and (18), the variable eon

j determining when the encapsulation begins is defined

and the constraints (19)–(22) define the variable eo f f
j considering when the encapsulation is stopped.

Additionally, the constraint (23) implies the length of the hiatus and the constraint (24) captures the
last period of the encapsulation.

The production related constraints are:

∑
l∈L

sj,l ≤ 1, j ∈ J (25)

j · eo f f
j + J(1− eo f f

j ) ≥ ql + 1, j ∈ J , l ∈ L \ {3} (26)

∑
j∈J

rj,l ≤ 1, l ∈ L \ {1} (27)

sj,l − sj−1,l ≤ rj,l , l ∈ L, j ∈ J \ {1} (28)

s1,l ≤ r1,l , l ∈ L (29)
S

∑
j=1

∑
l∈L

sj,l ≤ S− 1. (30)

The constraint (25) controls that only one type of the fuel is encapsulated in one period. In order
to encapsulate all assemblies of OL1-2 and LO1-2 before the hiatus, the constraint (26) is introduced.
With the constraint (27), LO1-2 and OL3 are forced to be encapsulated continuously without the fuel
type changes. With the constraints (28) and (29), the variable rj,l is defined. The last constraint (30)
indicates that there is the hiatus in the production.

Finally, we give some constraints considering the canisters produced:

yj,l ≥
1
Kl

∑
i∈I

xi,j,l , j ∈ J , l ∈ L (31)

∑
l∈L

(yj,l −Uupsj,l) + Veon
j −Wwj ≤ 0, j ∈ J (32)

∑
l∈L

yj,l ≥ Ulow ∑
l∈L

sj,l , j ∈ J (33)

wj ≤ ∑
l∈L

sj,l , j ∈ J (34)

wj ≤ 1− ∑
l∈L

rj,l , j ∈ J (35)

∑
i∈I

xi,j,l ≤ (Uup + W)Klsj,l , j ∈ J , l ∈ L (36)

sj,l ≤ ∑
i∈I

xi,j,l , j ∈ J , l ∈ L (37)

xi,j,l = 0, i ≥ Nl − R + 1, j = 1, . . . , i + R− Nl , l ∈ L. (38)
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The constraint (31) guarantees the number of canisters to be high enough and the constraint (32)
keeps track of the number of canisters staying under the maximum production capacity. On the other
hand, the constraint (33) ensures that the minimum capacity is fulfilled. The constraint (34) enables
the two-shift work only when the encapsulation facility is on and the constraint (35) disallows the
two-shift work at the first period after the fuel change. With the constraints (36) and (37), the variable
si,j, i ∈ I and j ∈ J is defined. The constraint (38) takes into account that fuel assemblies that do not
satisfy the minimum cooling time requirement are not encapsulated.

3.8. Constraints—Disposal Facility

The 6J + 4 constraints related to the disposal facility are

∑
i∈I

Pi,j,l xi,j,l ≤ pj,l , j ∈ J , l ∈ L (39)

pj,l ≤ yj,l pmax
l , j ∈ J , l ∈ L (40)

dc
l ≥ gl(pmax

l , ddt
l ), l ∈ L (41)

1
Q ∑

l∈L
(ddt

l dc
l Qh ∑

j∈J
yj,l) + 2DhZh− Dct ≤ Mc. (42)

From these constraints, 3J are linear and 3J + 4 and nonlinear. The constraint (39) defines the
variable pj,l , j ∈ J and l ∈ L and (40) defines the variable pmax

l , l ∈ L. With the constraint (41), it is
ensured that the distance between canisters is such that the temperature in the disposal facility stays in
control. The function gl : R2 → R gives a relation between the maximum canister power, the distance
between canisters, and the distance between disposal tunnels, and it is approximated with the relation
(A1) given in Appendix B. Finally, the constraint (42) gives a value 1 for the variable c if the brittle fault
zone is met.

3.9. Constraints—Lower and Upper Bounds

We give J(3I + 7) + 16 box constraints for variables as follows:

pmax
l ∈ [Plow

l , Pup
l ], l ∈ L

dc
l ∈ [Dclow , Dcup ], l ∈ L

ddt
l ∈ [Ddtlow , Ddtup ], l ∈ L

xi,j,l ∈ [0, Mi,l ], i ∈ I , j ∈ J , l ∈ L
rj,l ∈ [0, 1], j ∈ J , l ∈ L
eon

j ∈ [0, 1], j ∈ J

eo f f
j ∈ [0, 1], j ∈ J

ql ∈ [0, J], l ∈ L
h ∈ [0, 0.7J]

o ∈ [0, Oup]

vj,l ∈ [0, Bup
j,l ], j ∈ J , l ∈ L \ {2}

ul ∈ [0, Bup
l ], l ∈ L \ {2},

and, finally, some boundaries for the variables:

pj,l ≥ 0, yj,l ≥ 0, sj,l ∈ {0, 1}, j ∈ J , l ∈ L, wj ∈ {0, 1}, j ∈ J , and c ∈ {0, 1}.
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To summarize, the model has eight objectives, J(3I + 11) + 13 continuous variables, 4J + 1 binary
variables, and 2J + 3 integer variables. Furthermore, the model has 3I + 33J + 7 + ∑l∈L ∑I

k=k̂(k +
R− Nl), where k̂ = max {1, Nl − R + 1} linear and 3J + 4 nonlinear constraints in total in addition
to the J(3I + 7) + 16 box constraints. Thus, the size of the model strongly depends on the length
of the disposal period. It is good to note that xi,j,l , yj,l , and ddt

l are important variables in the sense
that, if the values of these are defined, then the values of the other variables can be derived. In this
case, the constraints will define values for some variables (for example sj,l) and give lower bounds to
other variables (for example dc

l ). These lower bounds will be the final values because giving variables
a higher value do not benefit any of the objectives.

3.10. Scenario without Hiatus

Since we are also interested in investigating the effect of a hiatus, we define how the model
needs to be modified in order to disallow the hiatus. The constraints (16) and (19) determine that the
encapsulation begins and ends no more than twice. These constraints are thus replaced respectively
with the following constraints:

∑
j∈J

eon
j ≤ 1,

∑
j∈J

eo f f
j ≤ 1.

Furthermore, the constraint (26) ensuring that OL1-2 and LO1-2 are encapsulated before the
hiatus and the constraint (30) forcing the hiatus can be omitted.

4. Methodology

In this section, we concentrate on the multiobjective MINLP problem

min
x∈X

f (x) = { f1(x), . . . , fk(x)}, (43)

where X = {x = (y, z) | y ∈ Rn, z ∈ Zm} ∩ C such that C is the set of constraints, and X is the
nonempty and compact set of feasible solutions. The functions fi : X → R for all i ∈ I = {1, . . . , k} are
supposed to be lower semicontinuous with respect to y. In order to obtain a sensible multiobjective
problem, we assume that the objectives are also at least partially conflicting. In the following, for the
vectors p, q ∈ Rk, we denote by p < q if pi < qi for all i ∈ I and p ≤ q if pi ≤ qi for all i ∈ I.

A solution of the problem (43) is Pareto optimal if any objective cannot be improved without
deteriorating some other objective simultaneously. That is, a solution x∗ ∈ X is Pareto optimal if
there does not exist any solution x ∈ X such that f (x) ≤ f (x∗) and f j(x) < f j(x∗) for at least one
index j ∈ I. Furthermore, the solution of the problem (43) x′ ∈ X is weakly Pareto optimal if there
exists no other solution x ∈ X such that f (x) < f (x′). Usually, the multiobjective problem has several
Pareto optimal solutions and the set of these solutions is called a Pareto set. The range of the Pareto
set can be approximated with an ideal f id and a nadir vector f nad as the lower and the upper bounds.
The components of the ideal vector are obtained by minimizing the individual objectives while the
determination of the nadir vector is much harder, and the nadir vector needs to be approximated
in practice.

One acknowledged approach to solve the problem of the form (43) is the use of the achievement
scalarizing functions (ASFs) (see, e.g., [4,9,35]). The idea in brief is to transfer the multiobjective problem
to a single objective one such that solving the single-objective problem the result is a Pareto optimal
solution for the original multiobjective problem. The single-objective problem is formed in such a way
that it minimizes the distance between the Pareto set and the reference point f R involving the decision
maker’s wishes towards the solution. If f R ∈ Z +Rk

+, where Z is the image of the feasible solutions in
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the objective space, then the reference point is achievable and otherwise unachievable. Besides employing
ASFs as such, they are also made a name as a part of interactive methods [3–5,7–9,36], where the most
satisfactory solution for the decision maker is found after an active dialogue between the decision
maker and the analyst.

In this paper, we utilize the interactive method using the special type of the ASFs proposed
in [6] called the multiobjective interactive method utilizing the two-slope parameterized ASFs
(MITSPA). The two-slope parameterized ASFs presented in [37] generalize the good properties of the
parameterized ASFs [38] and the two-slope ASFs [39]. Indeed, with the two-slope parameterized ASFs,
we can systematically produce different Pareto optimal solutions from the same preference information
without involving any test of the achievability of the reference point.

The family of the two-slope parameterized ASFs is defined by

min
x∈X

max
Iq⊆I
|Iq |=q

{
∑
i∈Iq

[
max{λU

i ( fi(x)− f R
i ), 0}+ min{λA

i ( fi(x)− f R
i ), 0}

]}
, (44)

where λU , λA are positive coefficients for unachievable and achievable reference points, respectively.
Additionally, Iq ⊆ I is a set of q integers from the interval [1, k] such that k is the number of
objectives. Indeed, the maximization is taken over all the sets containing q integers from [1, k].
When q = 1, the used metric is L∞ and if q = k, the linear L1 metric is used. Another good property of
sq

R( f (x), λU , λA) is that, if the objectives fi, i ∈ I and the set X are convex, sq
R( f (x), λU , λA) preserves

the convexity (see Theorem 8 in [37]). In the case of the convex objective, the global optimality of the
scalarized problem (44) is easier to guarantee.

In order to justify the use of the two-slope parameterized ASFs, we recall the following theorem
from [6]. The proof of the theorem is given in Appendix A.

Theorem 1. [6] For the scalarized problem (44), it holds that:

(i) Any optimal solution of the scalarized problem is weakly Pareto optimal for the problem (43).
(ii) Among optimal solutions of the scalarized problem, there exists at least one Pareto optimal solution for

the problem (43).
(iii) If x∗ is a weakly Pareto optimal solution for the problem (43), then it is a solution of the scalarized problem

(44) with f R = f (x∗), and the optimal value is zero.

Furthermore, the Pareto optimality of the solutions obtained can be guaranteed by adding an
augmentation term [4]

ρ ∑
i∈I

λi( fi(x)− f R
i ), ρ > 0, λi > 0 for all i ∈ I (45)

to the objective of the scalarized problem (44) [6,37].
The interactive framework used follows the same basic structure than many other interactive

methods. First, the ranges of the Pareto set are illustrated; then, the decision maker gives some
preference information and based on the preference information some problem(s) is solved. The results
are then presented to the decision maker giving some new preference information based on the results.
This process continues until the decision maker is satisfied with the solution. Here, the reference
point is used as a tool to communicate with the decision maker. This is considered as an intuitive
approach for the decision maker since the reference point and the solution vector are in the same
form. Other interactive methods combining the reference point and the scalarization function are
described for example in [3–5,7–9,36]. Compared with these, we gain the advantages of the two-slope
parameterized ASF by using MITSPA. In the following, the outline of MITSPA is described. For further
details of the method, we refer to [6].
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Multiobjective interactive method utilizing the two-slope parameterized ASFs (MITSPA)

Step 0. Illustrate the Pareto set with the ideal vector f id and the nadir vector f nad.
Step 1. Set the iteration counter h = 1 and select the maximum number of iterations hmax. Ask the

decision maker to provide the reference point f R
h and the number of solutions s ∈ {1, . . . , k}

presented for each reference point.
Step 2. Solve the problem (44) with the augmentation term (45) with the current reference point f R

h .
Step 3. Present s solutions to the decision maker and ask the decision maker to select the most

preferable solution among them as the current solution f h.
Step 4. If h = hmax or the decision maker is satisfied with the current solution f h, stop with the

current solution as the final solution f ∗. Otherwise, ask the decision maker to specify the
new reference point f R

h+1 as the current reference point, set h = h + 1, and go to Step 2.

In Step 0 of MITSPA, the Pareto set is illustrated. In addition to the ideal and nadir vector,
the solutions can be exemplified by giving some neutral solution obtained, for example, with some
achievement scalarizing function using the ideal vector as the reference point or with some
non-preference method (see e.g., [4,40–44]). By solving the scalarized problem (44) with different
parameter q values, k different solutions in total can be obtained for one reference point and
s ∈ {1, . . . , k} of them are presented for the decision maker. In order to aid the decision maker,
it is reasonable to keep the value of s quite small. However, if the decision maker is willing to see more
than s solutions with the same reference point, the rest of the k solutions can be presented between
Steps 3 and 4. If even more solutions are needed, they can be calculated by varying the weighting
coefficients in the scalarized problem (44). Furthermore, if the decision maker is willing to return to
some previous solution, the solutions from the previous iterations can be stored. It is worth noticing
that, even if the maximum number of iterations hmax is included, it is crucial to make sure that the
decision maker is willing to stop the process when the hmax is met.

5. Numerical Experiments

In this section, we solve the multiobjective MINLP model presented in Section 3 with the
interactive approach in Section 4. In addition, we investigate the model by minimizing only the
costs. Therefore, in the numerical experiments, tools for solving single- and multiobjective problems
are needed. However, multiobjective problems are solved with MITSPA utilizing scalarization. Via the
scalarization, multiple objectives are reformulated as a single-objective problem and by solving this
problem, a Pareto optimal solution for the original problem can be obtained. Thus, we only need
a solver capable of solving single-objective MINLP problems. For this purpose, we use the method
employing the branch-and-bound idea called SCIP (Solving Constraint Integer Programs) [45–47] in
GAMS [48] with SoPlex and Ipopt. The relative tolerance is set as 0.000001 and and the maximum time
limit was set to 86,400 s.

5.1. Cost Minimization Results

We begin the numerical experiments by investigating the single-objective case minimizing the
total costs i.e., using (8) as the only objective. The affects of the hiatus on the costs are also considered.
The data used is described in Appendix A except the parameters related to the costs which are omitted
due to their commercial nature. However, the repeatable single-objective example with an artificial
cost data are given in Appendix B. In total, the problem has 887 linear and 61 nonlinear constraints.
Furthermore, we have 963 continuous, 77 binary, and 41 integer variables. Note that the scenario
without the hiatus has 39 constraints less than the base scenario. The CPU time of the single-objective
base scenario having the hiatus is 579 s. For the scenario without the hiatus, the algorithm stopped after
86,439 s reaching the time limit with the 0.0005% relative gap between the dual and the primal bound.

In Figure 4, the solutions for both scenarios with and without the hiatus are presented. Figure 4a
illustrates the values of the objectives (1)–(8) in the interval from 0 to 1 such that 0 represents the value
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of the ideal vector for the corresponding objective in the base scenario and 1 represents the nadir value
in the base scenario. The solution for the base scenario is given in the red line and the solution without
the hiatus is given in the blue line. Figure 4b,c shows the schedules obtained for the base scenario and
the scenario without the hiatus, respectively. From these schedules, we see how many canisters are
planned to be encapsulated at each period. The blue bars in Figure 4b,c refer to canisters of OL1-2,
the orange refers to LO1-2, and purple refers to OL3.

(a) The objective values for the single-objective problems

(b) The solution with the hiatus (c) The solution without the hiatus

Figure 4. Results for the single-objective problems.

As we see, when the costs are minimized, the model gains advantage from the hiatus and the
solution without the hiatus has around 1.7% higher costs than the solution of the base scenario.
More significant differences of the solutions can be seen from the other objective values. For example,
the scenario without the hiatus needs around 5.9% more storage time than the base scenario and, even if
the both scenarios have the same ending time, the scenario without the hiatus has the encapsulation
facility in operation 20 years more than the base scenario. However, the central tunnel is 11.6% longer
in the base scenario than in the scenario without the hiatus.

From the schedules obtained, we see that the first three periods, or in other words 15 years,
looks similar in the both scenarios. After that, one period has a minor difference and then again the
next three periods are similar. Then, the rest of OL1-2 is disposed of in two periods in the base scenario
and in five periods in the case without the hiatus. Finally, OL3 is disposed of and the base scenario
needs one period less than the case without the hiatus, but the disposal ends at the same time in the
both cases. The similar beginning in the schedules indicates that the decision about whether to have
the hiatus or not does not significantly affect the disposal pace before the rest of OL1-2 will be disposed
of when the costs are minimized. However, for OL1-2, the maximum canister power is higher in the
base scenario than in the scenario without the hiatus. Moreover, the spacing between the disposal
tunnels is larger while the canister spacing is the same being minimal.
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5.2. Multiobjective Optimization Results

In the following, we solve the multiobjective model presented in Section 3 with MITSPA. First,
we focus on the basic scenario with the hiatus. The data used for the parameters are given in
Appendix A other than the cost related parameters which are excluded due to their commercial
nature. Compared with the single-objective case, besides having eight objectives instead of one,
we need some additional constraints and variables to rewrite the scalarized problem (44) as in [37].
The weighting coefficients λU and λA are selected as is suggested in [39] such that

λU =
1

f nad − f R , λA =
1

f R − f id

when f nad − f R > 0 and f R − f id > 0. Otherwise, the coefficient 1/( f nad − f id) is used. Furthermore,
we set the coefficient ρ = 0.0001.

The decision maker selects the ideal vector f id as the first reference point f R
1 . Here, we present

three different solutions in Step 3 of MITSPA. In Figure 5, the results for the first reference point are
illustrated. Figure 5a shows the values of the objectives in the interval from 0 to 1. This interval is the
same as in Section 5.1 such that 0 represents the ideal vector of the base scenario and 1 represents the
nadir value. The solutions are referred to with the reference point and the value of the parameter q;
for instance, the solution r1q1 is a solution obtained with the reference point 1 when q = 1. Figure 5b–d
presents the disposal schedules for the solutions r1q1, r1q3, and r1q8, respectively. In those figures,
blue refers to OL1-2, orange to LO1-2, and purple to OL3.

(a) The objective values for the selected solutions

(b) The solution r1q1 (c) The solution r1q3 (d) The solution r1q8

Figure 5. Results for the iteration 1.

Based on the objective function values illustrated in Figure 5a, the length of the central tunnel and
the total costs seem to be conflicting objectives. In addition, the smaller number of canisters yields to
the longer central tunnel. Nevertheless, this sounds reasonable since, with fewer canisters, the power
of the canister may be larger, which leads to the larger spacings between canisters. This in its turn
lengthens the central tunnel. Furthermore, the lengths of the disposal and central tunnels are also
conflicting objectives. Indeed, if the canister heat powers are equal, we may increase the canister
spacing or the disposal tunnel spacing to control the temperature on the surface of canisters in the



Mathematics 2020, 8, 528 18 of 29

disposal facility. The increase in the canister spacing will increase the disposal and central tunnel
lengths. However, the increase in the disposal tunnel spacing will increase only the central tunnel
length, but the increase is typically much larger. The schedules in Figure 5b–d propose the same
ending time and the place for the hiatus.

From the first iteration, the decision maker selects the solution r1q8 as the current solution f 1
since it is a good compromise between the solutions presented. It minimizes the additional water pools,
and the total costs are still at the reasonable level. The next reference point f R

2 adapts the solution r1q8
expect that the number of canisters is selected to be minimal and the ending and the operation time
are increased. These changes aim to minimize the canisters needed while keeping the costs reasonable
and trying to avoid the additional water pools.

The results of the second iteration are illustrated in Figure 6. From Figure 6a, we see that the
solutions r2q5 and r2q7 are quite similar, and the solution r2q4 is clearly a different kind. Both solutions
r2q5 and r2q7 need less canisters than the current solution f 1, but one additional pool is needed and
the storage time is increased. On the other hand, the solution r2q4 lengthens the operation time as was
suggested by the reference point f R

2 , but also the number of canisters is increased. However, the central
tunnel is shorter than in the current solution. In schedules given in Figure 6b–d, we see that, in the
solution r2q4 in Figure 6b, the hiatus is one period shorter than in other schedules.

(a) The objective values for the selected solutions

(b) The solution r2q4 (c) The solution r2q5 (d) The solution r2q7

Figure 6. Results for iteration 2.

The decision maker selects the solution r2q7 as the current solution f 2. This is selected since the
number of canister is the lowest and also the costs are low. Furthermore, the schedule in Figure 6d
looks most feasible from the practical point of view due to the calm beginning. The reference point f R

3
adjusts this solution such that the central and disposal tunnels are set to the minimum and the storage,
ending, and operation time are deteriorated.

The solutions of the third iteration all have longer storage, ending, and operation time than the
current solution f 2 as is seen in Figure 6a. Additionally, the total costs are increased. Furthermore,
the total length of the central and disposal tunnels are shorter in all the solutions, and no additional
water pools are needed. In this iteration, the solutions have less variety. Indeed, the differences of the
solutions r3q3 and r3q4 are hard to see from Figure 6a. However, the solution r3q3 has a bit longer
storage time, few extra canisters, longer disposal tunnel, and it is a slightly more expensive than the
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solution r3q4. However, the central tunnel in the solution r3q3 is shorter than in the solution r3q4.
The schedules in Figure 7b–d show that the biggest differences between the solutions can be seen in
the second part of OL1-2. However, the solution r3q3 has a few extra canisters in the last period of
LO1-2 compared to the solution r3q4. By considering all the schedules presented, the two-shift work is
utilized only when OL3 is encapsulated.

(a) The objective values for the selected solutions

(b) The solution r3q2 (c) The solution r3q3 (d) The solution r3q4

Figure 7. Results for iteration 3.

The decision maker selects the solution r3q4 as the final solution f ∗ = f 3. Both solutions r3q3
and r3q4 would be good alternatives, but the solution r3q4 is selected due to the smaller number of
canisters and the shorter disposal tunnel. During the interactive process, we learned that the model
suggests schedules with heavy starting which will decrease in later periods. The behavior of this kind
is very hard to employ in practice, and, thus, we investigate what happens, if the reference point is the
solution r3q4, or, in other words f R

4 = f 3, and we add the following constraint:

∑
l∈L

yj−1,l ≤ ∑
l∈L

yj,l + (W + Uup) · (1− ∑
l∈L

sj,l), j ∈ J \ {1}.

This constraint guarantees that, at every period, the hiatus is not applied and the number of
canisters to be encapsulated needs to be at least as many as in the previous period.

Here, we observe only one solution, namely r4q5. As we see from Figure 8a, the additional
constraint increases the number of the canisters needed together with the length of the disposal tunnel
and the costs. On the other hand, the storage, ending, and operation times get shorter. From the
schedule point of view in Figure 8b, the encapsulation before the hiatus is very even except the last
period when the two-shift work is needed. Compared to the solution r3q4, the solution r4q5 has
a longer hiatus taking 25 years, and the disposal ends one period earlier.
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(a) The objective values for r3q4 and r4q5 (b) The solution r4q5

Figure 8. Result having increasing production.

All the results obtained during the interactive process suggest a hiatus between 15 to 25 years.
This indicates that the model gains advantage from the hiatus since only a 5-year hiatus is forced.
Unfortunately, the hiatus has its own risks. Therefore, we test how well we can achieve the objective
values of the solution f ∗ with the scenario without the hiatus. Thus, we set f R

5 = f R
4 and the result is

shown in Figure 9.

(a) The objective values for r3q4 and r5q1 (b) The solution r5q1

Figure 9. Result without hiatus.

By omitting the hiatus, the objective values for the operation time and the central tunnel increase as
well as the number of canisters, the disposal tunnel, and the costs but only 1.2%. However, the objective
values for the ending and storage time decrease. The schedule of the solution r5q1 in Figure 9b is
similar to the solution r3q4 for the first nine periods. After that, the minimal amount of canisters
are encapsulated until the last period when as many canisters as possible are encapsulated by using
the two-shift work, and the final disposal ends one period sooner than in the solution r3q4. Again,
the similar beginning in the schedules of the base scenario and the scenario without hiatus can be
observed as in the single-objective case minimizing costs. However, in this case, the differences in the
maximum canister power and the disposal tunnel spacing are less significant.

The CPU times of solving each scalarized problem (44) with the augmentation term in the base
scenario reported here varies from 645 s to 6008 s while the average CPU time is 3101 s and the median
CPU time is 1898 s. The CPU time of the solution r4q5 is 7265 s and of the solution r5q1 3943 s
making both alternative scenarios more time-consuming than the average problem of the base scenario.
In general, it seems that the scalarized problems with the smaller value of the parameter q (i.e., closer
to the L∞ metric) are computationally harder than the scalarized problems with the higher value of q
(i.e., closer to the L1 metric). Similar behavior is also observed in [37].

6. Conclusions

In this paper, we have proposed a new model for the final disposal of the spent nuclear fuel in
Finland. The model involves all the spent nuclear fuel produced in Finland by the current estimates.
As a result, we obtain a schedule giving the number of canisters encapsulated periodically. Note that
the schedule obtained gives only guidelines, and it does not consider how the individual canisters are
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loaded. Moreover, the model does not give any complex layout of the disposal facility. The model is
a multiobjective MINLP problem having eight objectives. This is solved with the interactive method
called MITSPA. The multiobjective results are presented and commented also from the practical point
of view. Furthermore, the solutions minimizing only the total costs are given. Indeed, by comparing
these solutions, by increasing the costs around 3.33%, the additional water pool can be omitted and the
lengths of the central and disposal tunnels can be decreased.

In the numerical experiments, only 5-year disposal periods are considered. As the numerical
experiments have shown, the CPU times of the 5-year model are moderate. However, 5 years is a bit
long of a disposal period, and the properties of the spent nuclear fuel are taken conservatively into
account yielding the overestimation of the heat power. Therefore, we have tested also more practical
2- and 1-year disposal periods. These tests indicate the similar nature of the solutions than solutions
obtained with a 5-year disposal period length. Unfortunately, the size of the problem grows a lot:
the number of variables increase around fivefold and 18-fold, and the number of constraints increase
around threefold and ninefold for 2-year and 1-year period length, respectively. These combined with
the integer variables, the computational efforts grow as well, and the optimum cannot be guaranteed in
the most of the cases. Nevertheless, the number of the objectives is so high that the several metrics are
available for the two-slope parameterized ASF and, in most of the cases, at least some metric provides
an optimal solution in the 2-year case.

Another issue concerning the properties of the several metrics of the two-slope parameterized
ASF is the role of the parameter q. In [6], the solutions were clearly divided into two groups based on
the value of the q. Thus, if only one metric would have been used, the other type of solutions would
have been omitted. In these experiments, the separation of this kind was not observed. However,
by systematically producing different Pareto optimal solutions, we obtain a reasonably distributed
sample of the Pareto set. Furthermore, we do not have to test the achievability of the reference point.
Even though all the reference points utilized here are unachievable, especially in the beginning of
the solution process, the decision maker may have realistic and cautious expectations towards the
solutions yielding more achievable reference points.

For the further studies, different scenarios could be investigated, for example, by changing the
order of the fuel types. In the future, the model needs to be resolved once the data become more
accurate along with the further investigations, for instance, related to the estimations of the thermal
conductivity. It would also be interesting to consider more accurate time resolution such that schedules
for transporting the fuels could be included. However, it is worth noticing that it is impossible to know
the fuel transportations for the whole production beforehand. In addition, the schedule obtained with
the current model could be utilized when the loading of the canister is considered.
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Appendix A. Proof of Theorem 1

The following proof follows Theorem 1 in [6] and the results in [37].
Theorem. [6] For the scalarized problem (44), it holds that:

(i) Any optimal solution of the scalarized problem is weakly Pareto optimal for the problem (43).
(ii) Among optimal solutions of the scalarized problem, there exists at least one Pareto optimal solution for

the problem (43).
(iii) If x∗ is a weakly Pareto optimal solution for the problem (43), then it is a solution of the scalarized

problem (44) with f R = f (x∗), and the optimal value is zero.

Proof. In the following, we denote Ix = {i ∈ Iq | f R
i ≤ fi(x)}, Jx = {i ∈ Iq | f R

i > fi(x)} for any x ∈ X
and sq

R( f (x), λU , λA) is the objective of the scalarized problem (44).
(i) Let x∗ be an optimal solution of the problem (44) but not a weakly Pareto optimal solution of

the problem (43). Thus, there exists a feasible solution x′ ∈ X such that f (x′) < f (x∗). Then,

sq
R( f (x′), λU , λA) = max

Iq⊆I
|Iq |=q

{
∑

i∈Ix′

λU
i ( fi(x′)− f R

i ) + ∑
i∈Jx′

λA
i ( fi(x′)− f R

i )

}

< max
Iq⊆I
|Iq |=q

{
∑

i∈Ix′

λU
i ( fi(x∗)− f R

i ) + ∑
i∈Jx′

λA
i ( fi(x∗)− f R

i )

}

≤ max
Iq⊆I
|Iq |=q

{
∑

i∈Ix∗

λU
i ( fi(x∗)− f R

i ) + ∑
i∈Jx∗

λA
i ( fi(x∗)− f R

i )

}

= sq
R( f (x∗), λU , λA)

yielding to a contradiction.
(ii) Let x∗ be an optimal solution of the problem (44) but not a Pareto optimal solution of the

problem (43). By the definition of Pareto optimality, there exists such x′ ∈ X that f (x′) ≤ f (x∗)
and such an index j ∈ I that f j(x′) < f j(x∗). Like in (i), it can be derived that sq

R( f (x′), λU , λA) ≤
sq

R( f (x∗), λU , λA). If the equality holds, x′ is an optimal solution for the problem (44) and Pareto
optimal for the problem (43). If the inequality is strict, this contradicts with the assumption that x∗ is
an optimal solution for the problem (44).

(iii) Let x1, x2 ∈ X be such that f (x1) < f (x2). Thus,

sq
R( f (x1), λU , λA) = max

Iq⊆I
|Iq |=q

{
∑

i∈Ix1

λU
i ( fi(x1)− f R

i ) + ∑
i∈Jx1

λA
i ( fi(x1)− f R

i )

}

< max
Iq⊆I
|Iq |=q

{
∑

i∈Ix2

λU
i ( fi(x2)− f R

i ) + ∑
i∈Jx2

λA
i ( fi(x2)− f R

i )

}

= sq
R( f (x2), λU , λA).

Therefore, sq
R is strictly increasing (i.e., sq

R( f (x1), λU , λA) < sq
R( f (x2), λU , λA) for any f (x1), f (x2)

having f (x1) < f (x2) and x1, x2 ∈ X). It is known (see [4]) that, for any strictly increasing ASF,
a weakly Pareto optimal solution x∗ of the problem (43) is a solution of the scalarized problem with
f R = f (x∗) and the optimal value of sq

R is zero.
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Appendix B. Data

Here, we describe the data used in the numerical experiments in Section 5. We begin with the
approximation of the relation between the distance between canisters, the distance between disposal
tunnels, and the canister power used in the constraint (41). The following approximation bases on the
thermal dimensioning in [28]. For all l ∈ L, the constraint (41) is of the form

dc
l ≥ gl(pmax

l , ddt
l ) = a1 + a2ea3ddt

l + a4(pmax
l )a5 +

a6

(a7 − pmax
l )a8

+ a9(pmax
l )a5ea3ddt

l , (A1)

where the parameters varies for each fuel type as follows:

l = 1 l = 2 l = 3

a1 −13.3225 −17.7214 −5.6820
a2 −2.070055 −1.3719 −0.84042
a3 −0.11231 −0.11309 −0.10536
a4 0.00018838 0.00016029 0.00152066
a5 1.21 1.2 1
a6 52.86444 50.29513 66.6190
a7 2052 1696 2179
a8 0.18 0.14 0.32
a9 0.0050607 0.0056701 0.0253018

The relations for each fuel type are illustrated in Figure A1.

(a) OL1-2 (b) LO1-2 (c) OL3
Figure A1. Approximated relations between canister spacing, tunnel spacing, and canister power.

The rest of the parameter values (except the cost parameters) are based on the data provided by
Fortum Power and Heat Oy, Teollisuuden Voima Oyj, and Posiva Oy and are given in below and in
Tables A1–A7.

I = 13 M = 5000
J = 19 Ulow = 105
L = 3 Uup = 300
Ol = (4, 2, 11) V = 24
R = 4 W = 200
Nl = (9, 8, 1) Kl = (12, 12, 4)
Q = 270 Plow

l = (1374, 1229, 1265)
Qr = 1.111 Pup

l = (1700, 1370, 1830)
Qh = 1.05 S = 16
Dct = 3500 Bas

l = (2496,−, 800)
Dadd = 1800 B = 6
Dh = 2.5 Br = 4
Dclow = 6 Oup = 5
Dcup = 12 Bup

l = (6,−, 5)
Ddtlow = 25 Cef ts = 0.5
Ddtup = 50 Bup

j,l = (6,−, 6) for all j ∈ J
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Table A1. Number of assemblies of the fuel l ∈ L belonging to the removal i ∈ I Mi,l .

Mi,l i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11 i = 12 i = 13

l = 1 944 1324 1210 1264 1308 1160 1087 1025 1036 1030 1030 1324 500
l = 2 2 650 1239 1050 1008 876 840 828 817 313 0 0 0
l = 3 308 363 242 363 242 363 242 363 242 363 242 483 0

Table A2. Storage time of an assembly of OL1-2 belonging to the removal i ∈ I in the period
j ∈ J Ai,j,1.

Ai,j,1 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11 i = 12 i = 13

j = 1 9 8 7 6 5 4 3 2 1 0 −1 −2 −3
j = 2 10 9 8 7 6 5 4 3 2 1 0 −1 −2
j = 3 11 10 9 8 7 6 5 4 3 2 1 0 −1
j = 4 12 11 10 9 8 7 6 5 4 3 2 1 0
j = 5 13 12 11 10 9 8 7 6 5 4 3 2 1
j = 6 14 13 12 11 10 9 8 7 6 5 4 3 2
j = 7 15 14 13 12 11 10 9 8 7 6 5 4 3
j = 8 16 15 14 13 12 11 10 9 8 7 6 5 4
j = 9 17 16 15 14 13 12 11 10 9 8 7 6 5
j = 10 18 17 16 15 14 13 12 11 10 9 8 7 6
j = 11 19 18 17 16 15 14 13 12 11 10 9 8 7
j = 12 20 19 18 17 16 15 14 13 12 11 10 9 8
j = 13 21 20 19 18 17 16 15 14 13 12 11 10 9
j = 14 22 21 20 19 18 17 16 15 14 13 12 11 10
j = 15 23 22 21 20 19 18 17 16 15 14 13 12 11
j = 16 24 23 22 21 20 19 18 17 16 15 14 13 12
j = 17 25 24 23 22 21 20 19 18 17 16 15 14 13
j = 18 26 25 24 23 22 21 20 19 18 17 16 15 14
j = 19 27 26 25 24 23 22 21 20 19 18 17 16 15

Table A3. Storage time of an assembly of LO1-2 belonging to the removal i ∈ I in the period
j ∈ J Ai,j,2.

Ai,j,2 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11 i = 12 i = 13

j = 1 8 7 6 5 4 3 2 1 0 −1 −2 −3 −4
j = 2 9 8 7 6 5 4 3 2 1 0 −1 −2 −3
j = 3 10 9 8 7 6 5 4 3 2 1 0 −1 −2
j = 4 11 10 9 8 7 6 5 4 3 2 1 0 −1
j = 5 12 11 10 9 8 7 6 5 4 3 2 1 0
j = 6 13 12 11 10 9 8 7 6 5 4 3 2 1
j = 7 14 13 12 11 10 9 8 7 6 5 4 3 2
j = 8 15 14 13 12 11 10 9 8 7 6 5 4 3
j = 9 16 15 14 13 12 11 10 9 8 7 6 5 4
j = 10 17 16 15 14 13 12 11 10 9 8 7 6 5
j = 11 18 17 16 15 14 13 12 11 10 9 8 7 6
j = 12 19 18 17 16 15 14 13 12 11 10 9 8 7
j = 13 20 19 18 17 16 15 14 13 12 11 10 9 8
j = 14 21 20 19 18 17 16 15 14 13 12 11 10 9
j = 15 22 21 20 19 18 17 16 15 14 13 12 11 10
j = 16 23 22 21 20 19 18 17 16 15 14 13 12 11
j = 17 24 23 22 21 20 19 18 17 16 15 14 13 12
j = 18 25 24 23 22 21 20 19 18 17 16 15 14 13
j = 19 26 25 24 23 22 21 20 19 18 17 16 15 14
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Table A4. Storage time of an assembly of OL3 belonging to the removal i ∈ I in the period j ∈ J Ai,j,3.

Ai,j,3 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11 i = 12 i = 13

j = 1 1 0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11
j = 2 2 1 0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10
j = 3 3 2 1 0 −1 −2 −3 −4 −5 −6 −7 −8 −9
j = 4 4 3 2 1 0 −1 −2 −3 −4 −5 −6 −7 −8
j = 5 5 4 3 2 1 0 −1 −2 −3 −4 −5 −6 −7
j = 6 6 5 4 3 2 1 0 −1 −2 −3 −4 −5 −6
j = 7 7 6 5 4 3 2 1 0 −1 −2 −3 −4 −5
j = 8 8 7 6 5 4 3 2 1 0 −1 −2 −3 −4
j = 9 9 8 7 6 5 4 3 2 1 0 −1 −2 −3
j = 10 10 9 8 7 6 5 4 3 2 1 0 −1 −2
j = 11 11 10 9 8 7 6 5 4 3 2 1 0 −1
j = 12 12 11 10 9 8 7 6 5 4 3 2 1 0
j = 13 13 12 11 10 9 8 7 6 5 4 3 2 1
j = 14 14 13 12 11 10 9 8 7 6 5 4 3 2
j = 15 15 14 13 12 11 10 9 8 7 6 5 4 3
j = 16 16 15 14 13 12 11 10 9 8 7 6 5 4
j = 17 17 16 15 14 13 12 11 10 9 8 7 6 5
j = 18 18 17 16 15 14 13 12 11 10 9 8 7 6
j = 19 19 18 17 16 15 14 13 12 11 10 9 8 7

Table A5. Decay heat power of an assembly of OL1-2 belonging to the removal i ∈ I in the period
j ∈ J Pi,j,1.

Pi,j,1 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11 i = 12 i = 13

j = 1 52.085 84.911 111.69 129.09 152.41 3000 3000 3000 3000 3000 3000 3000 3000
j = 2 47.673 77.937 102.38 118.04 138.84 162.8 3000 3000 3000 3000 3000 3000 3000
j = 3 43.727 71.697 94.068 108.2 126.92 148.23 173.6 3000 3000 3000 3000 3000 3000
j = 4 40.198 66.108 86.632 99.43 116.34 135.44 157.97 187.51 3000 3000 3000 3000 3000
j = 5 37.041 61.1 79.972 91.582 106.89 124.1 144.27 170.46 208.31 3000 3000 3000 3000
j = 6 34.215 56.61 74.004 84.555 98.458 114 132.14 155.55 189.23 209.32 3000 3000 3000
j = 7 31.685 52.584 68.652 78.259 90.908 104.98 121.34 142.63 172.57 190.16 209.33 3000 3000
j = 8 29.42 48.971 63.85 72.612 84.146 96.915 111.7 130.63 157.84 173.41 190.16 176.55 3000
j = 9 27.391 45.728 59.539 67.546 78.086 89.696 103.1 120.19 144.77 158.62 173.42 160.53 118.15
j = 10 25.574 42.816 55.667 62.998 72.649 83.229 95.398 110.87 133.13 145.48 158.62 146.49 107.82
j = 11 23.945 40.2 52.187 58.913 67.768 77.43 88.503 102.54 122.76 133.79 145.49 134.06 98.662
j = 12 22.485 37.848 49.057 55.241 63.385 72.226 82.324 95.084 113.49 123.37 133.79 123.01 90.491
j = 13 21.374 35.732 46.241 51.938 59.444 67.553 76.781 88.409 105.21 114.05 123.37 113.15 83.183
j = 14 21.374 34.576 43.705 48.965 55.9 63.352 71.804 82.425 97.792 105.73 114.06 104.35 76.64
j = 15 21.374 34.576 42.287 46.287 52.708 59.573 67.331 77.055 91.146 98.278 105.73 96.487 70.777
j = 16 21.374 34.576 42.287 44.805 49.832 56.17 63.308 72.23 85.185 91.601 98.281 89.448 65.52
j = 17 21.374 34.576 42.287 44.805 48.269 53.103 59.686 67.892 79.832 85.61 91.603 83.142 60.806
j = 18 21.374 34.576 42.287 44.805 48.269 51.429 56.421 23.987 75.019 80.231 85.613 77.489 56.575
j = 19 21.374 34.576 42.287 44.805 48.269 51.429 54.673 60.467 70.687 75.394 80.233 72.417 52.778
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Table A6. Decay heat power of an assembly of LO1-2 belonging to the removal i ∈ I in the period
j ∈ J Pi,j,2.

Pi,j,2 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11 i = 12 i = 13

j = 1 72.963 88.882 94.076 114.42 3000 3000 3000 3000 3000 3000 3000 3000 3000
j = 2 67.425 81.979 86.574 104.9 127.63 3000 3000 3000 3000 3000 3000 3000 3000
j = 3 62.452 75.798 79.876 96.504 116.93 139.8 3000 3000 3000 3000 3000 3000 3000
j = 4 57.983 70.254 73.877 89.021 107.52 127.91 155.97 3000 3000 3000 3000 3000 3000
j = 5 53.965 65.277 68.495 82.326 99.139 117.47 142.5 158.86 3000 3000 3000 3000 3000
j = 6 50.351 60.804 63.663 76.326 91.655 108.21 130.71 145.13 153.41 3000 3000 3000 3000
j = 7 47.099 56.784 59.321 70.943 84.954 99.95 120.26 133.12 140.25 108.89 3000 3000 3000
j = 8 44.172 53.167 55.418 66.109 78.948 92.57 110.97 122.48 128.73 100.05 3000 3000 3000
j = 9 41.536 49.911 51.906 61.765 73.559 85.964 102.68 113.01 118.5 92.2 3000 3000 3000
j = 10 39.161 46.979 48.745 57.858 68.718 80.045 95.279 104.57 109.4 85.177 3000 3000 3000
j = 11 37.02 44.336 45.898 54.342 64.367 74.736 88.654 97.03 101.28 78.881 3000 3000 3000
j = 12 35.089 41.953 43.332 51.175 60.452 69.968 82.718 90.284 94.017 73.23 3000 3000 3000
j = 13 33.345 39.801 41.017 48.32 56.927 65.683 77.394 84.241 87.515 68.154 3000 3000 3000
j = 14 31.786 37.857 38.928 45.745 53.75 31.826 72.614 78.82 81.688 63.591 3000 3000 3000
j = 15 31.786 36.514 37.04 43.42 50.884 58.353 68.315 73.953 76.459 59.487 3000 3000 3000
j = 16 31.786 36.514 36.036 41.318 48.296 55.221 64.445 69.576 71.761 55.793 3000 3000 3000
j = 17 31.786 36.514 36.036 40.168 45.956 52.393 60.958 65.636 67.535 52.466 3000 3000 3000
j = 18 31.786 36.514 36.036 40.168 44.67 49.838 57.81 62.085 63.73 49.469 3000 3000 3000
j = 19 31.786 36.514 36.036 40.168 44.67 48.44 54.966 58.88 60.299 46.765 3000 3000 3000

Table A7. Decay heat power of an assembly of OL3 belonging to the removal i ∈ I in the period j ∈ J
Pi,j,3.

Pi,j,3 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11 i = 12 i = 13

j = 1 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
j = 2 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
j = 3 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
j = 4 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
j = 5 443.82 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
j = 6 405.61 652.32 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
j = 7 372.01 595.65 651.98 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
j = 8 342.15 546.09 595.42 652.32 3000 3000 3000 3000 3000 3000 3000 3000 3000
j = 9 315.51 502.21 545.9 595.65 651.98 3000 3000 3000 3000 3000 3000 3000 3000
j = 10 291.68 463.16 502.05 546.09 595.42 652.32 3000 3000 3000 3000 3000 3000 3000
j = 11 270.35 428.34 463.02 502.21 545.9 595.65 651.98 3000 3000 3000 3000 3000 3000
j = 12 251.24 397.22 428.22 463.16 502.05 546.09 595.42 652.32 3000 3000 3000 3000 3000
j = 13 234.1 369.38 397.12 428.34 463.02 502.21 545.9 595.65 651.98 3000 3000 3000 3000
j = 14 218.71 344.43 369.28 397.22 428.22 463.16 502.05 546.09 595.42 652.32 3000 3000 3000
j = 15 204.89 322.05 344.35 369.38 397.12 428.34 463.02 502.21 545.9 595.65 651.98 3000 3000
j = 16 192.46 301.95 321.98 344.43 369.28 397.22 428.22 463.16 502.05 546.09 595.42 562.47 3000
j = 17 181.28 283.88 301.88 322.05 344.35 369.38 397.12 428.34 463.02 502.21 545.9 514.33 3000
j = 18 171.21 267.61 283.82 301.95 321.98 344.43 369.28 397.22 428.22 463.16 502.05 472.12 3000
j = 19 162.13 252.95 267.56 283.88 301.88 322.05 344.35 369.38 397.12 428.34 463.02 434.63 3000

Appendix C. Repeatable Example

As the examples of this paper are done with the commercial data, the cost parameters are not
given in Appendix A. However, in order to enable the repetition of the model, we give the following
arbitrary data yielding a similar kind of the schedule for the cost minimization problem than the true
data. The values of the cost parameters are:
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C
iso f f

l = (−, 50, 50) Cef = 350
Cison

l = (−, 15, 10) Ch = 200
Cr

l = (40,−, 40) Cef on = 200
Cp = 100 Cef ch = 6
Cst

l = (0.001, 0.0025, 0.0025) Cdt
l = (0.1, 0.1, 0.1)

Cc
l = (2, 2, 3) Cct = 0.3

and the unit is million e.
For the following result, we use the model in Section 3 as the single-objective problem as in the

Section 5.1 with the data in Appendix A together with the above data. The CPU time for this example
is 230 s, and we obtain the schedule presented in Figure A2. The objective value i.e., the total costs are
15.885 billion e. The values for other objectives of the multiobjective problem are f1 = 1, f2 = 8.393,
f3 = 2776.083, f4 = 16, f5 = 12, f6 = 20,797.288 and f7 = 2589.104.

Figure A2. The schedule for the repeatable example.
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