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A B S T R A C T   

The number of individuals who have lost their fingers in our world is quite high and these individuals experience 
great difficulties in performing their daily work. Finger movements classification and prediction are one of the 
hot-topic research areas for biomedical engineering, machine learning and computer sciences. This study pur
poses finger movements classification and prediction. For this purpose, a novel finger movements classification 
method is presented by using surface electromyogram (sEMG) signals. To accurately classify these movements, a 
novel binary pattern like textural feature extractor is presented and this textural micro pattern is called as multi- 
centered binary pattern (MCBP). In the MCBP, five odd-indexed values of a block are utilized as center. The 
proposed MCBP based multileveled finger movements classification method evaluate by three cases. In the first 
case, the raw sEMG signals are utilized as input. In the second and third case, sEMG signals are divided into 
frames and these frames are utilized as input. A two-layered feature selector is used to choose the most valuable 
features. The purpose of using these two feature selectors together is to choose the optimum number of features. 
In the classification phase, two fine-tuned classifiers have been used and they are k-nearest neighbor (k-NN) and 
support vector machine (SVM). The proposed MCBP based method achieved 99.17%, 99.70% and 99.62% 
classification rates using SVM classifier according to Case 1, Case 2 and Case3 respectively. The results show that 
the study is a highly accurate method.   

1. Introduction 

Individuals with human forearm loss have great difficulty perform
ing their daily activities. These individuals with upper limb amputation 
are too much to ignore in the world. These individuals have difficulty in 
real life activities [1,2]. Individuals need some prosthetic devices to 
perform their daily activities completely [3,4]. These prosthetic devices 
are a tool used for individuals to perform the movements experiencing 
disruption. Prosthetic devices can be controlled with signals called 
surface electromyograms (sEMG) [5,6]. EMG signals are generally 
defined as the electrical activity that occurs in muscle contraction and 
stagnant states. EMG is used to diagnose various muscle related diseases, 
follow the disease process, evaluate the effect of treatment [7,8]. EMG 
signals are also widely used for prosthetic device control. It provides 
imitation of muscle movements with biological marks transferred in 
prosthesis applications such as hand, elbow and wrist. In these appli
cations, the performance of the proposed algorithms for human
–machine interaction gains great importance [9,10]. Significant 

advances have been made in the identification of forearm movements by 
using sEMG signals for human machine interaction. These applications 
are also widely used in the recognition of finger movements [11–13]. 
Today, the control of finger movements with sEMG signals is widely 
studied. Pattern recognition methods are used to provide more func
tionality in performing this control and the performance of various 
methods are evaluated. However, prosthetic devices for upper limb 
amputations still do not have sufficient success. A perception strategy 
developed in myoelectric systems is needed to increase the level of 
success [14,15]. In this study, a novel method is proposed for finger 
movements recognition. The proposed method is based on machine 
learning and can be used in prosthetic device control. 

Today, amputation of the hand and finger limbs seen in many people 
in the world is encountered and various devices and methods have been 
proposed to ensure that these individuals are brought to real life quality. 
In this study, a novel method is proposed on the classification of 
fingerprint movements. The proposed multi-centered binary pattern 
(MCBP) is a hand-model learning approach. This model contains 
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multilevel feature extraction, feature selection and fine-tuned classifi
cation. In the hand-crafted feature creation, textural and statistical 
generators have been used. In order to use effectiveness of these feature 
generators, MCBP, which is a textural feature selector and the commonly 
used 15 statistical moments have been used to generate 30 statistical 
features. However, the hand-crafted feature extractors cannot generate 
features at high level. Discrete Wavelet Transform (DWT) has been used 
to create levels (sub-bands). By extracting features from these sub- 
bands, high level features are obtained. RFNCA is utilized as feature 
selector to use benefits of ReliefF and NCA together. In the classification 
phase, fine-tuned SVM and k-NN, which are shallow classifiers are used 
to classify finger movements. Our proposed approach has been tested on 
a public sEMG dataset [16]. The main purpose of this study is to effec
tively recognize the finger movements and thus, ensure that patients 
experiencing upper limb amputation maximize their daily life 
performance. 

Today, amputation of the hand and finger limbs seen in many people 
worldwide. Moreover, some cerebral palsy patients cannot use their 
hands or fingers effectively. To remedy daily of these people, artificial 
intelligence and sEMG signals have been used to create a new generation 
intelligent orthotics and prosthesis. Therefore, hand and finger move
ments classification are crucial work area for advanced biomedical 
signal processing, computer sciences and feature engineering. A novel 
hand-crafted finger movement classification method is proposed in this 
article. The main phases of the proposed finger movements classification 
method are given as follows. sEMG signals are utilized as input to 
classify 15 finger movements. By using these sEMG signals, three cases 
are defined. These cases are created to denote universal/general success 
of the proposed model. The first case uses raw sEMG signals and there 
are 360 observations. The sEMG signals is divided into frame length of 
5000 and 5760 observations to be evaluated in the second case. In third 
case, the sEMG signals are divided into frames length of 4000 and 7200 
observations. These cases are created to show success of the MCBP- 
RFNCA classification model on small and big sEMG signals corpora. 
By using one dimensional discrete wavelet transform (1D-DWT) [17], 
four sub-bands are created and 1D-DWT is utilized as spooling method in 
this work. The proposed MCBP extracts 256 features from each level of 
the channels. Also, 30 features are generated employing the proposed 
statistical extractor. The generated features from each level of the 
channels are concatenated. A hybrid feature selector which is called as 
RFNCA (ReliefF [18] and Neighborhood Component Analysis [19] based 
feature selector) selects 286 (the best results are achieved by selecting 
286 features) most distinctive features. Two fine-tuned conventional 
classifiers which are k-Nearest Neighbor (k-NN) [20] and support vector 
machine (SVM) [21] are used. 

We proposed a new feature extraction function, which is called as 
MCBP. In the MCBP, center pixel can be changed parametrically. 
Moreover, a new multilevel feature extraction method based on MCBP, 
and DWT is presented. The generated features are selected by hybrid and 
iterative feature selector. Novelties of this research and the key contri
butions of the proposed MCBP based finger classification approach can 
be summarized as follows.  

• Binary Pattern (BP) [22] is an effective and successful feature 
extraction method for images and signals. Therefore, BP has been 
widely used in image and signal processing. To comprehensively 
generate features by using BP, a novel BP like feature extractor 
(MCBP) is presented and it achieved higher performance for finger 
movement classification.  

• We defined three cases by using sEMG signals to classify finger 
movements. By using these cases, success of the frame-based classi
fication method is presented. 

• Our proposed MCBP-RFNCA model is a high accurate model. More
over, this model has low time complexity. 

The rest of the paper is organized as follows: in Section 2, related 

works are given. In Section 3, details of the experimental data are pre
sented. In Section 4, feature extraction, feature selection, and classifi
cation model architectures are explained. Experimental results are 
presented in Section 5. Discussions are given in Section 6 and conclu
sions are given in Section 7. 

2. Related works 

Different studies are presented in the literature to process sEMG 
signals. Rabin et al. [23] proposed a human hand movements method, 
which was based on short time Fourier transform. UCI dataset [24] was 
used in the experiments. For single subject classification, accuracy was 
calculated as 94.80%. The limitations of their study are that there are 5 
subjects in the dataset used. It also includes six movements. Mukho
padhyay and Samui [25] presented a method based on deep learning. 
The proposed scheme achieved 98.88% accuracy. Their method has high 
complexity. Tuncer et al. [26] utilized ternary pattern and discrete 
wavelet transform in their proposed model. They achieved 99.14% ac
curacy with the proposed framework. The limitation of the proposed 
method is the usage of small dataset. Naik and Nguyen [27] used arti
ficial neural network for human hand movements classification and 
achieved 92% accuracy. The limitation of this method is that it has high 
complexity. Rasheed et al. [28] proposed a hybrid classifier fusion 
method for motor unit potential classification using EMG signal. Their 
study can be evaluated with another known dataset [29,30]. The pro
posed model achieved 93.90% accuracy. Xi et al. [31] employed wavelet 
coherence and magnitude square coherence in their proposed scheme. 
The limitation of the proposed method is that it has low accuracy 
(83.50%). Simão et al. [32] used recurrent neural networks for gestures 
classification. They used two different datasets, which are UC2018 
DualMyo data set [33] and NinaPro DB5 data set [34]. The proposed 
method achieved 95% accuracy. Their method has high complexity. The 
limitation of the Zhang et al. method [35] is its high complexity. Zhang 
et al. [35] employed Deep belief network. They achieved 100.0% ac
curacy with UCI machine learning repository [24]. Khushaba et al. [36] 
proposed a method for prosthetic fingers control using sEMG signals. 
They used Hjorth Time Domain Parameters, AutoRegressive Model and 
achieved 90% accuracy. Their study can be evaluated with bigger 
dataset. Bhattachargee et al. [37] used ensemble learning and fast 
Fourier transformation for finger movement classification employing 
Khushaba dataset [38]. They achieved 98.50% accuracy. The limitation 
of their study is that a larger dataset can be preferred. Purushothaman 
and Vikas [39] utilized Particle swarm optimization, Ant colony opti
mization and but achieved low accuracy rate (88.89%) with Khushaba 
and Kodagoda dataset [16]. Jafarzadeh et al. [40] presented a method 
based on convolutional neural networks using Khushaba and Kodagoda 
dataset [16]. The proposed method by Jafarzadeh et al. [40] has high 
complexity and achieved 91.26%. Phinyomark and Scheme [41] 
employed Higher order crossings with Khushaba and Kodagoda dataset 
[16] and achieved low accuracy (85.80%). 

Hand-crafted features-based models have lower computational 
complexity, but they have limited performances with big datasets. Deep 
learning-based models attained high performance but the time com
plexities of them are very high. In order to overcome this tradeoff, we 
proposed a hand-modeled learning approach using a new architecture. 
Our main motivation is to yield high performance with low time- 
complexity. Moreover, we defined three cases to denote classification 
success of the proposed model on both large and small sEMG datasets. 

3. Dataset 

The data is collected by Kushaba and Kodagoda [16]. The used sEMG 
signals were collected from eight subjects. 6 of them male and 2 of them 
female. The subjects were healthy they have no neurological disorders. 
These subjects sit an armchair and Delsys sEMG sensors were used to 
collect these signals with 8 channels. The age range of the subjects is 
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20–35. These signals are collected at 4000 Hz. The analog signals were 
converted to 12-bit. 15 finger movements were collected; hence, this 
dataset has 15 classes. The collected movements are shown in Fig. 1. 

Each class has 24 observations and there are 360 observations in this 
dataset. The length of each observation is 20 s. In this respect, this 
dataset is a small sEMG dataset. In order to create large sEMG signals 
corpora using this dataset, this dataset has been divided into segments 
and Case 2-3 are defined to evaluate MCBP-RFNCA classification model 
on a large sEMG signal dataset. The details of these cases are given in 
Section 4. 

4. Proposed Multi-Centered binary pattern based finger 
movement classification method 

The proposed framework uses MCBP, statistical feature generator, 
1D-DWT, RFNCA selector and fine-tuned classifiers together. The 

novelty of the proposed model is MCBP. In the one-dimensional local 
binary pattern, overlapping blocks with a length of nine and the fifth 
value of each block is utilized as center value. To extract comprehensive 
features from images, a multiple center binary pattern (MCBP) is pro
posed. In the MCBP, center value of the overlapping block is parametric, 
and users can change center value. Furthermore, statistical features have 
been extracted. 1D-DWT have been used to create sub-bands and these 
sub-bands have been used to generate features at high level. The pro
posed MCBP and statistical feature generators extract features from 
wavelet sub-bands and sEMG signals. The used dataset contains sEMG 
signals with eight channels. Therefore, our fused feature generator ex
tracts feature vector from each channel. The graphical illustration of the 
proposed MCBP-RFNCA classification model is shown in Fig. 2. 

Fig. 2 illustrates that the proposed MCBP uses variable center values 
in each level of each channel of the employed sEMG signal. The pro
posed MCBP extracts 256 × 5 = 1280 textural features from each 

Fig. 1. The used finger movements.  
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channel of the used sEMG. Moreover, 15 statistical moments have been 
used to extract 30 statistical features and 30 × 5 = 150 statistical fea
tures are generated in each channel. Hence, 1430 features are generated 
from each channel. The used sEMG signals has eight channels. There
fore, the length of the generated feature vector is equal to 1430× 8 =

11440. In order to both decrease length of the generated feature vector 
and increase classification performance, RFNCA has been applied to this 
feature vector. RFNCA is a two layered feature selection method, which 
utilizes ReliefF and NCA together. In RFNCA, firstly, ReliefF is applied to 
the feature vector to eliminate the redundant features. In the second step 
of the RFNCA, NCA is applied to the selected features by ReliefF and the 
most discriminative 286 (256 + 30) features are chosen. The chosen 286 
features are forwarded to fine-tuned k-NN and SVM. Bayesian optimi
zation technique has been used to tune k-NN and SVM. 10-fold cross- 
validation technique has also been used to validate results. 

4.1. Feature extraction 

In this section, we presented the proposed MCBP based finger 
movement classification method. The employed sEMG signals have 8 
channels and we extract features from each channel by using a multi
level method. In here, 1D-DWT is utilized as a polling method to reduce 
dimensionality of the signal and remove noises. 

Step 0: Load sEMG signals with 8 channels. 
Step 1: Divide each channel. 
Step 2: Apply four levels 1D-DWT with sym4 filter and calculate low 

pass filter sub-bands. The symlet 4 mother wavelet function is a widely 
used function in the DWT. Moreover, this filter has used to remove 
noises. 
[
Li1,H

i
1

]
= DWT(Chi, sym4), i = {1, 2,⋯, 8} (1)  

[
Li2,H

i
2

]
= DWT(Li1, sym4) (2)  

[
Li3,H

i
3

]
= DWT(Li2, sym4) (3)  

[
Li4,H

i
4

]
= DWT(Li3, sym4) (4) 

where Chi is ith channels of the sEMG signal, Li
k and Hi

k represent kth 

level low and high pass filter coefficients of the Chi respectively. The 

calculated sub-bands of each channel are used for feature generation. 
Eqs. (1) – (4) define the four leveled DWT. Herein, low pass filter sub- 
bands (approximate bands) have been used to generate features. 
Multilevel DWT is an effective decomposition model for biomedical 
signal processing. It can decompose signals into sub-band with different 
frequencies. Moreover, time complexity of the feature generation with 
multilevel DWT is O(nlogn). By using wavelet packet decomposition 
(WPD), all sub-bands are used to generate features and time complexity 
of WPD is O(2n). Moreover, WPD increases dimension of the extracted 
features, and it makes feature selection difficult. Thus, we used multi
level DWT in this step. 

Step 3: Generate textural features using MCBP feature extractor. The 
details of the MCBP based textural feature extraction is given below. 

MCBP is one of variants of the BP. This method is inspired by dy
namic center based BP [42]. In the dynamic center-based BP, all values 
of the 9 sized overlapping blocks are utilized as center respectively but 
selected values are utilized as center in the proposed MCBP. In this 
study, odd-indexed values (1st, 3rd, 5th, 7th and 9th values) are selected 
as center. As seen from Fig. 3, the center values are changed according to 
levels. Steps of the proposed MCBP are: 

Step 3.1: Divide channel of low pass filter coefficient into 9 sized 
overlapping blocks. 

Step 3.2: Generate MCBP signals by using parametric center based 
BP signal creation procedure. This procedure is given in Algorithm 1. 

Algorithm 1. Procedure of parametric BP signal generation.  
Procedure:PBP(Signal, index)

Input: Signal (Channel of sEMG signal or low pass filter of a channel) with size of 
lengthOutput: BP signal (BPS) with size oflength − 8  

1: for d = 1 to length − 8 do2: blck = Signal(d : d+8); // 9 sized overlapping block 
creation.3: counter = 1; // Define counter to generate features.4: BPS(d) = 0; // 
Assign first value of the BPS as 0.5: for t = 1 to 9 do6: ift! = index then7:BPS(d) =

BPS(d) + [blck(t) > blck(index) ] × 28− counter;8: counter = counter + 1;9: end if10: 
end for t11: end for d   

Fig. 2. Graphical illustration of the proposed MCBP-RFNCA signal classification model. Herein, Ch defines channel, L1, L2, L3, L4 are low-pass filter sub-band, and c 
is index of the center pixels. 

Fig. 3. Illustration of the 9 sized overlapping block of a channel or low pass 
filter of a channel. Observations of the used blocks are named as value. 

T. Tuncer et al.                                                                                                                                                                                                                                  



Biomedical Signal Processing and Control 71 (2022) 103153

5

Step 3.3: Extract histogram of the BPS with length of 256. 
Step 3.4: Concatenate histograms. 
The proposed MCBP based feature extraction procedure is mathe

matically defined as below. 

histo1 = HistExt(PBP(Chi, 1) ) (5)  

histo2 = HistExt
(
PBP

(
Li1, 3

) )
(6)  

histo3 = HistExt
(
PBP

(
Li2, 5

) )
(7)  

histo4 = HistExt
(
PBP

(
Li3, 7

) )
(8)  

histo5 = HistExt
(
PBP

(
Li4, 9

) )
(9)  

tf i = histo1|histo2|histo3|histo4|histo5 (10) 

where histoi ith histogram of the generated MCBP signal, HistExt(.) is 
histogram extraction function, tf i defines the generated textural features 
with length of 1280 from ith channel and | is combining operator. 

Step 4: Generate statistical features using statistical moments. 
Herein, we used 15 statistical moments and these moments have been 
applied to the used signal and absolute value of the signal. These mo
ments are skewness, kurtosis, maximum, minimum, median, average, 
standard deviation, variance, root mean square, Higuchi, Shannon en
tropy, sure entropy, log entropy, energy and range of the sub-bands. The 
statistical feature generation/extraction is explained in below. 

s1 = StExt(Chi) (11)  

s2 = StExt(Li1) (12)  

s3 = StExt(Li2) (13)  

s4 = StExt(Li3) (14)  

s5 = StExt(Li4) (15)  

sf i = s1|s2|s3|s4|s5 (16) 

In Eqs. (11) – (16), the statistical feature generation from each 
channel is defined. Herein, StExt(.) defines statistical feature extraction 
function, sj is jth statistical feature vector with a length of 30 and sf i 

represents merged statistical features extracted from ith channel. 
Step 5: Concatenate features to obtain final feature vector 

tf = tf 1
⃒
⃒tf 2

⃒
⃒⋯|tf 8 (17)  

sf = sf 1
⃒
⃒sf 2

⃒
⃒⋯|sf 8 (18) 

where tf represents final textural feature vector with size of 
1280x8 = 10240 and sf defines final merged statistical feature vector 
with a length of 150x8 = 1200. By merging tf and sf , the final feature 
(ff) vector with a length of 11,440 is obtained. 

ff = sf |tf (19) 

Step 6: Normalize ff in range of to 0 from 1 using min–max 
normalization. 

ff =
ff k − ff kmin
ff kmax − ff kmin

, k ∈ {1, 2,⋯, 11440} (20)  

4.2. Feature selection 

In the feature generation and concatenation phase, 11,440 features 
are obtained from a sEMG signal. ReliefF and NCA are used together to 
select most distinctive ones from the final feature vector. The used 
feature selector is 2-layered. Both ReliefF and NCA are weight-based 
feature selectors. Small weights describe less discriminative 

(redundant) features. ReliefF also generates both negative and positive 
weights, but NCA generates only positive weights. Especially, negative 
weights describe redundant features according to ReliefF. Therefore, 
RFNCA eliminates redundant features in the first step according to 
weights of the ReliefF. Then, 286 most discriminative features are 
selected by using weights of NCA. We also tested ReliefF, minimum 
redundancy maximum relevance (mRMR), NCA and Chi2 feature se
lectors and we create combinations. The best resulted selector is RFNCA. 
The steps of this section (RFNCA) are also given in below. 

Step 6: Calculate weights of the ReliefF. 

weightsRF = RF(ff , target) (21) 

Herein, weightsRF are the generated weights using ReliefF (RF(., .)) 
selector and target defines actual labels. 

Step 7: Select positive weighted features 

featRF(c) =
{
ff (i)andc = c+ 1,weightsRF(i) > 0

continue,weightsRF(i) ≤ 0 , i ∈ {1, 2,⋯, 11400}

(22) 

Herein, selected features by ReliefF is featRF. 
Step 8: Calculate weights (weightsNCA) of the featRF by using NCA. 

weightsNCA = NCA(featRF, target) (23) 

Step 9: Select 286 most weighted features. 

[sorted, value] = sort(weightsNCA, descending) (24)  

ft(j) = featRF(value(j) ), j ∈ {1, 2,⋯, 286} (25) 

where ff is selected final 128 features, value is index of the sorted 
weightsNCA. 

4.3. Classification 

The selected 286 features are used as input of the used classifiers. K- 
NN [20] and SVM [21] are used in this phase. These classifiers are well 
known and mostly used conventional classifier. 10-fold cross-validation 
was chosen to obtain test results of the used classifiers. Moreover, the 
hyperparameters of these classifiers (k-NN) were tuned using Bayesian 
optimization technique. The attributes of the Bayesian optimizer are 
given as follows. Acquisition function is improvement per second, iter
ations is 30 and training time limit is false. The hyperparameters of the 
fine-tuned SVM and k-NN are demonstrated in Fig. 4. 

Step 10: Calculate validation predictions by using the used fine- 
tuned classifiers by using Bayesian optimizer. 

5. Results 

The proposed MCBP-RFNCA model was implemented by a simple 
configured personal computer with 32 GB main memory, intel i7-9700 
processor with 3 GHz clock and 512 GB solid state disk. Moreover, 
Windows 10.1 ultimate was used as operating system. The proposed 
framework was coded on the MATLAB (2020b) programming environ
ment. m files were used to program the used feature generator and 
RFNCA selector. In the classification phase, MATLAB Classification 
Learner (MCL) tool was used. To comprehensively evaluate the pre
sented MCBP-RFNCA based finger movement classification method, 
three cases were defined, and details of these cases are given below. 

Case 1:. The used finger movement dataset contains 360 sEMG signals with 
15 clusters. In this case, 80,000 samples (20 s) of sEMG signals are utilized 
as input of the proposed MCBP-RFNCA based method. There are 24 sEMG 
signals in each cluster. 

Case 2:. 80,000 samples of sEMG signals are divided in 5000 (1.25 s) 
sized frames. Therefore, 5760 sEMG signal instance are obtained and each 
cluster contains 384 observations. 
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Case 3:. Each sEMG signal are divided into non-overlapping frames with a 
length of 1 s (4000). In Case 3, 7200 observations are obtained and there are 
480 observations in each cluster. 

The original dataset has evaluated using Case 1. By using Case 2 and 
3, more observations (5760 and 7200 observations) have obtained. The 
main purpose of creating these cases (Case 2 and Case 3) is to denote 
high classification ability of the proposed MCBP-RFNCA model on huge/ 
large sEMG signal datasets. 

Overall precision, accuracy, geometric mean, F1-score and Cohen’s 
Kappa performance evaluation metrics have been used to test the pro
posed MCBP-RFNCA approach on the finger movement dataset. These 
performance metrics were calculated deploying fine-tuned k-NN and 
SVM with 10-folds cross validation. The obtained results according to 
cases are tabulated in Table 1. 

Results (see Table 1) clearly indicated that the best resulted classifier 
is SVM for all cases and it achieved 99.17%, 99.70% and 99.62% clas
sification accuracies for Case 1, Case 2 and Case 3 respectively. More
over, the proposed MCBP-RFNCA model reached over 98% performance 
evaluation results for all cases using k-NN or SVM. 

Time complexity of the proposed MCBP based finger movement 
classification was also calculated. To clearly calculate time complexity 
of this method, steps and time complexity of each step were listed in 
Table 2. 

6. Discussions 

In this work, one dimensional binary pattern like feature extractor 
(MCBP) is presented. MCBP and statistic based multileveled feature 
extraction method extracts 11,440 features from each sEMG signal. By 
using RFNCA, 286 features are selected. Three cases are defined, and 
these cases use raw sEMG signals and segmented (framed) sEMG signals 
respectively. Two fine-tuned conventional classifiers are chosen and 
results clearly demonstrated that high classification results were 

obtained for Case 2 using proposed approach. The best results have 
calculated SVM classifier for all cases and SVM reached over 99% clas
sification accuracy. In order to select the best classifiers, the decision 
tree (DT), linear discriminant (LD), naïve bayes (NB), SVM, k-NN, bag
ged tree (BT) and subspace discriminant (SD) classifiers were tested, and 
the obtained classification accuracies were shown in Fig. 5. 

Fig. 5 indicated that the best classifiers are k-NN and SVM. Therefore, 
we tuned hyperparameters of these classifiers to attain the maximum 
classification accuracy. 

Khushaba and Kodagoda [16] collected the used finger movement 
dataset. They reached higher than 95.61% classification accuracy. We 
used three cases to indicate classification ability of our proposed 
approach clearly. These cases contain 360, 5760 and 7200 observations 
respectively. In this respect, performance of our MCBP-RFNCA based 
model has denoted using both small and large sEMG datasets. The 
proposed MCBP-RFNCA based finger movement classification model 
attained 99.17%, 99.70% and 99.62% accuracies on Case 1, Case 2 and 
Case 3 respectively. 

Fig. 4. Fine-tuned hyperparameters of the used (a) kNN and (b) SVM classifiers.  

Table 1 
Calculated results (%) of the Case 1 by using k-NN and SVM.  

Case Classifier Accuracy Precision Geometric 
mean 

F1- 
Score 

Cohen’s 
Kappa 

Case 
1 

k-NN  98.89  98.93  98.87  98.89  98.81 
SVM  99.17  99.20  99.15  99.17  99.11 

Case 
2 

k-NN  99.48  99.48  99.48  99.48  99.44 
SVM  99.70  99.71  99.70  99.70  99.68 

Case 
3 

k-NN  99.57  99.57  99.57  99.57  99.54 
SVM  99.62  99.63  99.62  99.62  99.60  

Table 2 
Calculation of time complexity of the proposed MCBP based finger movement 
classification method.  

Steps Time complexity 
0: Load sEMG signals  
1: for k = 1 to N do // N is number of signals  
2: cc = 1; // Define counter to concatenate features  O(N)

3: for i = 1 to 8 do  
4:Ch = s( :, i); O(8N)

5: for j = 1 to 5 do  
6: X(k,(cc-1)*256 + 1:cc*256) = [bp(s,(j-1)*2 + 1) StExt(s)]; O(

40NT
2j− 1 )

7: [l, h] = dwt(Ch, ’sym4’); // Apply DWT  O(
40NT
2j− 1 )

8:Ch = l  O(40N)

9: cc = cc + 1;  O(40N)

10: end for j  
11: end for i  
12: end for k  
13: Normalize X O(mn)
14: Select features by using RFNCA O(mnk)
15: Classify selected features O(286k)
Total:O(89N + 120NTlogT + mn + mnk + 286k)

where N is number of sEMG signals, m and n are width and height of the 
extracted features (X), T is length of the sEMG signal, k is classification co
efficients. Time complexity of the proposed MCBP based classification method 
was calculated asO(NTlogT +mnk)
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We presented a multileveled method and time complexity of this 
method was also calculated. According to calculation (See Table 4), time 
complexity of the proposed MCBP based method was calculated as 
O(NTlogT + mnk). 

The advantages of the proposed MCBP based finger movement 
classification method are as follows.  

• The proposed MCBP based classification method achieved over 99% 
classification accuracies for three different cases.  

• The proposed MCBP-RFNCA based model reached high performance 
on both small and large sEMG datasets (using three cases).  

• The proposed MCBP-RFNCA based method has low time complexity 
and high classification accuracy. Therefore, there is no need to use 
deep learning model to classify these sEMG signals.  

• A robust classification approach is presented because results were 
calculated by using 10-fold cross validation. 

Limitation of this research is given as follows. Since we used publicly 
available sEMG dataset, this dataset has limited number of subjects. 
Huge sEMG dataset can be collected from different medical centers and 
the number of subjects can be increased. In near future, we are planning 
to collect a huge dataset from variable centers and different sEMG 
devices. 

7. Conclusions 

In this work, a novel MCBP based sEMG signal classification method 
is presented to classify finger movements. Hence, a new and multilevel 
feature extraction method is presented to extract valuable features by 
using MCBP. MCBP is a novel version of the BP, and it uses odd-indexed 
values as center. 1D- DWT was utilized as a decomposition method and 
created sub-bands to generate features at high levels. MCBP and statis
tical moments are utilized to extract features from every sub-band of the 
channels. 11,440 features are extracted from eight channel sEMG signal. 
In the feature selection phase, ReliefF and NCA are used together to 
create RFNCA in this study. The main reason for using ReliefF and NCA 
together is to choose the effective features. RFNCA selects 286 most 
valuable features from 11,440 sized feature set. Two fine-tuned con
ventional classifiers were selected in the classification phase. Three 
cases namely Case 1, Case 2 and Case 3 were also utilized in the ex
periments, and these cases contain 360, 5760 and 7200 observations 
respectively. Our proposed approach achieved 99.17%, 99.70% and 
99.62% accuracies for the Case 1, Case 2 and Case 3, respectively 
deploying fine-tuned SVM. By using the proposed MCBP-RFNCA based 
method, approximately 4% better accuracy was achieved than other 

method. 
In future works, an intelligent system can be developed for finger 

movements classification with proposed method utilizing big number of 
subjects. A prosthetic hand or glove can be designed for amputee sub
jects and patients. 
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