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Abstract: We consider ensuring the security of executed mobile code by 

applying runtime monitoring. Of the many approaches for code security, 

the runtime monitoring approach is perhaps the most general and flexible. 

We have formerly implemented a rule-based language for describing 

runtime security policies, and now we discuss the verification of those 

policies. A security policy can be considered as a specification that restricts 

the execution of a program in some way. These restrictions can be 

connected to the program state and the execution history. In this paper, 

we introduce invariant expressions for our security monitor descriptions, 

and describe a methodology for proving that the monitor preserves its 

invariant. Our invariant expressions describe the true meaning of security 

monitor and relate the monitor state to the execution history and current 

state of the monitored program. The advantage of our approach is that we 

can prove specific monitors to guarantee all monitored programs to 

preserve such properties that cannot in general be effectively proved or 

disproved of all possible executions of any program. 
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1. INTRODUCTION 

In this paper, we discuss the verification of a code runtime monitoring system, 

and present invariants for describing the meaning of policies and the corresponding 

monitors in a rule-based language. Monitoring code is one approach for verifying 

code security. This approach is particularly applicable for mobile code, because the 

access to the source code is unnecessary. 

We consider mobile code as any program code that is downloaded for execution 

from some (untrusted) source. The execution platform can be mobile phone but here 

we do not consider any specific platform. In the literature (see e.g. [12, 2, 7]), there 

appears to be three kinds of approaches for mobile code security: (a) providing a 

proof of security properties along with the code, (b) establishing an authority for 
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certifying the safety of mobile code, and (c) running mobile code under some runtime 

monitoring system in the target platform. 

Proof-carrying code (PCC) [12] and Abstraction-carrying code [2, 7] follow the 

approach (a). PCC can work well in certain limited settings, but in general there are 

problems with PCC, since it is impossible to prove many kind of relevant runtime 

properties concerning any program. This is due to so-called Rice’s theorem [15], 

related to computability of partial functions, stating that there exists no effective 

method for calculating any non-trivial property. This has strong consequences when 

applied to static analysis of pro- grams, e.g. to proving properties concerning 

programs. For example, it is not possible to effectively either prove or disprove for 

all programs using functions A() and B() that in any execution of the program there 

exists one call of B() between each two calls of A(). Naturally, it is possible to 

analytically prove/disprove that for some programs but not for all programs. It is 

not possible to effectively try all possible executions of any given program. 

Although the PCC approach suffers from consequences of Rice’s theorem, it is not 

clear how severe these consequences are in practice. 

In the approach (b), the downloaded mobile code comes as cryptographically 

signed by some trusted authority. The properties are thus guaranteed by the signing 

authority. The mobile phone industry appears to have chosen approach (b) for 

providing trusted mobile code, e.g. the Symbian operating system (of smartphones, 

since version 9.0) [6, 10]. However, even a signed code can include errors and 

weaknesses, since the code quality is at least partially based on human 

inspections. Moreover, signing is mainly a guarantee of code quality, and quality 

is not really related to what a consumer might consider allowed or disallowed. 

For example, when a person borrows her/his mobile phone to another person, one 

might temporarily wish to deny applications to use certain resources completely 

or partially (i.e. applications should be run under some temporary security policy). 

When a code runtime monitoring system (c) is used, the code behaviour is 

controlled by a (security) monitor that is described by some (security) policy. A 

security policy can be considered as a specification that restricts the execution of a 

program in some way. These restrictions can be connected to the program state and 

the execution history. Methods to express security policies that can be checked 

during execution are previously studied extensively. We make a short overview of 

such research in the following section. 

A common way for describing and checking security policies is to utilize 

languages based on the idea of using an automaton for comparing steps of program 

executions to the current security policy. In a policy violation, an operation can, for 

instance, be rejected, or the execution can be terminated. 

We follow the approach (c). We have developed a monitoring language called 

MPL (Modular Policy Language) [11]. MPL descriptions express simple automata 

based monitors, where security sensitive calls captured. Because our language is 
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intended for real-world applications, our monitors can maintain and take conditional 

actions based on memory values, which represent (attribute, value) pairs describing 

the state of the MPL monitor. As a result, we use the term rule instead of state 

transition in our language. 

In this paper, we focus on the use of invariants for expressing the meaning of 

runtime monitors. Since we have not discovered other efforts to apply invariants in 

this context, we suppose being first to operate with them. 

We present policy invariant and monitor invariant for rule-based languages, and 

demonstrate the use of these invariants by verifying a sample security policy. We 

aim to show that it is relatively easy to write invariants for proving rule-base 

monitors. While policy invariants specify policies, monitor invariants specify the 

implementation of policies. We define monitor invariant as a formally specified 

predicate that is true before and after applying any policy rule, and sufficiently 

describes the duty of a policy for being able to expose all possible policy violations. 

We aim to show that rule-based policies are not only easy to understand but also 

provable. Proving is done by showing that all rules sustain the invariants. We make 

a suggestion that the policy verification could be at least semi-automatic in well-

specified circumstances. 

After reviewing related work in Section 2, we discuss invariant based security 

policy verification in Section 3, and an example of using this methodology is given 

in Section 4. The example is related to the usage of sockets (in mobile phone 

context it can be related to WLAN usage). Some conclusions are drawn in Section 

5. 

2. RELATED RESEARCH 

The standard implementation of Java contains a security manager, which 

monitors the executed programs. Java’s solution is static in the sense that the 

security manager’s functionality is statically embedded into a large method set of 

certain library classes meaning that only the behaviour of those classes/methods can 

be controlled by security manager descriptions. Recently, extending the 

functionality of Java’s security manager in certain settings is considered in [16, 17]. 

Interestingly, the extension also deals with execution history based access control 

but it does not consider invariants. The general possibilities and restrictions of 

runtime monitoring in general are studied by Schneider in [13]. Sekar et al. [14] 

have developed Model Carrying Code (MCC) and studied such automata based 

descriptions applied e.g. to system calls in Unix. 

We have previously described a modular policy language and a compiler for it in 

[8, 11]. Our language enables describing rule-based security monitors, and the 

descriptions are translated to AspectJ. Previously aspect-based security monitor 

descriptions are studied and developed e.g. in the form of Polymer language [4], in 
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the tracematch system [3] and Monitoring-Oriented Programming (MOP) [5]. Of 

these systems, we choose to discuss Polymer and Tracematch, because they have 

similar characters that we use in our system. Polymer is shortly described in Section 

2.1 and Tracematch in Section 2.2. Besides the mentioned runtime monitoring 

studied, there exist lots of other related studies. 

2.1. Polymer 

Polymer is described as "a language and system for enforcing centralized 

security policies on untrusted Java applications" [4]. Polymer follows the idea to 

separate the security policy from the main application. The separation is 

implemented using aspects. The idea of Polymer is to ensure the security of a code 

by modifying its behaviour at runtime. The modifying operations are based on Edit 

Automata [9], and consist of sequence truncation, insertion of new actions, and 

suppression of actions. 

Specifying a security policy (i.e. a program monitor) in Polymer [4] requires (1) 

the decision procedure how to react on security-sensitive operations (2) the security 

state that can be used to sustain the information of the activity of the application 

during execution, and (3) methods for updating the security state of the policy. The 

decision procedure of Polymer returns one of a number of security suggestions 

(e.g. raise an exception).  The security state of Edit Automata represents the state 

of policy automata. In Polymer policies, there can be found few parameters 

describing the state of a procedure such as cancelling an action, and other parameters 

describing other data values such as file names. These parameters can be considered 

to construct the security state of Edit Automata. 

Polymer has a formal semantics that mostly concentrates on guaranteeing type 

safety. When a program is typed in the right way, its execution succeeds. The 

Polymer semantics is not useful for verifying policies, since it is focused on the 

features of the language. However, the semantics proves that a policy 

implementation follows the given principles. 

2.2. Tracematch 

Aspects are actually only extra code around the observed code. They are 

confined to the current action, and, therefore, cannot be used directly to observe the 

history of computation. Tracematches [3] are history-based language features that 

make it possible to trigger the execution of the observing code by specifying a 

regular pattern of events in a computation trace. A tracematch defines a pattern and 

a code block to be run when the current trace matches that pattern. The pattern 

language consists of regular expressions over events. These expressions can contain 

free variables. 

Tracematch has a declarative semantics that can be used also for defining 

policies. The semantics leads to a declarative implementation of monitors. The 
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correctness of monitor implementations can be proven using operational semantics. 

If a policy can be defined using regular expressions, Tracematch can be used to 

monitor the policy. Other kinds of policies cannot be defined using Tracematch. 

3. SECURITY VERIFICATION IN MODULAR POLICY LANGUAGE 

When desired program behaviour is expressed as an invariant concerning the 

remembered variable values, it is essentially straightforward to verify the policy and 

its implementation. For discussing security verification in our rule-based language, 

we first present types and functions for demonstrating program execution process in 

Section 3.1. In Section 3.2, we shortly introduce policy invariant for specifying a 

security policy. Rule-based monitors for implementing policies are discussed in 

Section 3.3. A monitor invariant specifies the implementation of a policy (i.e. 

monitor). It associates the history data related to the program execution to the values 

of monitor variables. Monitor invariant is presented in Section 3.4. Finally, we study 

proving of policies to preserve their invariants in Section 3.5. The aim of our 

presentation is to demonstrate that invariants can rather easily be proved to 

guarantee the secure execution of a code in the context of such rule-based policies 

as MPL policies. 

3.1. Program Execution 

To describe our ideas, we do not have to describe all details of program 

execution. It is enough to consider security related operations. These operations 

are assumed to have pre- and post-conditions that describe their behaviour. The 

pre- and post-conditions are defined using security related program state or 

security related program history. Other operations are assumed to have no effect to 

security related program state. 

Before discussing security policies and our monitoring system, we present the 

applicable types and functions needed for demonstrating the execution process in an 

appropriate way. Let us first examine types presented Figure 1. Here, we consider 

that program state represents the current data in the memory of the program under 

execution, and the next call to be executed. A call includes the object, for which the 

method call is targeted, and the called method with its arguments because of object-

oriented programming.  While a call event consist of the next call to be executed and 

the program state before an execution step, the return event consists of the executed 

call, return value, and program execution state after the step. 

call = method × target object × arguments  

call event = program state × call 

return event = program state × call × return value 

 

   Figure 1. Types 
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In each program state, the current call event is received using the function get 

call. The concerned call can be the executed using the function perform call that 

takes the call event as an argument, and retrieves a return event. We can evaluate 

the effects of performing a call by using the functions precondition and 

postcondition. If the precondition is true just before a call is performed, the post-

condition exposes the effects of the call. Note that if a security related operation 

calls other security related operations that are not separately monitored, their effect 

must be included in the pre- and post-condition of the operation that calls them. 

Lastly, in pre- and post-conditions, we apply the concept of history. This concept 

represents the monitored matters that take place in the execution environment but are 

not stored in the program state. 

get call : program state → call event 

perform call : call event → return event  

precondition : call event × history → Boolean 

postcondition : call event × (initial) history state× 

  return event × history (end) state → boolean 

3.2. Security Policy and Policy Invariant 

When a program is executed, we may have a need to watch over its behaviour. 

A security policy can be considered as a specification that restricts the execution of 

a program in a desired way. These restrictions can be connected to the program state 

and the execution history, and we may want to apply different policies based on e.g. 

program type, authors, and users. 

An invariant is a formally specified predicate that is true before and after any 

operation. We present policy invariant that can be used to specify a security 

policy. This function describes the meaning of a policy in terms of the state and 

execution history of a program (Section 3.1). It is true before and after any executed 

method call. 

policy invariant : program state × history → boolean 

For instance, assume that we provide an account interface to a program that 

was loaded from the Internet. We want to guarantee that the balance on a certain 

account is always greater or equal than zero. The number of the account is 111-

888. Here, we can specify the policy invariant by utilizing an abstract function 

balance that returns the balance of the account number that is given as an argument: 

policy invariant : I(s, hs) = balance(hs, ”111 − 888”) ≥ 0 

An effort to break a policy invariant is the same as a policy violation. Halting 

the program in such a situation guarantees that the invariant does not become 

invalid. 
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3.3. Rule-Based Monitors 

The idea of monitoring code is to guarantee that the execution complies with the 

policy specifications. It can be thought that a security monitor is developed to 

enforce a policy invariant in monitored programs. It simply captures the given 

security sensitive method calls (dealing with monitored system resources), and 

checks the validity of each captured call before applying the call. If a call is 

estimated to be not secure, execution can be e.g. halted or an exception thrown. An 

underlying idea is to describe rules for defining a security monitor corresponding to 

the policy. In our framework, the rules are first written by using Modular Policy 

Language (MPL) descriptions [8, 11], then compiled to (AspectJ) aspects, and 

executed within the code. 

Security policies are implemented by specifying corresponding runtime monitors 

for guarding the usage of certain specified system resources. A policy is used to 

express execution restrictions for every method that deals with some monitored 

system resource, e.g. the usage of socket connections. A rule-based monitor is used to 

implement the policy. In practice, monitors define a set of variables and a set of 

guarded rules. The purpose of each guarding rule is to guard a system resource 

against illegal usage by the application. 

A guarded rule names a target method call and a condition that is a Boolean 

valued expression referring to the actual parameter values of the call and variable 

values remembered by the program and monitor. For presenting our monitoring 

algorithm, we use types and functions shown in Figure 1, and additionally specify 

function’s condition and effects. Monitor state type consists of the variable values 

of a monitor. The variables are required to maintain information about the matters 

that are not necessarily recorded into the state of the program but are considered in 

the policy. In other words, monitor state corresponds to the concept of history 

discussed in Sections 3.1 and 3.2. 

Before executing a guarded method call, the condition of that method call is 

checked. If a call is estimated to be secure in the given circumstances, the condition 

returns true. In this case, there is no policy violation), and the rule can have some 

effects on the variable values of the monitor after the guarded method call is executed. 

Function effects updates monitor state to be analogous to the execution history. An 

effect is simply a conditional update operation regarding some set of variables (and 

their remembered values). In the other case, the condition returns false, and the 

execution of the whole application is prevented from continuing (as it does not 

respect the policy). 

condition: monitor state × call event → Boolean 

effects: monitor state × return event → monitor state 
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A monitoring algorithm is basically an infinite loop that receives a guarded 

call, checks a condition related to it, performs the call, and implements the 

effects on the monitor variables. The monitoring algorithm can be described as 

follows: 

program state s = initial state; 

monitor state ms = initial monitor state; 

while true : 

  call event c = get call(s); 

  if  not condition(ms, c)  then halt;  

  return event r = perform call(c);   

  ms = effects(ms, r); 

  s = r.state; 

Monitor descriptions in MPL contain the criterion (i.e. the class of objects, the 

method) based on which the determined method calls are captured. Further, rules 

contain the parts cond and effects for decision making and updating information. 

An example of a monitor for the sample policy invariant presented in Section 3.2 is 

shown in Figure 2. Here, the account management takes place through Connection 

object, which provides only a limited number of operations for the client. For 

instance, the account number is not available through this class, and it must, 

therefore, be contained in monitor variables. 

variables 

    accountTable: Connection → String 

rules 

Connection:  boolean pay(double sum) 

   cond this.getAccountBalance() ≥ sum ∨   ¬accountTable(this).equals(”111−888”) 

   effects  none 

Account: Connection setCurrentConnection(String ac, String pwd)  

 cond ac ≠ null ∧  pwd ≠ null 

  ef f ects (this.checkP assword(ac, pwd) ∧ accountT able(result) = ac) 

  ∨(¬this.checkP assword(ac, pwd) ∧ result = null) 

Figure 2: An Account Balance Monitor 

Implicitly all methods not specified by rules have true as their condition and they 

have no effects (onto the variable values remembered by the monitor). Notice that 

the conditional update operation can be used e.g. to collect information related to only 

certain calls of the monitored method (for other calls the effect is ’empty’). 
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AspectJ allows one to capture actual call parameters and return values, and MPL 

has the same possibility. MPL references the current object of a captured call by this. 

A constructor, as a target, is identified with the name new. For updating 

remembered values, the calculation of a new value can be based on side-effect 

free method calls to any objects known by the policy. Side-effects are not allowed, 

since the monitor must not influence the state of the monitored program. 

Observe that multiple rules can deal with the same guarded method call: The 

actual situation must satisfy all the guards. The checking order of guards is not 

important, since evaluation of truth in conditions is required to be side-effect free. 

The same does not hold for effects: The effects (their possible condition and the 

expression defining a value) are evaluated in the order they are defined, and a 

remembered variable is given a new value before the next (if any) effect is 

evaluated. Another possibility would be to evaluate all effect expressions at the 

same time (before updating any variable value) and denying any two updates to deal 

with the same variable. 

3.4. Monitor Invariant 

To express the relation between the policy invariant and the monitor variables, 

we present a monitor invariant so that it associates the history data related to the 

program execution (Section 3.1) to the monitor state (Section 3.3), and sufficiently 

describes the duty of a monitor for being able to expose all possible policy 

violations. A monitor invariant is true before and after applying any rule. Whereas 

the policy invariant (Section 3.2) specifies a policy, the monitor invariant specifies 

the policy implementation. In other words, a monitor invariant determines what 

monitor variables actually represent. E.g. a monitor invariant could determine the 

limits for values of the monitor variables, relations between these variables, and the 

effect of some program events on these variables with respect to the program 

execution history. 

monitor invariant: history × monitor state → boolean 

Meaningful monitor invariant expressions assign a meaning for the remembered 

monitor variable values in terms of the program execution history. Forming such an 

expression is challenging, since we must develop an appropriate function for relating 

the relevant execution history concepts to the policy specification. Moreover, proving 

such invariant conditions involves evaluating the effect of captured method calls on 

the actual execution environment (and the execution history of the monitored 

program). Thus, proving that a rule preserves an invariant condition reduces to 

matching the caused effects (changes of stored variable values) with respect to the 

actual effects on the actual execution environment by the guarded method call. 
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As an example, we specify an invariant for the monitor shown in Figure 2. Our 

invariant must comply with the policy invariant presented in Section 3.2. In 

addition, it must connect monitor state to execution history (i.e. connection history). 

monitor  invariant  : 

∀ conn : connectionhistory.getAccountN umber(conn) = accountT able(conn) 

   ∧ (accountT able(conn)  ≠   (”111 − 888”) ∨   conn.getAccountBalance() ≥ 0) 

In MPL, applying a rule has two different parts. Whereas the condition of a 

rule uses the monitor values for checking if the execution of the method call in the 

given situation is trying to break the invariant, the effects part updates the monitor 

variables to correctly reflect the state of the actual program execution. Verifying a 

policy means that based on the effects part and the target method specification, it is 

checked if any resulting state would or would not comply with the invariant, and 

based on the condition part, it is checked that all invariant breaking efforts are halted 

but the other calls are allowed. The example presented in the Section 4 is purported 

to clarify the matter. 

3.5. Method of Proving 

Next we discuss the method of proving policy specifications and 

implementations. For proving that the monitor indeed forces the monitored 

program to comply with the behaviour, it is enough to prove that the rules preserve 

the invariant condition (and the monitor is correctly formed from the policy 

description). The setting is identical to having the invariant as rule’s pre- and 

post-conditions, and then proving that a set of conditional assignment statements 

preserve the invariant condition. If the evaluated expressions (in guarding 

conditions as well as in the right hand side of assignments) are side-effect free and 

have a well-defined formal semantics, one is able to use a theorem prover. 

For reasoning, we use types and symbols presented in Figures 1 and 3, and 

functions presented in Sections 3.1, 3.2, 3.3, and 3.4. Assuming that we have some 

general program monitoring algorithm (applying MPL policies), provably correct 

policy enforcement can be implemented using the following phases: 

P1: A policy invariant is designed to define the policy that will be enforced.  

P2: A corresponding monitor is implemented. 

P3: A monitor invariant is developed to relate the policy invariant and the 

monitor state. 

P4: Pre- and post-conditions for the operations in the monitoring algorithm are 

proven correct. 

For proving that invariants are valid, we must treat the pre- and post-

conditions of monitored calls as axioms used by rules, find every possible policy 

state (i.e. values of variables) by applying the rules together with these axioms in 
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all situations in which a method call can be executed, and, finally, check the 

resulting states of the policy against the invariants. 

policy invariant I;  

monitor invariant I′;  

program state s;  

monitor state ms; 

history state hs = initial history state;  

history state hs′ = history end state;  

call event c; 

return event r; 

Figure 3: Symbols for the pre- and post-conditions and the algorithm. 

When the monitor is executing some program code, there are relevant and 

irrelevant calls depending on the security policy. The relevant calls are caught by 

using the function get call. Before we get a call, the invariant must hold. The 

function get call does not change anything, but it returns us a call event that consists 

of the current state of the program and the call that should be executed next. Naturally 

the invariant must also hold after applying get call. Thus, we have a proof obligation 

P O1: 

{ I(s, hs) } c = get call(s);  { I(c.state, hs) } 

Basically this means that non-security related functions do not change the 

program state in a way that has effects security. Also the unrelated calls do not 

change the history state that records the security related operations. 

When a security related call is caught by get call, we must check the pre- and 

post-conditions related to the call. The function condition checks that the 

precondition of the current call c in the current state is true, and that the invariant 

still holds after the call is executed. The former requirement must be satisfied, 

because otherwise the behaviour of the method is unspecified, and we do not know if 

the invariant is going to be broken. The latter evaluation is done based on the post-

condition of the method call. The function condition does not change the program 

state or the policy state, but if it is not true, the program execution is halted. Thus, 

we have a proof obligation P O2 for each call c: 

{ I(c.state, hs) ∧ I′(hs, ms) }  

b = condition(ms, c); 

{ b ⇒ (precondition(c, hs) ∧ (∀ hs′, r.postcondition(c, hs, r, hs′) ⇒ I(r.state, hs′))) } 

When the function condition returns true, the call is executed by using the 

function perform call. Generally, perform call changes the program history and the 

program state as defined in the post-condition. Thus, we have a proof obligation PO3 
for each c: 
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{ precondition(c, hs) }  

r = perform call(c); 

{ ∃ hs′.postcondition(c, hs, r, hs′) } 

After the method call is performed, the function ‘effects’ changes the state of the 

monitor to be consistent with the history state. Thus, we have a proof obligation PO4 
for each c: 

{ I(r.state, hs′) ∧  I(c.state, hs) ∧ I′(hs, ms) ∧  postcondition(c, hs, r, hs′) }  

ms = effects(ms, r); 

{ I′(hs′, ms) } 

Since ‘get call’ and ‘perform call’ can have access on the program state but not 

the monitor state, their pre- and post-conditions do not refer to the monitor 

invariant. On the other hand, the pre- and post-conditions of functions ‘condition’ 

and ‘effects’ know both of the invariants. However, if we have precisely specified 

method calls, proving a policy is quite simple. We know that function ‘get call’ 

preserves the invariant in any case, and ‘perform call’ preserves that because of the 

post-condition of ‘condition’. Therefore, we only need to check the post-conditions 

of ‘condition’ and ‘effects’ in practice. 

Based on the above analysis, there are proof obligations PO1 -  PO4 that must 

be checked for the verification of policies. The proof obligations are conditions on 

the pre- and post-conditions for the parts of rules (i.e. for each condition, perform 

call, and effect), and for stepping to the next call in the system. Finally, the actual 

monitoring algorithm is shown in Figure 4 with a proof of correctness. If all of the 

conditions are true, the monitoring algorithm works in the right way and the 

invariants are not broken. The proof obligations naturally follow from the algorithm. 

4. AN EXAMPLE: SPECIFICATION AND USE OF 

INVARIANTS 

In this section, we consider proving the correctness of the example policy 

shown in Figure 5. The monitor guards a low-level system resource, socket 

streams. Considering the presented policy enforcement phases P1 – P4, we need 

to specify the policy invariant (P1) and the monitor invariant (P3) for the 

example policy (P2). The invariant specifications are shown in Section 4.1. We 

present the description of the execution environment referred by these invariants and 

the specification of monitored method calls in Section 4.2. Finally, we show an 

example of proving the proof obligations PO1, . . ., PO4 in Section 4.3. For PO2, . 

. ., PO4, we study only the most complex rule related to the call of method 

OutputStreamWriter.write (String s, int off, int len) in the context of sockets. 

program state s = initial state; 
monitor state ms = initial monitor state; 
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while true:  

{ I(s, hs) ∧ I′(hs, ms) } // The same as the loop invariant. 
c = get call(s); // Get a call event. 
// By definition, the invariant is not broken and the program 
state // is not changed. 

{ I(c.state, hs) } 
if not  condition(ms, c)  then halt; 
// If condition is true, it also implies that the precondition of the  
// method call is true. 

{ I(c.state, hs) ∧ precondition(c, hs)∧  

(∀hs′, r.postcondition(c, hs, r, hs′) ⇒ I(r.state, hs′)) }  

r = perform call(c); 

{ ∃hs′.I(r.state, hs′) ∧ postcondition(c, hs, r, hs′) } 
// Effect updates the monitor state so that all the needed 
// information is stored. 
ms = effects(ms, r); 

{ I′(hs′, ms) }  

// After the call has been performed, the history state is changed. 

hs = hs′; 
s = r.state; 
// The invariant holds at the end of the loop. 

{ I(s, hs) ∧ I′(hs, ms) } 

Figure 4: Monitoring algorithm, with the proof of correctness. 

4.1. Invariants for the sample policy in Figure 5 

For the specification of invariants, we benefit a couple of sets that represent 

history data. First of them contains the streams that have been opened for a socket 

connection in the history state. The second one, wrap, represents the pairs of 

objects about which the first one is the wrapper of the second one (in the history 

state). This means that the functionality of the first object is directly or indirectly 

based on that of the second object. The third set, writes, contains stream-integer 

pairs in which integer represents the number of bytes that have been sent in the 

history state. The last one, hasType, contains object-type pairs that are, in some 

reason, wanted to be remembered in the history state. 

We further assume that oS and oSW are of type OutputStream and 

OutputStreamWriter. The policy invariant determines that at most a limited 

number (i.e. limit) of bytes can be written into sockets during the execution of a 

program. 

The policy invariant is trivial – it is based on the execution history described in 

Section 4.2. The first 6 conditions in the monitor invariant are related to the 

tracking information. The 7th condition is the true purpose of the policy whereas the 
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8th condition sets up a connection between the execution history hs and the variable 

bytes. 

4.2. Description of the environment and monitored operations 

In the following, we give a short description of the execution history referred 

in Figure 5 and pre- and post-conditions of monitored methods in which the effect of 

the methods on history (interests) is considered. A notation is needed for the 

compact presentation of the operations that change the state of history. 

History state consists of several fields from set F. As usual, we denote hs.f for 

the value of a field f in state hs. We denote hs.f ← x for a history state that is the 

hs, for setting a field, that is 

hs′ = hs.f ← x ≡ ∀f ′ ∈ F.f ′ = f ⇒ hs′.f = x ∧ f ≠ f ′ ⇒ hs′.f = hs.f 

 

 
policy invariant 

∑numberOf Bytes(hs, oS) ≤ limit for oS∈hs.f orsocket  where limit is a constant value. 

monitor invariant 

(¬(∃oS : oS ∈ hs.f orsocket ∧ oS ∈/  oSs)) ∧ 

(¬(∃oS : oS ∈/  hs.f orsocket ∧ oS ∈ oSs)) ∧ 

(¬(∃oSW, oS : (oSW, oS) ∈ hs.wrap ∧ oS ∈ oSs ∧oSW ∈/  oSW s)) ∧ 

(¬(∃oSW, oS : (oSW, oS) ∈ hs.wrap ∧ oS ∈/  oSs ∧oSW ∈ oSW s)) ∧ 

(0 ≤ bytes ≤ limit, where limit is the same as limit in the policy invariant) ∧ 

(bytes = ∑ numberOf Bytes(hs, oS) for oS∈hs.f orsocket  ) 
variables 

limit : int = 10000; 

bytes : int = 0; 

oSs : setof OutputStream = {}; 

oSW s : setof OutputStreamW riter = {}; 

rules 

Socket  :  OutputStream getOutputStream()  

  cond none    ef f ects oSs = oSs + result; 

 
OutputStreamW riter  : 

OutputStreamW riter new(OutputStream oS)  

cond oS ≠ null   effects if   (oS ∈ oSs) oSW s = oSW s + result; 
 

OutputStreamW riter  : 

void write(String s, int of f, int len) 

cond  (¬(this ∈ oSW s) ∨ (bytes + len > limit) ∧(s ≠ null ∧ len <= s.length() – off  ∧ 0 ≤ 

off < s.length()))  

effects if  ((this ∈ oSW s) ∧ (len > 0))bytes = bytes + len; 

 

Figure 5: A Socket Writing Monitor. 
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First, the following operations are related to the history of security related 

operations: 
addSocketStream(hs, oS) = hs.f orSocket ← hs.f orSocket ∪ {oS} 

 

addWrapping(hs, wrapper, wrapped) = hs.wrap ← hs.wrap ∪ {(wrapper, wrapped)}  

 

addObject(hs, object, type) = hs.hasT ype ← hs.hasT ype ∪ {(object, type)}  

 

numberOf Bytes(hs, stream) = max{n|(s, n) ∈ hs.writes ∧ s = stream} 

 

write(hs, stream, num) = hs.writes ←  hs.writes ∪ {(stream, num + nOf Bytes(hs, stream)}  

 

type(hs, o) = {o|(o, t) ∈ hs.hasT ype ∧ t = type} 

The first operation describes adding a new socket stream to the history. The 

second adds wrapping information to the history, and the third stores objects with 

their types to the history. nOfBytes returns the number of bytes written to a stream. 

The write operation represents the number of bytes written to the stream in one 

time. Lastly, type returns the set of objects with the given type. 

Next, we present the monitored operations with their pre- and post-conditions. 

Notice how the machine OutputStreamWriter defines the post-condition of write in 

terms of the execution history (the precondition of write is slightly different than that 

of the actual Java class): 

 

{true} 

 oS = Socket getOutputStream() 

{hs = addObject(addSocketStream(hs0, oS), oS, OutputStream)} 

 

{out ≠ null} 

 oSw = new OutputStreamW riter(out) 

{hs = addObject(addW rapping(hs0, oSw, oS), oS, OutputStreamW riter)} 

 

{s ≠ null ∧ len ≤ s.length() − off ∧ 0 ≤ off < s.length()∧ 

    ∃oS ∈ type(hs0, OutputStream) : hs0.wraps(oSw, oS)}  

 oSw.write(s, off, len) 

{(len > 0 ⇒ hs = write(hs0, oS, len)) ∧ (len ≤ 0 ⇒ hs = hs0)} 

 

4.3. Proving a rule 

In this section, we give an example how to use invariants to prove our sample 

policy. The invariant of this policy is valid when limit − n bytes have been sent via 

socket connections, where 0 ≤ n ≤ limit. Proving of a rule is based on the method 

presented in Section 3.5. Although we limit our detailed observation here only to one 

rule that is essentially related to the policy, it would be easy to check the other rules 
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similarly. Moreover, if we try to achieve the policy enforcement, it is easy to see that 

all output stream writers for socket connections are really in oSWs, and that other 

kind of connections are not in oSWs. We first catch the output stream oS for a socket 

connection. oS ∈ oSs after operation Socket.getOutputStream(). Next, when we call 

the constructor OutputStreamWriter(oS), wraps(oSW, oS), and oS ∈ oSs. Thus 

oSW ∈ oSWs. Since (oSW ∈ oSWs ∧ wraps (oSW, oS)) ⇒ (oS ∈ oSs), In the other 

cases, (oSW ∈/  oSWs) and the writing operation is never halted. 

Next, we give an example how to prove the rule guarding the method 

OutputStreamWriter.write(String s, int off, int len). 

We use the following shorthand notations. 

 

ms = monitor state 

ms.bytes = limit − n 

args = (s, of f, len) 

cmd = (OutputStreamWriter.write, this, args) 

 

 

PO1: get call(state) 

{ I(st, hs) } 

 c = get call(st) = (state, cmd) 

{ I(c.state, hs) } 

 

The invariant holds, because the function get call does not execute any methods 

that could break the invariant. It is presumed that the precondition is true. 

 

PO3: perform call(call event) 

{ precondition(c, hs) }  

 r = perform call(c); 

{ ∃ hs′.postcondition(c, hs, r, hs′) } 

 

The invariant holds, since the pre-condition and post-condition are checked by 

the condition before the method call is performed. It is presumed that the method 

complies with its specification. The function perform call may change the program 

state and the execution history. 

 

P O2: condition(monitor state, call event): 

{ I(c.state, hs) ∧ I′(hs, ms) } 

 b = condition(ms, c); 

{b ⇒ (precondition(c, hs) ∧ (∀hs′, r.postcondition(c, hs, r, hs′) ⇒ I(r.state, hs′)))} 

condition  : 

(this ∈/  ms.oSW s ∨  ms.bytes + c.args.len ≤ limit) 
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∧ c.args.s ≠ null 

∧ c.args.len ≤ c.args.s.length() − c.args.off 

∧ 0 ≤ c.args.off < c.args.s.length()) 

We need to consider the following cases: 

1. this ∈ ms.oSW s ∧ limit ≥ ms.bytes + c.args.len 

2. this ∈/   ms.oSWs 

3. Otherwise, condition returns false and the program is halted in every case. 

 

Notice that from the monitor invariant, it follows that this ∈ ms.oSW s ⇔ oS ∈ 

hs.forsocket. 

The precondition of the method is given below. The condition needs to verify 

that the precondition is satisfied, because otherwise the behaviour of the method is 

unspecified. For cases 1) and 2) we have as the method precondition: 

 

{c.args.s ≠ null ∧ c.args.len ≤ c.args.s.length() 

−c.args.off ∧ 0 ≤ c.args.off < c.args.s.length()∧ 

∃ oS  ∈ type(hs, OutputStream) : hs.wraps(this, oS)} 

 

The postcondition of the method is 

{(c.args.len > 0 ⇒ hs = write(hs, oS, c.args.len)) ∧ (c.args.len ≤ 0 ⇒ hs′ = hs)} 

 

We need to verify that the invariant is satisfied with this post-condition. 

1. When c.args.len ≥ 0, the history is changed only for oS and 

 

for oS∈hs.forsocket  ∑numberOf Bytes(hs, oS) = ms.bytes 

thus we get 

for oS∈hs’.forsocket ∑ numberOf Bytes(hs’ , oS) = ms.bytes + c.args.len 

 

which was checked to be less or equal than limit. Otherwise hs′ = hs (no bytes 

written). 

2. When oS ∈/   hs.f orsocket, 

for oS∈hs’.forsocket  ∑numberOf Bytes(hs’, oS) = ms.bytes. 
 

The invariants hold, since the function condition does not change anything. If 

performing the guarded method call could not break the invariant, the function 

returns true. In the other case, it returns false, which causes halting the execution of 

the program. 

 

P O4: effects(monitor state, return event): 

{I(r.state,hs′) ∧  I(c.state, hs) ∧  I′(hs, ms) ∧  postcondition(c, hs, r, hs′)}  

// that is the precondition holds 
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ms′ = effects(ms, r); 

{ I′(hs′, ms′) } 

effects : 

if     ((this ∈  ms.oSW s) ∧ (c.args.len > 0))ms.bytes = ms.bytes + c.args.len; 

 

1. If c.args.len < 0, then ms′ = ms as in case 2). 

ms′.bytes = ms.bytes + len 

= ∑ numberOfBytes(hs, oS) + c.args.len 

= ∑ numberOfBytes(hs’, oS). 

The last equality holds because of the post-condition. 

2. Because oS ∈/  hs.f orsocket, ms′ = ms, 

ms′.bytes = ms.bytes 

= ∑ numberOfBytes(hs, oS) + c.args.len 

= ∑ numberOfBytes(hs’, oS). 

 

In both of the cases, the monitor invariant holds. The function ‘effects’ updates 

only the monitor variables to be consistent with the policy related history data. The 

policy invariant trivially holds. 

In this section, we have proved that a rule preserves the policy invariant and the 

monitor invariant. When we know that all rules preserve the invariant, we can say 

that the monitor enforces the policy. However, since we know that all output stream 

writers for socket connections are really in oSWs and that other kind of connections 

are not in oSWs, we can easily conclude that our rules preserve the invariants. 

5. CONCLUSIONS 

We have demonstrated using invariants for proving security policies and made an 

effort to show that invariant based proving with rule-based monitoring languages is 

relatively easy. We have presented the policy invariant for the policy specification 

and the monitor invariant for the policy implementation. Both of these invariants are 

formally specified. The policy invariant is a predicate that expresses the meaning of a 

policy in terms of the state and execution history of a program. It is true before 

and after any executed method call. The monitor invariant is a predicate that 

associates the history data related to the program execution to the monitor 

variables, and is true before and after applying any policy rule. 

Since the policy related execution history is stored in the monitor variables, 

the policy and monitor invariants can be used when proving that the monitor is 

really enforcing the policy. A four phase policy enforcement method was given and 

analysed. As a practical case, we showed how the presented proof obligations PO1 
– PO4 can be verified in practice. 
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One possible area of future work is using theorem provers to prove correctness 

of monitors.  To accomplish this, the security related procedures and the policy and 

monitor invariants have to be specified formally in a language that is understood 

by some theorem prover. Then the proof obligations can be verified by the prover. 

This can be used as a lightweight approach for proving certain kind of security 

properties of programs. 

REFERENCES 

[1] Abrial, J.-R. The B-Book, Assigning Programs to Meanings. Cambridge 

University Press, 1996. 

[2] Albert, E. et al. Abstraction-Carrying Code: a Model for Mobile Code Safety. 

New Generation Computing, vol. 26, pp.171-204, Springer, 2008. 

[3] Allan, C. et al. Adding Trace Matching with Free Variables to AspectJ. In 

Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented 

Programming, Systems, Languages, and Applications, OOPSLA 2005, pp.345-

364, October 2005. 

[4] Bauer, L. et al. Run-Time Enforcement of Nonsafety Policies. In ACM 

Transactions on Information and Systems Security, 12(3), Article 19, January 2009. 

ACM Press. 

[5] O’Nell Meredith, P .  et  a l .  An overview of the MOP runtime verification 

framework. Int J Softw Tools Technol Transfer (2012) 14:249–289. 

[6] Heath, C. Symbian OS Platform Security: Software Development Using the 

Symbian OS Security Architecture. Wiley, 2006. 

[7] Hermenegildo, M. et al. Abstraction Carrying Code and Resource-Awareness. 

In PPDP ’05: Proceedings of the 7th ACM SIGPLAN international conference on 

Principles and practice of declarative programming, pages 1–11, New York, NY, 

USA, 2005. ACM Press. 

[8] Karlstedt, T. et al. Embedding Rule-Based Security Monitors into Java 

Programs. In Proceedings of IEEE 32nd Annual International Computer Software & 

Applications Conference, COMPSAC’08, pages 20–27, 2008. 

[9] Ligatti, J. et al. Edit Automata: Enforcement Mechanisms for Run-time Security 

Policies. Int. Journal of Information Security, 4(1–2):2–16, 2005. 

[10] Leavitt, N. Mobile phones: the next frontier for hackers?, Computer,  38:4,  

20-23,  IEEE, 2005.  



International Journal on Information Technologies & Security, № 2, 2015 36 

[11] Leppänen, V., J-M. Mäkelä, Security Monitors for Java Programs with MPL, 

International Journal on Information Technologies and Security 4 (1), pp. 35-50, 

2012. 

[12] Necula, G.C. Proof-carrying code. In Conference Record of POPL ’97: The 

24th ACM SIGPLAN- SIGACT Symposium on Principles of Programming 

Languages, pages 106–119, 1997. 

[13] Schneider, F.B. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 

3(1):30–50, 2000. 

[14] Sekar, R. et al. Model-Carrying Code (MCC): a new paradigm for mobile-

code security. In Proceedings of the 2001 Workshop on New Security 

Paradigms, NSPW’01, pages 23–30, New York, NY, USA, 2001. ACM Press. 

[15] Rice, H.G. Classes of Recursively Enumerable Sets and Their Decision 

Problems. Trans. Amer. Math. Soc., vol. 74, pages 358–366, 1953. 

[16] Martinelli F., P. Mori. Enhancing Java Security with History Based Access 

Control. In Foundations of Security Analysis and Design (FOSAD 2006/2007), 

LNCS 4677, Springer Verlag, pages 135–159, 2007. 

[17] Ion, I. et al. Extending the Java Virtual Machine to Enforce Fine-Grained 

Security Policies in Mobile Devices. In Proceedings of 23rd Annual Computer 

Security Applications Conference (ACSAC 2007), IEEE Computer Society, pages 

233–242, 2007. 

Information about the authors: 

Sanna Mäkelä (formely Tuohimaa) – She is a PhD student of University of Turku, 

Department of Information Technology. Her research interests have focused on software 

security and architectures. 

Sami Mäkelä – Mäkelä is currently finishing his PhD studies. His PhD thesis work has 

focused on software metrics and correctness issues. He has also participated into security 

assessment work related to Finnish electronic voting system. 

Ville Leppänen – PhD, works current as a software engineering professor in the 

University of Turku, Finland. He has over 100 scientific publications. His research 

interests are related broadly to software engineering ranging from software security and 

quality to engineering methodologies and practices and from tools to programming 

language, parallelism and algorithmic design topics.  In the security domain he has led a 

(Finnish) Ministry of Defense funded research project on software diversification 

techniques, and is currently site leader of large Cyber Trust project. 

Manuscript received on 15 April 2015 


