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Abstract: Crop diseases caused by Fusarium graminearum threaten crop production in both com-
mercial and smallholder farming. F. graminearum produces deoxynivalenol mycotoxin, which is
stable during food and feed processing. Therefore, the best way to prevent the sporulation of
pathogens is to develop new prevention strategies. Plant-based pesticides, i.e., natural fungicides,
have recently gained interest in crop protection as alternatives to synthetic fungicides. Herein we
show that treatment with the methanolic extract of medicinal plant Zanthoxylum bungeanum (M20
extract), decreased F. graminearum growth and abrogated DON production. The F. graminearum
DNA levels were monitored by a quantitative TaqMan real-time PCR, while DON accumulation
was assessed by HPLC quantification. This M20 extract was mainly composed of four flavonoids:
quercetin, epicatechin, kaempferol-3-O-rhamnoside, and hyperoside. The in vitro bioassay, which
measured the percent inhibition of fungal growth, showed that co-inoculation of four F. graminearum
strains with the M20 extract inhibited the fungal growth up to 48.5%. After biocontrol treatments, F.
graminearum DNA level was reduced up to 85.5% compared to that of wheat heads, which received F.
graminearum mixture only. Moreover, DON production was decreased in wheat heads by 73% after
biocontrol treatment; meanwhile in wheat heads inoculated with F. graminearum conidia, an average
of 2.263 ± 0.8 mg/kg DON was detected. Overall, this study is a successful case from in vitro research
to in planta, giving useful information for wheat protection against F. graminearum responsible for
Fusarium Head Blight and DON accumulation in grains. Further studies are needed to study the
mechanism by which M20 extract inhibited the DON production and what changes happened to the
DON biosynthetic pathway genes.

Keywords: in vitro bioassay; Zanthoxylum bungeanum; wheat; Fusarium graminearum; mycotoxin; biocontrol

Key Contribution: This paper monitors the useful effects of methanolic extract of medicinal plant
Zanthoxylum bungeanum on Fusarium graminearum growth in laboratory and field conditions. In
addition, it studies the effect on deoxynivalenol production and the correlation between fungal DNA
and mycotoxin accumulation.

1. Introduction

Many Fusarium species are considered phytopathogenic fungi, which mainly lead to
Fusarium head blight (FHB) in small-grain cereals, such as wheat, barley, triticale, and
oats [1]. Fusarium head blight (FHB), is a global problem because it has great economic
burden on the cereal industry due to its significant reductions in grain yield and quality [2].
Upon infection, several Fusarium species produce aggressive secondary metabolites, which
lead to crop contamination such as, deoxynivalenol (DON), nivalenol (NIV), T2 toxin, fu-
monisin (FUM), and mycoestrogen zearalenone (ZEN) [3]. Consumption of trichothecenes
is toxic to humans and animals, they cause intestinal irritation, feed refusal in livestock,
vomiting, skin dermatitis, immunosuppression, anorexia, and growth retardation [4,5]. As
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a result, the European commission (EC) has set maximum limits to control the use of food
and feedstuff contaminated with DON and ZEN mycotoxins. For unprocessed wheat and
barley grains, the limits are 1.25 mg/kg DON and 0.1 mg/kg ZEN, while in oat the DON
limit is 1.75 mg/kg.

Worldwide, the most prevalent FHB-causing species in wheat belong to Fusarium
graminearum species complex [6]. FHB has infected many temperate areas, such as East
Asia, North America, and Europe. In the past decade, mycotoxin contamination has
prompted basic research on the fungal causal agent. Fusarium graminearum has become one
of the most studied fungal phytopathogens and is considered the fourth most aggressive
plant-pathogenic fungus in the world [7,8]. Considering the negative effects on farmers
and buyers, the financial loss caused by FHB and mycotoxin contamination in wheat and
barley only in the USA between 2016 and 2017 is USD 1.47 billion [9].

Chemical fungicides have been used as a control strategy to stop FHB incidence and
DON accumulation over the last four decades. Wheat farmers have applied benzimidazole
fungicides, mostly carbendazim in the field [10]. Nevertheless, these chemical treatments
are prohibited from two to three weeks before harvesting, despite F. graminearum infections
and DON contaminations might occur during this period [3]. In addition, resistant varieties
and crop rotation are some of the control strategies used [11]. These control strategies have
efficiently decreased due to resistance development, promoting Fusarium growth or DON
production under favorable environmental conditions [6,12]. Use of carbendazim has been
prohibited in the EU and the United States [13]. Therefore, other effective approaches are
urgently needed to manage FHB in order to satisfy consumer needs. Biological control
methods have been recently studied a lot to prevent F. graminearum growth or DON secre-
tion. For example, Clonostachys rosea fungi reduced the survival of F. graminearum on wheat
and maize [14] and DON accumulation up to 33% in the infected grains [15]. An antibiotic
called validamycin, produced by Streptomyces hygroscopicus var. limoneus decreased the
activity of trehalase and the production of glucose and pyruvate, which are the precursors
of DON pathway and hence inhibited DON synthesis [16]. Some microorganisms also
showed effectiveness in reducing disease severity such as, Streptomyces [17], Bacillus subtilis
RC 218 and Brevibacillus sp. RC 263 [18], and Paenibacillus polymyxa strains [19].

In addition, the use of organic extracts from medicinal plants has attracted attention of
researchers after noticing the violence effects of synthetic pesticides on the general health
and the environment [20]. These plant extracts can control crop diseases during post-
harvest storage and treatment of many diseases. This is due to their beneficial constituents
such as phenols, polyphenols, flavonoids, tannins, and alkaloids [21]. Furthermore, the
usage of plant extracts against pathogens inhibits the resistance development because
they contain antimicrobial compounds and their synergisms [22]. After applying the plant
extracts in the post-harvest stage, they biodegraded quickly because natural products
are unstable at high temperatures contrary to chemical fungicides which can exist in the
environment for a long time [23]. The antifungal activity of curcuma longa extract against
F. graminearum has been studied and showed that it possesses high antifungal activity
with IC50 value 0.1088 mg/mL [24]. Mustard-based botanicals were efficient to control F.
graminearum due to the presence of phenolic acids in their contents [1].

Zanthoxylum bungeanum is a medicinal plant, distributed in China and some Southern
Asian countries [25]. It is commonly used for the treatment of abdominal pain, toothache,
dyspepsia, vomiting, diarrhea, ascariasis, and eczema [26]. To understand its mode of
action, researchers identified its chemical constituents and found that it has 140 chemical
compounds including alkaloids, terpenoids, flavonoids, and free fatty acids, and a small
amount of inorganic elements [27]. Essential oils from Z. bungeanum (EOZB) had a broad
spectrum of activity against pathogenic fungi measured by the mycelial growth inhibition
method. EOZB inhibited the growth of eleven fungal species with low IC50 values including
Fusarium oxysporum and Fusarium sulphureum [28,29]. To monitor the crop grains, an
applicable DNA-based quantification method on the species level is required. At present,
DNA extraction is cheap, fast, and reproducible from a wide range of food and grain
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samples. Together with the rapid, accurate, and highly sensitive quantitative real-time
PCR (qPCR) technique, this is a preferential approach to accurately quantify pathogens and
antagonists biomass [30].

The objective of this study is to investigate the effect of methanolic extract of Zan-
thoxylum bungeanum plant on F. graminearum infection and deoxynivalenol accumulation in
wheat. As a first step, the effect of M20 extract was tested using a mycelium growth in vitro
bioassay on four F. graminearum isolates selected from our previous study [31]. Second,
the efficacy of M20 extract from Zanthoxylum bungeanum [32] was investigated under field
conditions in wheat using point inoculation method with either F. graminearum mixture
or mixture of F. graminearum followed by M20 extract in order to evaluate the effect of
main flavonoid compounds of M20 extract on F. graminearum growth during mid-flowering.
Finally, the amount of DON present in the wheat plants was quantified.

2. Results
2.1. In Vitro Bioassay—Effect of M20 Extract on Mycelium Growth

The study included four different groups: control group received DMSO, group I
received mixture of four F. graminearum (Fg) isolates, group II received Fg isolates and 100
µg/mL M20 extract, and group III received 100 µg/mL M20 extract only. Quantity of F.
graminearum DNA was determined by qPCR based on the TMFg12 gene. The amount of
DON produced was monitored by HPLC. In addition, Pearson’s correlation coefficient
between Fusarium DNA and mycotoxin level was calculated in the four studied groups.

In the laboratory, the growth of the phytopathogen F. graminearum was monitored
in the presence and absence of 150 µg/mL of M20 extract (Figures 1 and 2). The extract
showed consistent antifungal activities against the Finnish and Russian F. graminearum
strains. Hyphal growth of the Finnish strains (Fg 2 and Fg 5) was inhibited at a range
between 24–25%. However, the Russian strains Fg 15 showed the highest (48.5%) reduc-
tion in hyphal growth, followed by the other Russian strain Fg 13 which showed 35.5%
inhibition percentage.
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Figure 1. The first row of the PDA plates shows the control plates (no M20 extract) for the four strains,
the second row of the PDA plates shows Fg strains incubated with 150 µg/mL of M20 extract in the
dark for five days. Fg: Fusarium graminearum. Fg 2 and Fg 5 are Finnish strains, Fg 13 and Fg 15 are
Russian strains.
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Figure 2. Percent of growth inhibition of four different F. graminearum isolates after 5 days incubation
with 150 µg/mL of M20 extract on PDA plates. Control plates inoculated with DMSO instead of the
treated extract. All experiments were performed in triplicates. Data are presented as mean ± standard
deviation (S.D). Columns indicated with the same letters are not significantly different (p > 0.05) and
columns indicated with different letters are significantly different (p < 0.05) according to Tukey’s test.

2.2. Quantification of F. graminearum DNA in Wheat Using qPCR

All samples (except the negative control samples) showed a positive signal above
the detection limit within an amplification range between 23 and 37 cycles. QPCR am-
plifications of control samples (no-M20 extract or fungal treatment) showed only traces
of F. graminearum DNA levels, approving that the natural infection level was low. Point
inoculation method that we used in the field succeeded in growing F. graminearum fungi
in treatment I as it is clear from Figure 3A, that there is a significance between the fungal
DNA amount between control (DMSO group) and treatment I (Fg group). Abundance of
F. graminearum in treatments II and III were not significantly different from the control in
Figure 3B,C, respectively. However, after inoculating Fg wheat samples with M20 extract
(treatment II), Fusarium abundance was reduced up to 85.5% compared to treatment I and
significantly reduced F. graminearum disease severity in treatment II (Figure 3D).
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Figure 3. Suppression effect of M20 extract on F. graminearum DNA level (pg/ng total DNA) in wheat
grains. Box-plots with the same letters on top of the graph are not significantly different (p > 0.05).
Box-plots with different letters on top of the graph are significantly different (p < 0.05) according
to Tukey’s test. (A) F. graminearum DNA level (pg/ng total DNA) in control and group I. (B) F.
graminearum DNA level (pg/ng total DNA) in control and group II. (C) F. graminearum DNA level
(pg/ng total DNA) in control and group III. (D) F. graminearum DNA level (pg/ng total DNA) in
group I and group II.

2.3. M20 Extract Inhibited DON Production by F. graminearum

To verify the ability of M20 extract to reduce the mycotoxin accumulation, the amount
of DON extracted from grinded wheat samples was measured with HPLC and was ex-
pressed as mg/kg wheat. Heads inoculated with the pathogens only (treatment I) revealed
the highest amount of DON (2.263 ± 0.8 mg/kg) and it was significantly higher than the
control group which received DMSO only, and led to an average DON content of 0.515 ±
0.3 mg/kg (Figure 4A). Furthermore, there were no significant changes between control
and treatments II (received Fg conidia mix and M20 extract) and III (received M20 extract
only) (Figure 4B,C) respectively. Application of M20 extract significantly reduced the DON
content in treatment II by 73% compared to treatment I (Figure 4D). In general, lower
DON incidence was observed in treatment III (which was treated with M20 extract only) in
comparison with the other groups.
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Figure 4. Suppression effect of M20 extract on DON level in wheat. ANOVA analysis was performed
and Tukey test used to identify treatments significantly different from pathogen group I. Box-plots
with the same letters on top of the graph are not significantly different (p > 0.05); however, different
letters indicate statistically significant differences (p < 0.05). (A) DON level (mg/kg) in control and
group I. (B) DON level (mg/kg) in control and group II. (C) DON level (mg/kg) in control and
group III. (D) DON level (mg/kg) in group I and group II.

2.4. Correlation between Fungal DNA and DON Content

Coefficient of determination (r2) between F. graminearum DNA and DON level was
calculated using the data from all inoculated groups. In general, the highest value was
observed in the controls (without Fg or M20 extract) (Figure 5A). Relatively high coefficient
of determination, 0.56, 0.69, and 0.52 was also found for treatments I, II, and III respectively
(Figure 5B–D).
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Figure 5. Scatter diagrams show the correlation between F. graminearum DNA and DON levels in
wheat grains in the four studied treatments. F. graminearum DNA was multiplied by 1000 or 10
in order to be in the normal range with the toxin data. (A) Control (received DMSO) (B) Group I
(received Fg mixture) (C) Group II (received Fg mixture and 100 µg/mL M20 extract) (D) Group III
(received 100 µg/mL M20 extract). r2: coefficient of determination.

3. Discussion

Our study contributes to interpreting the potential use of methanolic extract from
Zanthoxylum bungeanum plant against F. graminearum infection and deoxynivalenol accu-
mulation in wheat under controlled environment and under field conditions. The negative
economic impact of Fusarium infection in wheat increases by the combination of FHB and
mycotoxin incidence in the grains harvested from infected fields. For that reason, the
biocontrol of F. graminearum with natural fungicides is a highly desirable alternative way
instead of using synthetic fungicides. Chemical constituents of the natural plants such as,
phenolic compounds and essential oils are a promising replacement for synthetic fungicides
because plants produce many different compounds either as part of their development or
in reaction to stress or pathogens [33,34]. Essential oils of Z. bungeanum have been known
to have strong anti-bacterial and anti-fungal effects. They have strong inhibitory effect
on Bacillus, Saccharomyces cerevisiae, and Aspergillus species [35]. Our previous study by
Abbas et al., [32] has fractionated the crude methanolic extract of Z. bungeanum to twelve
sub-fractions and results showed that M20 extract had the highest phenolic/flavonoid
contents and antioxidant activities. This extract contained four flavonoids, quercetin, epi-
catechin, kaempferol-3-O-rhamnoside, and hyperoside as identified by mass spectrometry
analyses. Therefore, in this study, we investigated the effect of these flavonoids found
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in M20 extract on F. graminearum development. Phenolic and flavonoid compounds are
known for their antioxidant properties as, they can bind free radicals and decrease the
risk of chronic diseases. The most common phenolic acid with antifungal activity against
Fusarium species, is called ferulic acid [36]. Phenolic extracts from Spirulina species showed
high antifungal activity against Fusarium fungi [37]. Here, co-inoculation of 150 µg/mL
M20 extract with four F. graminearum strains separately, showed inhibitory effects on the
mycelia growth in different ratios. We suggest that the antifungal activity of M20 extract
against Fusarium species is due to its high flavonoid content which may bind to the cell
wall and perform general defense system against plant pathogens [38].

To further study the effect of M20 extract on F. graminearum growth, we quantified
the amount of F. graminearum DNA found in the total DNA extracted from wheat sam-
ples collected from the field conditions. We found that point inoculation of M20 extract
with F. graminearum spore suspension inhibited the pathogen development. Similarly,
Skadhauge et al. [39] demonstrated that flavonoid, dihydroquercetin inhibited hyphal pen-
etration of F. graminearum and F. culmorum into the grain testa in barely. Moreover, selenium
nanoparticles (SeNPs) synthesized by Lactobacillus acidophilus ML14 controlled F. culmorum
and F. graminearum growth based on their powerful antioxidant and antifungal activities
and hence, counteracting drought and heat stress in wheat plant [40]. Flavonoid, 5-hydroxy-
7,4′-dimethoxyflavone which was extracted from Combretum erythrophyllum leaves using
solvent acetone, inhibited the growth of many Fusarium species including F. graminearum
with a MIC value of 0.63 mg/mL [41].

A key aspect in the selection of M20 extract against toxigenic F. graminearum is the
evaluation of its ability to counteract mycotoxin production. In our experiments, we could
show that DON amount in wheat samples inoculated with both Fg and M20 extract was
significantly reduced to 73% compared to samples that were inoculated only with Fg.
Furthermore, we could show that amount of F. graminearum DNA was highly correlated to
DON accumulation which were consistent with previous findings [3,42,43]. These results
indicate that M20 extract contributes to the suppression of FHB via the degradation of
the DON. On the other hand, some studies concluded that the antioxidant activity of
the phenolic/flavonoid compounds is related to the inhibition of the mycotoxin biosyn-
thesis [32,44]. For example, quercetin had a significant decreasing effect on neosolaniol
(NEO) and diacetoxyscirpenol (DAS) mycotoxins as reported by Schöneberg et al. [38] and
gallic, caffeic, and p-coumaric acids reduced mycotoxin levels produced by the toxigenic
species [37,45]. Plant extracts of cinnamon, clove, lemongrass, oregano, and palmarosa
have reduced the accumulation of DON in F. graminearum-infected grains [46]. The biosyn-
thesis of the deoxynivalenol consists of the cyclization of the sesquiterpene ring, which
is catalyzed by the tricodiene synthase enzyme, followed by eight oxygenation and four
esterification reactions. These sequence reactions lead to the formation of DON and its
acetylated intermediates [47,48]. Inhibition of DON by phenolic compounds may be at-
tributed to the repression of the metabolic route, which could require the expression of a
carrier protein and a network of regulatory genes.

4. Conclusions

In this study, we characterize the behavior of methanolic extract of Z. bungeanum (M20
extract) as a biocontrol agent against F. graminearum as well as DON accumulation. Here the
main flavonoids found in the extract (quercetin, epicatechin, kaempferol-3-O-rhamnoside
and hyperoside) significantly inhibited the growth of four different F. graminearum species.
The Russian isolate Fg15 was the most inhibited strain with a percent inhibition of 48.5%.
Amount of fungal DNA measured by qPCR in wheat samples inoculated with mixture of
Fg strains and 100 µg/mL M20 extract was significantly decreased compared to the wheat
samples that received Fg only. In addition, these flavonoids have a major role in repressing
DON production in the treated groups. Therefore, methanolic extract of Z. bungeanum can
efficiently be used as a natural fungicide against plant pathogenic fungi to protect wheat
crop loss, instead of using synthetic pesticides.
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5. Materials and Methods
5.1. Chemicals, Reagents, and Zanthoxylum bungeanum Plant

Deoxynivalenol standard was purchased from Cayman chemical via Biomol (CAS
Number: 51481-10-8). Potato dextrose agar (PDA) was purchased from OXOID, Bas-
ingstoke, UK) and prepared by suspending 39 g in 1L MQ water and sterilized using an
autoclave (CertoClav, Leonding, Austria) at 121 ◦C and three bars for 20 min. Agarose, tris
base, hydrochloric acid, chloroform, and proteinase K were purchased from fisher scientific,
Helsinki, Finland. Dimethyl sulfoxide (DMSO), acetonitrile, ethylenediaminetetraacetic
acid (EDTA), sodium dodecyl sulfate (SDS), beta-mercaptoethanol (β-ME), isoamyl alcohol,
ethanol, and isopropanol are from Merck, France. Midori green advance is from nippon-
genetics, Duren, Germany. Sodium chloride is from VWR-chemicals, Leuven, Belgium.
Zanthoxylum bungeanum plant (Z. bungeanum) was extracted and fractionated in our previ-
ous study [32]. Briefly, the plant pericarps were extracted with petroleum ether followed
by methanol. Drying this methanol extract with rotavapor resulted in crude methanolic
extract. This crude extract was fractionated by silica gel column chromatography to twelve
sub-fractions using solvent mixtures from low to high polarity. One sub-fraction produced
by elution with 80% ethyl acetate and 20% methanol (called M20 extract) was used in
this study.

5.2. Pathogen Inoculum Production

We used two isolates from Northern Europe (south-western Finland) and two isolates
from Southern Europe (southern Russia) (Table 1). All strains were isolated as single spores
from wheat. The Finnish strains (59065 and 59068) were isolated during 2017; the Russian
strains (58703 and 58772) were isolated during 2014 and 2015 respectively. The Finnish
strains belong to 3ADON genotype; the Russian strains belong to 15ADON genotype. Fun-
gal and chemo-typing identification were confirmed as explained by Yli-Mattila et al. [31].
For macroconidia production, seven PDA plates from each strain were grown at 25 ◦C
and were exposed to UV light for 4 h per day. In addition, some strains were grown on
SNA (Synthetischer Nährstoffarmer Agar) medium (1 g KH2PO4, 1 g KNO3, 0.5 g MgSO4,
0.5 g KCl, 0.2 g glucose, 0.2 g sucrose, and 20 g agar per liter) with a small piece of sterilized
filter paper at 25 ◦C in order to induce conidia production. A spore suspension from
each strain was prepared separately. Then, mixture of conidial suspension from the 4 Fg
strains was prepared with sterile Milli-Q water. Final concentration 4 × 105 conidia/mL
was prepared by counting the macroconidia under microscope using the haemocytometer
(Burker, JH1405-8, Hawksley, UK) and stored at 4 ◦C.

Table 1. Strain ID, isolation source, year of production and genotypes produced by the four strains
used in this study.

Strain Number Strain ID Isolation Source Plant Year Genotype

2 MFG 59065 Southern Western
(Finland) wheat 2017 3ADON

5 MFG 59068 Southern Western
(Finland) wheat 2017 3ADON

13 MFG 58703 Krasnodar krai
(Russia) wheat 2014 15ADON

15 MFG 58772 Stavropol krai
(Russia) wheat 2015 15ADON

5.3. In Vitro Bioassay—Effect of M20 Extract on Mycelium Growth

Before applying M20 extract in the field, preliminary antifungal experiments were
carried out in the laboratory. The antifungal activity of the M20 extract against four
pathogenic F. graminearum strains were determined by the growth rate method [49]. In
this method, 150 µg/mL of M20 extract was spread on PDA medium and PDA medium
without any plant extract served as control. All the plates were inoculated in triplicate with
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1 mm mycelium plug of each freshly produced fungal strain in the center of the plate and
incubated in the dark at 25 ◦C. When the colonies of the blank control group covered the
plate, the colony diameter of each plate was measured. The percent of growth inhibition
(%) was calculated from this formula; (%) = (Dc − Dt)/Dc × 100; where Dc represents the
colony diameter of the blank control group, and Dt represents the colony diameter of the
treated group.

5.4. Treatments of Wheat Grains by Methanolic Extract of Zanthoxylum bungeanum in the Field

The field experiment was conducted at the Southwest Finland region (Marttila lo-
cal place, 60.63050209 N, 22.98930788 E). A mixture of conidia from four single-spore F.
graminearum (i.e., MFG 59065, MFG 59068, MFG 58703, and MFG 58772) isolates from
wheat was used for the artificial inoculation method in the field experiment. This study
included four different treatments; control received 20 µL DMSO, treatment I: mixture
of conidia from four F. graminearum (Fg) isolates, treatment II: mixture of conidia from
four Fg isolates in equal amounts followed by 100 µg/mL M20 extract, and treatment III:
100 µg/mL M20 extract only. Quantity of F. graminearum DNA was determined by qPCR
based on the TMFg12 gene. The amount of DON produced was monitored by HPLC. In
addition, coefficient of determination between Fusarium DNA and mycotoxin level was
calculated in the four studied groups. The wheat cultivar Sibelius was sown with Tume KL
2500 H SC (2.5 m wide) in the field on 4 May 2021. In July 2021, we had mid-flowering in
the wheat field, plants were inoculated using point inoculation method in the fourth flower
from below [50]. After adding the inoculating agent, the randomly selected wheat heads
were covered with a plastic bag, which has been removed after 24 h. The plants were then
kept for one month before harvesting. All wheat seeds were collected (1.5 g/one wheat
head) and ground using a coffee mill (Krups KM75 Coffee Grinder) as described before [41]
and stored in the refrigerator.

5.5. DNA Extraction and qPCR Analysis

DNA was extracted from 100 mg ground wheat samples using the GenElute™ Plant
Genomic DNA Miniprep Kit (Sigma-Aldrich, Darmstadt, Germany) according to the man-
ufacturer instructions. Fungal DNA from the standard F. graminearum isolate Fg13 was
extracted from pure cultures using the manual DNA extraction protocol as described
by [51] with minor modifications. Briefly, 10 mg of fungal mycelium was mixed with
300 µL of lysis buffer (50 mM Tris–HCl, pH 7.9; 50 mM EDTA, pH 8.0; 150 mM NaCl; 1%
SDS; 0.5 M beta-mercaptoethanol; and 600 µg/mL Proteinase K) and incubated at 65 ◦C
for 3 h. Then, 100 µL 5M NaCl and 400 µL chloroform: isoamyl alcohol solution (24:1)
were added. The organic and aqueous phases were thoroughly mixed by inversion and
incubated at room temperature for 15 min. The samples were centrifuged at 12,000 rpm for
2 min to pellet insoluble material. The upper aqueous phase was transferred into a new
tube, incubated for 15 min at 4 ◦C, and centrifuged for 2 min to precipitate the proteins.
Then, the aqueous phase was collected once more avoiding the pellet on the bottom of the
tube. DNA was precipitated by addition of 0.6 volumes of 100% isopropanol and incubated
at room temperature for 2 min. The DNA was pelleted by centrifugation at 12,000 rpm
for 2 min, and the supernatant was removed from the tube. The pellet was washed with
400 µL of 70% ethanol and centrifuged for 5 min. The DNA pellet was dried in Eppendorf
Concentrator Plus for 2 min and re-suspended in 25 µL of TE buffer (10 mM Tris–HCl,
1 mM EDTA, pH 8.0).

The concentration of the isolated DNA was measured by using a fluorescence-based
Qubit fluorometer (Invitrogen, Carlsbad, CA, USA) according to the manufacturer recom-
mendations. DNA concentrations were confirmed using agarose gel electrophoresis. Five
microliters of extracted DNA was run on a 1% (w/v) agarose gel containing 0.1 µg/mL
of Midori green. DNA was visualized using GeneGenius Bio Imaging System (Syngene,
Cambridge, UK). All DNA samples were stored in Elution buffer (TE-buffer) supplied by
the DNA extraction kit at −20 ◦C until further analyses.
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Forward and reverse primers TMFg12f (5′ CTCCGGATATGTTGCGTCAA 3′) and
TMFg12r (5′ CGAAGCATATCCAGATCATCCA 3′), and probe TMFg12p (5′ TGAGAAT-
GTCTTGAGGCAATGCGAACTTT 3′) were designed using the primer express program
Version 2.0 (Applied Biosystems) by [52]. TMFg12 probe was labelled at the 5′ends with 6-
FAM (6-carboxy-fluorescein) and at the 3′end with TAMRA (5-carboxytetramethylrhodamine)
for the quencher. Primers and probe were diluted on the same day of the experiment.
Three replicates of each dilution (0.5, 0.05, 0.005, 0.0005, and 0.00005 ng) of the fungal DNA
were prepared and used to construct the standard curve. Non-template control (NTC)
was used by adding water-only. Reaction mixture for F. graminearum DNA or wheat DNA
was prepared in final volume 25 µL containing 12.5 µL iQTM Supermix (purchased from
Bio-rad, Watford, UK), 100 nM primers, 100 nM probe, and 1 µL DNA standard or sample.
Amplification was performed on icycler iQTM 96-well PCR plates (Bio-Rad, Watford, UK),
sealed with Optical Adhesive Covers (Bio-Rad, Watford, UK). TaqMan quantitative PCR
was performed in an iQTM5 Real-time PCR detection system (Bio-Rad, Watford, UK). The
PCR program consisted of 3 min at 95 ◦C, followed by 40 cycles of 10 s at 95 ◦C and 30 s at
55 ◦C. Ct values were obtained by using iQTM5 optical system software and exporting the
amplification results into an Excel file. The amount of F. graminearum DNA was calculated
from the Ct values and standard curve equation (Y = −3.449X + 28.661). From this equation
and Ct values, X value (log quantity) was calculated. The quantity was calculated from
Equation (1). Final F. graminearum DNA (pg/ng total DNA) amount was calculated by
dividing the quantity by total DNA concentration from Qubit.

Quantity = 10Logx (1)

5.6. Extraction and Evaluation of Deoxynivalenol Accumulated in Wheat Heads

DON was extracted by the method described by [3] with some modifications. Briefly,
0.5 g from each ground wheat sample was added to 5 mL solvent extraction buffer
CH3CN:H2O (80:20 v/v). The samples were extracted using Infors CH-4103 Bottmin-
gen shaker at room temperature and 180 rpm for 90 min. The supernatant was separated
by centrifugation at 20 ◦C, 4500 rpm for 5 min, transferred to a new 15 mL falcon tube and
diluted with the same amount of extraction solvent CH3CN:H2O (80:20 v/v). Then, 800 µL
from this extract was filtered through 0.2 µm syringe filter (VWR, Radnor, Pennsylvania,
North America) and stored in dark vials at −20 ◦C until HPLC analysis. DON standard
(50 µg) was dissolved in 500 µL acetonitrile, filtered through 0.2 µm syringe filter, and
stored at −20 ◦C. Samples and standard (10 µL) were injected to HPLC which was LiChro-
CART (Agilent Technologies, Waldbronn, Germany) and an Agilent 1100 series device
consisted of absorption and fluorescence detectors (Agilent Technologies, Palo Alto, Santa
Clara CA, USA) and C18 reversed-phase (LiChrospher 100, 125× 4 mm, 5 µm) column. The
mobile phase consisted of acetonitrile and water (15:85 (v/v)) at a flow rate of 250 µL/min.
The column temperature was 30 ◦C. The HPLC system was equipped with a UV detector
and fluorescence with 220 nm wavelength. DON concentrations were calculated according
to the retention times and the areas of the corresponding peaks on the chromatogram using
Analyt-FC (Agilent Technologies, Palo Alto, Santa Clara, CA, USA) collector.

5.7. Statistical Analysis

Statistical analysis was performed with Origin (OriginLab, Northampton, MA, USA).
Fusarium abundance (expressed as F. graminearum DNA/wheat DNA), and DON level
(expressed as mg/kg flour) were subjected to ANOVA followed by a Tukey HSD post hoc
test for multiple comparison and groups are considered significant if p < 0.05. We analyzed
the relationship between fungal DNA and DON data by coefficient of determination (r2).
The qPCR data were transformed by multiplying with 1000 or 10 in order to obtain a more
normal distribution with the toxin data.
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