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Abstract

Levänluhta is a unique archaeological site with the remains of nearly a hundred Iron

Age individuals found from a water burial in Ostrobothnia, Finland. The strongest climatic

downturn of the Common Era, resembling the great Fimbulvinter in Norse mythology, hit

these people during the 6th century AD. This study establishes chronological, dietary, and

livelihood synthesis on this population based on stable carbon and nitrogen isotopic and

radiocarbon analyses on human remains, supported by multidisciplinary evidence. Extraor-

dinarily broad stable isotopic distribution is observed, indicating three subgroups with dis-

tinct dietary habits spanning four centuries. This emphasizes the versatile livelihoods

practiced at this boundary of marine, freshwater, and terrestrial ecosystems. While the

impact of the prolonged cold darkness of the 6th century was devastating for European com-

munities relying on cultivation, the broad range of livelihoods provided resilience for the

Levänluhta people to overcome the abrupt climatic decline.

Introduction

Mediterranean historical sources identify a mystery cloud obstructing the Sun at AD 536/537

[1]. The year without the Sun is observed in tree rings as a negative growth anomaly through-

out the Northern Hemisphere (NH)[2]. An even larger tree-growth decline is observed during

the AD 540s, and discussion of the anomaly has evolved from a single mystery cloud to a

decade-scale climatic catastrophe as a result of multiple volcanic eruptions of AD 536–550
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[3,4]. The anomalous years probably triggered a longer climatic disturbance lasting until AD

570[5], or even beyond, known as the “Late Antique Little Ice Age” (henceforth LALIA)[6].

This cold and dark period—further stressed by the breakout of the Justinian Plague in AD 542

—coincided with the rise and fall of empires, human migrations, and political upheavals[4,6].

The volcanic winter of the AD 540s, recently linked to the Ilopango eruption in El Salvador

[7], featured a drastic reduction of solar irradiance for several years in AD 541–544 (S1 Appen-

dix). This was observed in Northern Finland[8], reducing the temperature and photosynthetic

rate, and thus primary production[9]. The severe effects of distant volcanic eruptions on agri-

cultural communities across the NH have been recently demonstrated[10]—crop losses and

famines in 17th century AD Finland have been shown to have resulted from tropical volcanic

eruptions (S1 Appendix). As the AD 536–550 climatic catastrophe was the most severe in the

last 2500 years[3,11], one can hypothesize that its consequences for communities relying on

cultivation were even more catastrophic. Indeed, the abandonment of Iron Age settlements in

Scandinavia and Estonia after AD 550 may have been a result of the climatic downturn and

cultivational challenges[12,13].

This work studies the dietary habits and livelihoods of a population that experienced the

AD 536–550 climatic downturn in Southern Ostrobothnia, Finland (Fig 1). Early scholars

[14,15] only fragmentarily tell of the people of the North, and these frontiers of ancient civiliza-

tions have remained a kind of an unknown otherworld, associated with mystical elements of

the seasonal change from long darkness to midnight sun. However, already paralleling the

early civilizations of the Mediterranean, the Northerners were involved in cultural connections

and trading networks across the Europe[16–18], linking them to the world system. In the

Southern Ostrobothnian inland (Fig 1), nearly a hundred Iron Age (ca. AD 300–800) individu-

als were buried in water in Levänluhta[19–22]. The site, presently consisting of three springs

releasing red iron-containing water, has been one of the most intriguing archaeological mys-

teries within Finland (S2 Appendix). The lives of these people coincided with the greatest

global-scale changes of the Common Era: a land uplift of one meter per century (S3 Appendix)

and an abrupt period without the Sun. Using dietary stable isotope studies[23–25] combined

with chronological analyses[26,27] on human bone collagen samples, it is possible to under-

stand the factors that allowed the Iron Age populations at the northern edge of European civili-

zation to carry themselves through these challenges. A synthesis of this watery burial of

worldwide uniqueness is established by tying the existing multidisciplinary knowledge

together.

Materials and methods

Osteological analyses

The study material consists of left thighbones (femora) of human remains from sites of Levän-

luhta and Käldamäki in Southern Ostrobothnia, Finland, considered as spring-containing

water burials (Fig 1, Fig 1E and 1F in S2 Appendix). All necessary permits were obtained for

the described study, which complied with all relevant regulations. Particularly, permission to

sample and analyse the bone material was obtained from the Finnish Heritage Agency, Hel-

sinki, Finland, in which the material is stored. Käldamäki is a smaller site, 25 km northwest

from Levänluhta, and dating to nearly the same centuries. Left femora were chosen for detailed

analyses to maximize unambiguous identifications of individuals whose remains are totally

disarticulated. The bones were variably damaged and required thus multifaceted osteological

analyses. Bones were identified as left femora by skeletal element and size. Subadult age estima-

tions were based on the size of the bones and the epiphyseal closure[28–31]. Adult age estima-

tions on femora were attempted based on observations on cortical bone thickness relative to
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medullary cavity[32], remnants of the epiphyseal line[31], enthesophytes, osteophytic bone

formation around the edges of the joint surfaces and exostoses in the throcanteric fossa. As the

methodology for adult age categorization (young vs mature adult) is not yet standardized, only

adults with epiphyseal line visible were determined as young adults. Exostoses and entheso-

phytes were coded simply as absent or present[33,34]. Standard measurements were made

with sliding caliper and osteometric board[29]. Sex estimation based on these measurements

was difficult, since at the moment there is no known close reference population and only a few

of the individuals from the site have been assigned belonging to certain populations[35]. As a

summary (Table A-C in S4 Appendix), 39 femora of Levänluhta (LL) were investigated of

which 38 were identified as left and 1 as right. In addition, 4 left femora from Käldamäki (KM)

were studied. In addition, 19 animal bone samples were studied for the isotopic baseline (S5

Appendix).

Fig 1. Site locations. Locations of Levänluhta, Käldamäki, and the sites mentioned in the text are shown. Levänluhta, in particular, is located near the Suomenselkä

ridgeline, providing access to the vast northern and eastern forests and lake region. The map was created based on Natural Earth data (https://www.naturalearthdata.

com/).

https://doi.org/10.1371/journal.pone.0231787.g001
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Radiocarbon and isotopic analyses

Radiocarbon and stable carbon and nitrogen isotope analyses were made on the cortical frac-

tion of bone collagen at the Laboratory of Chronology, Finnish Museum of Natural History

(Luomus), University of Helsinki (UH). The bones were sampled using a low-speed rotary

drill equipped with a diamond-drill bit. The surface of the specimen was first drilled clean, and

the sample powder was subsequently drilled from a cortical bone. In some cases, a fragment

was detached instead of drilling. The samples were cleaned using ultrasonification in Milli-Q

water, crushed and sieved to include the�500 μm fragments. The method for collagen extrac-

tion is based on the Longin method[36] and follows the protocol described in Berglund et al.

[37] with some modifications: hydrolysis and carbonate removal was conducted in an ice bath

using 10% HCl, and the final drying was done at 90–100˚C. To check post-mortem alteration,

the contents of N and C (wt-%) and the atomic C/N ratio of the collagen were monitored, dis-

carding samples not meeting the commonly accepted quality criteria for well-preserved colla-

gen. The acceptance range of C/N ratios characteristic for unaltered collagen was adopted as

2.9–3.6[38].

For radiocarbon analyses, the pretreated samples were mixed with a stoichiometric excess

of CuO and packed into glass ampoules, which were pumped in a vacuum and torch-sealed.

The packed samples were combusted at 520˚C overnight. The released CO2 was collected and

purified with liquid-N2 and ethanol traps at -196 ºC and -85ºC, respectively. After purifying

and measuring the sample δ13C value with IRMS (Thermo Finnigan Delta Plus XL; in dual

inlet mode) for fractionation correction, the CO2 samples were converted to graphite targets

in the presence of zinc powder and an iron catalyst[39]. AMS measurements were eventually

performed at the Uppsala Tandem Laboratory[40]. In addition, the radiocarbon ages of 5 sam-

ples were also measured at ETH Zurich. In these cases, the combined radiocarbon ages—if

applicable—were used as a basis for analyses.

For the measurement of δ13C and δ15N values, approximately 80 μg and 250 μg, respec-

tively, of dried and homogenized collagen powder was weighed into tin cups. The isotopic

composition of carbon and nitrogen was measured at Luomus/UH by the EA-IRMS (Elemen-

tal Analyzer-IRMS; NC 2500 + Thermo Finnigan Delta Plus Advantage) method. All samples

were run in duplicate. The isotopic values, normalized using international, certified isotopic

reference materials IAEA-CH3, -CH7, -N1, -N2, USGS-40 and -41, are given in the delta (δ)-

notation in parts per mille (‰), relative to the international standards VPDB (carbon) and

AIR (nitrogen) following:

d ¼ ðRsample=Rstandard � 1Þ � 1000 ð1Þ

where δ is either δ13C or δ15N and R is 13C/12C or 15N/14N for carbon and nitrogen, respec-

tively. Typical reproducibility (1σ), estimated from repeated measurements of in-house refer-

ence material and sample replicates is ±0.15‰ and ±0.3‰ for carbon and nitrogen,

respectively.

The isotopic values of the extracted collagens were additionally determined by the Unit of

Geochemistry at the Geoscience Faculty of the University of Tübingen (UT), Germany, using

EA-IRMS (Elemental analyzer-IRMS; NC 2500 + Thermo Quest Delta+XL). In Tübingen, the

results were tied to the VPDB and AIR–scales using the certified reference materials USGS24

and IAEA 305A. The average difference between UH and UT data were -0.2 and 0.2 per mille

for carbon and nitrogen, respectively. Eventually, the UH and UT isotopic results were aver-

aged for adopted values.
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Dietary modellings

Dietary information based on the measured isotopic values was obtained through FRUITS

software[25]. The Iron Age diet was assumed to consist of three food groups: terrestrial

resources (TR) (including plants, animals, and dairy products), freshwater animals (FA), and

marine animals (MA). Due to non-separable isotopic signatures, a more detailed grouping was

not reasonable. The dietary modeling does not separate terrestrial plants from animals or

hunter-gatherer subsistence from agriculture/cultivation. The nutrient data of National Food

Composition Database of Finland, FINELI (https://fineli.fi/fineli/en/index) and/or of National

Nutrient Database, United States Department of Agriculture (https://fdc.nal.usda.gov/) pro-

vided the carbon dry-weight compositions of each assumed dietary item. These were averaged

(±standard error of the mean) for each food group (Table K in S6 Appendix) and used in die-

tary modelings. Fractional isotopic values (Table J in S5 Appendix) of the edible macronutri-

ents—protein and energy (carbohydrates + fats)—for each food group were obtained based on

measured isotopic data from literature through the public δIANA database[41] established for

paleodietary research in the Nordic areas, supplemented with the data of this work. All the iso-

topic values (plants, dairy products, flesh, and bone; Table G-H in S5 Appendix) were individ-

ually converted to macronutrient isotopic values by adopting case-specific offsets (Table I in

S5 Appendix) from literature. These were then averaged (±standard error of the mean) for

each food group. Finally, FRUITS modelings were conducted separately for each sample k, i.e.

isotopic value pair, and as a result, the relative contributions of each food group toward the iso-

topic signals (θi,k; i = FA or MA) and the food group intakes (αi,k) for that individual were

obtained (Table L-M in S6 Appendix). It is expected that the assumed isotopic baseline and

macronutrient concentrations remained constant through the studied era. No a priori assump-

tions were made in dietary modelings as they were noticed to significantly affect the results.

The dietary isotopic baseline within the Baltic Sea environment depends on the location

from which the dietary carbon was obtained. Therefore, modeling was performed by assuming

three scenarios concerning the origin of the marine carbon: being solely from the Bothnian

Bay (henceforth: Bothnia, latitudes 63–66˚N), from the Baltic Sea beyond Kvarken (Baltic, lati-

tudes 56–63˚N), or from both regions (total, latitudes 56–66˚N). The Baltic region corresponds

to an area from Öland (latitude 56˚N) to the end of the Bothnian Bay (lat. 66˚N). This division

is based on the measured carbon stable isotopic data on dissolved inorganic carbon of the Bal-

tic Sea[42]—the isoscape of Bothnian Bay differs from the rest of the Baltic Sea, the transition

being geographically located around Kvarken (lat. 63˚N).

Corrections adopted for radiocarbon data

Marine reservoir effect (MRE) corrections depend on the assumed location from which the

dietary carbon is routed into the individuals. Thus, Bothnia, Baltic, and total scenarios were

also assumed for the MRE corrections. Terrestrial isotopic baselines were assumed to be simi-

lar in the Ostrobothnia and Baltic regions and freshwater sources were considered local.

MRE of the Baltic Sea is essentially linked to salinity[43] as this reflects the input of saline

oceanic water through Danish Straits. Therefore, MREs were estimated for all the scenarios by

evaluating the average salinities of the regions by using HELCOM salinity data (http://ocean.

ices.dk/helcom; ~570000 salinity measurements) and the salinity-MRE relations estimated by

Lougheed et al.[43]. The measured salinity data were sampled randomly and equidistantly (in

terms of latitude), the obtained sampled salinities (14399 samplings for Baltic, 5662 samplings

for Bothnia, and 20000 in total) were converted to MRE values and the obtained MREs were

averaged separately for all scenarios. For Bothnia, the maximal marine reservoir effect was

obtained as MREmax, Bothnia = 76(46) 14C years. As the marine flavor increases southward
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within the Baltic Sea basin due to marine water inflow through the Danish Straits, the salinity

increases too, and thus we correspondingly obtained MREmax, Baltic = 207(43) 14C years. For

the total scenario, MREmax, total = 180(63) was obtained. The uncertainties were estimated as

one standard deviation and are given in parentheses. Two measurements for the shallow strait

of Kvarken[43] provide an estimate of MREmax, Kvarken = 115(50) 14C years, being consistently

in between the adopted MREmax, Bothnia and MREmax, Baltic.

The maximal freshwater reservoir effect (FREmax) was obtained by measuring the 14C con-

tents of modern freshwater fish samples of Sander lucioperca (pike-perch) and Rutilus rutilus
(roach) from the Kyrö river and following the method of Philippsen et al.[44]. Flesh samples of

freshwater fish were not chemically pretreated before drying. This selection was made to

mimic the 14C contents of fish eventually contributing to formation of 14C content in the

human bone collagen samples. Two modern freshwater fish samples (caught 10/2012) yielded

radiocarbon contents of pMCFA,pike-perch = 102.5(3) (Hela-3550) and pMCFA,roach = 102.2(3)

(Hela-3552). The corresponding atmospheric 14C concentration was estimated as an weighed

average of measured[45] and extrapolated atmospheric 14C concentrations during the sample

formation, corresponding to the living years of fish, here 7 (pike-perch) and 5 (roach) years.

At first, annual weight increments of fish were estimated according to a Bayesian length–

weight relationship with species-specific parameters[46] (www.fishbase.org). These incre-

ments were used as weights in averaging the atmospheric 14C concentrations of the summer

months of the growth years to obtain atmospheric reference values (pMCatm), for which uncer-

tainties were adopted as 0.5 pMC units. FREmax values were eventually estimated for each fish i
from the ratio of the atmospheric and fish 14C concentrations as follows:

FREmax;i ¼ 8033 � ln
pMCatm

pMCFA;i
ð2Þ

where 8033 is the “Libby” mean lifetime of 14C. The uncertainty of FREmax,i was obtained

through error propagation as:

DFREmax;i ¼ 8033 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DpMCatm

pMCatm

� �2

þ
DpMCFA;i

pMCFA;i

 !2
v
u
u
t ð3Þ

The FREmax,i values were averaged to obtain an estimate for the maximum (average) fresh-

water reservoir effect of FREKyrö = 107(45) 14C years, for which the uncertainty has adopted

either the standard deviation or the individual ΔFREmax,i as a maximum value.

Dietary modelling by FRUITS was used to estimate the relative contribution of each food

group i toward the carbon isotopic signals for each sample k (θi,k; i = FA or MA). The marine

and freshwater reservoir effect corrections for radiocarbon ages were then obtained by scaling

down the MRE and FRE, respectively, with the average of these fractions modelled for carbon

isotopic ratios:

MREk ¼ yMA;C;k �MREmax ð4Þ

FREk ¼ yFA;C;k � FREmax ð5Þ

Eventually, the corrected radiocarbon ages RAk,corr were obtained from original ages (RAk)

as:

RAk;corr ¼ RAk � MREk � FREk ð6Þ

and the uncertainties were obtained by quadratic summing through error propagation. The
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corrected ages were calibrated with the Oxcal 4.3. software[26] by using IntCal13 calibration

curve[47] to obtain calendar-year probability distributions (cpd; Table N in S8 Appendix). As

the sample material was collagen from cortical bone, an own age offset of 18 ± 5 years[48] was

eventually added to individual cpds to reflect the moment of burial of the individuals, except

for the identified children.

Clustering, time series, and statistical analyses

Hierarchical cluster analyses were performed (S4 Appendix) on the isotopic data to identify its

subgroups. A group-average clustering procedure was used for this, as it takes into account all

the pairwise distances within the observed clusters to evaluate inter-cluster distances. This was

accompanied by a squared Euclidean distance estimate due to its intrinsic power to separate

clusters—it provides the highest inter-cluster distances and low within-cluster distance. Com-

parisons between the isotopic data clusters and subsets were performed by using a two-sample

T test by assuming unequal variances (Table F in S4 Appendix). This selection is based on an

assumption of normally distributed data and statistical analyses of small sample sets[49]. Sim-

ple moving averages (Table N in S8 Appendix) with a 50-year window were used to visualize

the temporal dependence of the number of dates, the isotopic ratios, their standard deviations

and the intakes of food groups (αi). Time series were plotted as a function of the mean values

of the cpds of the RE-corrected dates.

Chronological phase analyses were conducted through Bayesian modellings with Oxcal on

the reservoir-effect corrected dates (S7 Appendix). For outliers, were adopted through the

General outlier model with the basic settings recommended[50]. All the phase boundaries

(Boundary-option in Oxcal) provided by the models were shifted, as above, to account for the

bone own age. The phase boundaries are given as Highest Posterior Density (HPD, 1 and 2σ)

ranges, mean values, and their standard deviations (Table 4). In addition, the kernel density

estimation (KDE) approach[27] was used to assess the widths and shapes of the summed cal-

endar-year probability distributions (scpd), their uncertainties and sensitivities toward the ori-

gin of carbon, and subsequent RE corrections (Fig M in S7 Appendix). The KDE approach

was considered suitable since dependence[27] between the samples is established by the pecu-

liar habit of water burial. In addition to the KDE approach, total (scpdLL) and cluster-specific

(scpdLL1-LL3) scpds of the RE-corrected dates were used to visualize the development of the

intensity of the burial activity. Randomly distributed calendar year dates (30 pcs) were

assumed to span over AD 320–780 to form simulated (R_Simulate in Oxcal) 14C dates and

their sum distribution. This was repeated 30 times to obtain average sum distribution scpdRan-

dom representing a null hypothesis of constant human activity within the period. The uncer-

tainty of the simulated random sum distribution (ΔscpdRandom) was obtained as a standard

deviation (1σ) of the simulated distributions. The eventual scpdLL-Random reflecting the periods

of time of less/more-than-constant human activity was obtained by subtracting scpdRandom

from the total distribution scpdLL. The one-sigma limits were deduced as scpdLL-Random ±
ΔscpdRandom. The KDE and background-subtraction approaches provided nearly similar out-

comes concerning the temporal development, while cluster-specific approach provided insight

on the roles of the observed subgroups.

Results

Diverse isotopic distribution

Extraordinarily broad carbon (C) and nitrogen (N) isotopic ratio distribution is observed in

the human bone collagen of the Levänluhta individuals (Table 1, Fig 2, Table D in S4 Appen-

dix). The full δ13C and δ15N distributions have standard deviations of up to 7 and 5 times,
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respectively, compared to those of the reference populations around the Baltic Sea. Half (50%)

of the individuals are osteologically identified as adults (Table B in S4 Appendix), but commin-

gled skeletal remains allow for sex estimations for only 24% of individuals[20,21] (Text and

Table C in S4 Appendix). Nevertheless, a picture emerges of a burial containing children and

adults of both sexes, but with clear emphasis on adult females. The broad isotopic distribution

involves also the identified female subgroup (Text and Fig H in S4 Appendix), this being con-

sistent with the expected female dominance within the Levänluhta material. Since the isotopic

differences between females and males are of the order of 1 permille[51], the broad distribu-

tion likely indicates significant differences among individuals in the importance of terrestrial,

freshwater, and marine resources in their diets and, consequently, highly versatile subsistence

strategies.

Hierarchical cluster analysis reveals three subgroups (LL1-LL3) with distinguishable isoto-

pic signatures (Fig 2, Text and Table E in S4 Appendix). Under assumption of normally dis-

tributed data, this heterogeneity can be statistically verified and elementally decomposed

(Table F in S4 Appendix). The subgroup LL1 contains most of the individuals (22/30) and

forms the base population within the Levänluhta site. Its isotopic distribution essentially

resembles that of medieval Sigtuna[52] and, somewhat, the hunter-gatherers of Zvejnieki[54]

with smallest squared-Euclidean(SE) distances. The subgroup LL2 has the smallest SE distance

to the Viking Age population of Ridanäs/Gotland, having a mixed terrestrial and marine diet

[53]. Its separation from LL1 is solely due to the significantly different carbon isotopic ratios (t

(4) = -6.675, p = 0.003) with separation of about 3‰. The subgroup LL3 is separated from LL1

(δ13C: t(3) = -6.077, p = 0.009 and δ15N: t(4) = -5.367, p = 0.006) and LL2 (δ15N: (t(6) = -5.111,

p = 0.002) with the largest observed SE distances within the Levänluhta site. The individuals

from the other water burial of Käldamäki isotopically resemble those of LL1 and Sigtuna but

possess slightly higher δ13C values.

Conversion of isotopic data into food group intakes[25] provides insight into the above and

emphasizes the versatility of the livelihoods utilized (Fig 3, Table 2, Tables L-M in S6 Appen-

dix). Terrestrial resources provided the major portion (80–85%) of dietary input for most of

the subgroups, except for LL3 that shows very large average marine intake of 36–49%. Overall,

the freshwater component of less than 8% reflects a modest dietary supplement from freshwa-

ter sources, probably reflecting the scarcity of resources (Kyrö river) compared to the lake

region in eastern Fennoscandia (Fig 1). Particularly, the modeled (Bothnia) diet of LL1 is 85%

terrestrial with a limited use of marine (9%) and freshwater (6%) food. Usage of all the avail-

able dietary resources is consistent with the interpretation of the LL1 individuals as belonging

to a local base population.

The people of the small subgroups, LL2, KM, and particularly LL3, consumed larger

amounts (13–49%) of marine food. The larger marine fraction (15%) of the KM subgroup

appears logical due to the closer vicinity of Käldamäki to the seashore (Fig 1, Fig F in S2

Appendix). The use of freshwater food in KM is non-negligible (5%), emphasizing the impor-

tance of the freshwater component even in close vicinity to the marine shoreline. The LL2

individuals, instead, represent a significant exception compared to LL1 and KM: they essen-

tially did not use freshwater resources at all. The diet of LL2 was a mixture of marine (13–16%)

and terrestrial (82–85%) food, reflected by the elevated average δ13C value of -18.5‰ and lead-

ing to the observed small SE distance to the population of Ridanäs, Gotland.

Irrespective of the assumed source area for the marine dietary input (Bothnia, Baltic or

total; Table 2, Tables L-M in S6 Appendix), the modeled portions of either freshwater, marine

or terrestrial diets remain essentially unchanged, except for the half-marine LL3 individuals.

The shallow strait of Kvarken (Fig 1) divides the Gulf of Bothnia into the Bothnian Sea and

more northern and brackish Bothnian Bay. Aquatic fauna of Bothnian Bay contains carbon
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originating from organic matter of riverine runoff waters that are typically dominated by dis-

solved or particulate carbon with low isotopic ratios[56]. Thus, the carbon isotopic ratio of dis-

solved inorganic carbon in the Bothnian Bay differs from that of the Bothnian Sea and Baltic

proper[42]. As a result, a large difference in isotopic baseline values is observed (Table J in S5

Appendix) between the MABothnia (δ13CMA,Bothnia, protein = -20.0‰) and the MABaltic (δ13CMA,

Baltic, protein = -15.9‰) food group scenarios, affecting the model output accordingly for LL3.

Table 1. Human bone collagen isotopic data.

Site Sample # C-% N-% C/N value δ13C(‰), UH δ15N(‰), UH δ13C(‰), UT δ15N(‰), UT δ13C(‰), adopted δ15N(‰), adopted subgroup

LL 1 39.3 12.8 3.3 -20.2 12.8 -20.2 12.8 1

LL 2 33.9 12.8 3.6 -20.9 12.8 -20.9 12.8 1

LL 3 38.3 11 3.4 -21.7 11.0 -21.7 11.0 1

LL 6 37.1 10.6 3.5 -19.0 10.6 -19.0 10.6 2

LL 10 38.3 12.8 3.6 -20.9 12.8 -20.9 12.8 1

LL 11 39.1 11.5 3.6 -21.5 11.5 -21.5 11.5 1

LL 12 40.0 10 3.6 -18.9 10.0 -18.9 10.0 2

LL 13 39.1 14.0 3.3 NA NA -17.4 12.1 -17.4 12.1 2

LL 14 37.5 13.3 3.3 -16.3 15.6 -15.9 15.8 -16.1 15.7 3

LL 15 38.6 14.0 3.2 -16.7 16.3 -17.7 14.8 -17.2 15.5 3

LL 16 41.0 14.6 3.3 -22.4 10.6 -21.8 10.0 -22.1 10.3 1

LL 19 40.1 14.4 3.2 -21.5 11.6 -21.1 11.3 -21.3 11.4 1

LL 20 40.7 14.4 3.3 -20.4 11.5 -19.8 11.4 -20.1 11.5 1

LL 21 41.7 14.8 3.3 -19.2 14.0 -18.8 13.8 -19.0 13.9 3

LL 22 40.8 14.5 3.3 -22.3 10.9 -21.8 11.0 -22.0 11.0 1

LL 23 40.2 14.0 3.4 -22.4 11.1 -22.0 11.1 -22.2 11.1 1

LL 24 40.0 14.1 3.3 -22.3 10.2 -21.9 10.0 -22.1 10.1 1

LL 25 38.8 13.7 3.3 -21.1 13.0 -20.8 12.7 -20.9 12.9 1

LL 26 42.0 15.0 3.3 -21.8 10.9 -21.5 10.7 -21.6 10.8 1

LL 27 42.9 15.3 3.3 -17.8 13.7 -17.6 13.2 -17.7 13.4 3

LL 29 40.0 14.3 3.3 -21.1 11.0 -20.9 10.6 -21.0 10.8 1

LL 30 38.8 13.9 3.2 -22.0 10.8 -21.7 10.7 -21.8 10.8 1

LL 31 38.7 13.8 3.3 -20.4 11.1 -20.3 10.7 -20.3 10.9 1

LL 33 42.7 15.1 3.3 -21.4 13.7 -21.1 13.5 -21.2 13.6 1

LL 34 42.4 14.9 3.3 -20.4 14.5 -20.1 14.2 -20.2 14.3 1

LL 35 41.2 14.6 3.3 -20.9 10.7 -20.5 10.7 -20.7 10.7 1

LL 36 40.6 14.3 3.3 -22.0 11.8 -21.7 11.8 -21.9 11.8 1

LL 37 39.0 13.9 3.3 -21.8 11.1 -21.7 10.8 -21.7 11.0 1

LL 38 39.1 13.8 3.3 -17.4 11.2 -17.6 11.1 -17.5 11.2 2

LL 39 40.6 14.3 3.3 -20.4 12.0 -20.3 11.9 -20.4 12.0 1

KM 40 39.0 13.8 3.3 -21.2 11.1 -21.0 11.1 -21.1 11.1

KM 41 43.0 14.9 3.4 -19.4 12.7 -19.1 13.0 -19.3 12.9

KM 42 41.0 14.3 3.3 -20.8 11.5 -20.2 11.7 -20.5 11.6

KM 43 38.3 13.6 3.3 -19.8 12.1 -19.7 12.3 -19.7 12.2

Human bone collagen isotopic data measured within this study. LL = Levänluhta, KM = Käldamäki, UH = University of Helsinki, UT = University of Tübingen,

subgroup = number of the subgroup to which the individual belongs (LL1-LL3). The following results were rejected (struck through) from the dietary modelling and

subsequent analysis based on identification, quality criteria or radiocarbon dating. #4: radiocarbon age too young (139 ± 30 BP); #5: right femur; #7: high C/N value;

#8,9: C-% not measured; #17: too small sample; #18: radiocarbon age too old (4124 ± 34 BP); #28: C-%, N-% not measured, #32: risk of being duplicate. The adopted

isotopic data were obtained by averaging of the UH and UT results. Altogether, there were 30 and 4 acceptable measurements on left femora of Levänluhta and

Käldamäki individuals, respectively.

https://doi.org/10.1371/journal.pone.0231787.t001
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The observed strong terrestrial dietary component may be partly due to agricultural tradi-

tions (S2 Appendix). In Ostrobothnia, the gradually extending shoreline meadows provided

fodder for farmyard animals, whereas higher elevations were already used for cultivation from

the Late Bronze Age[17] to the pre-Roman Iron Age[57]. Field cultivation in Ostrobothnia is

proven at around AD 600[58] paralleling the observation of permanent and manured cultiva-

tion at 64˚N latitude in Northern Sweden from around AD 480 onward[59], also located 30

km inland. In the vicinity of Levänluhta, the first sporadic occurrences of Hordeum (barley)

and Secale (rye) pollen are observed from around AD 690 onward[22]. The recent study of

Levänluhta and Käldamäki burials[22] proves contemporaneous animal husbandry within the

area, as bones of domesticated animals were found. Thus, there are inarguable signs of agricul-

ture within the area.

The large terrestrial portion could also reflect hunting and gathering. Indeed, the estimated

high protein usage (Table 2) generally resemble those of northern hunter-gatherer diets[60],

Fig 2. Carbon and nitrogen stable isotopic ratios. The measured stable isotopic ratios (Table 1) of Levänluhta (LL; full circles) and Käldamäki (KM, open

circles) are presented among the reference data from the Baltic basin. LL1, 2 and 3 refer to the subgroups revealed by hierarchical clustering analysis. The

obtained stable isotopic data are compared to the data sets (see text; Table D in S4 Appendix) of human bone collagen[52–55] shown by light grey squares and

corresponding population standard deviations. The general direction of influence of the food groups are schematically given as grey arrows, the origin being

the average value of the LL isotopic data.

https://doi.org/10.1371/journal.pone.0231787.g002
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strongly based on animal protein. Hunting and subsequent fur trading have traditionally been

important sources of prosperity in prehistoric Northern Europe[61,62]. The Suomenselkä

ridgeline (Fig 1) is a roughly 400 km long moraine formation that acts as the watershed from

which all the Ostrobothnian rivers, including the Kyrö river, originate. It separates Ostroboth-

nia from the eastern lake region within Eastern Fennoscandia. Along this ridgeline, massive

trapping-pit systems have been found[17], evidencing the importance of past hunting. In

Ostrobothnia, large numbers of arrowheads deriving from the Migration period (AD 400–

550) provide additional evidence for hunting[16], contemporaneous to the Levänluhta era.

The proximity of the Levänluhta site to the southern end of the Suomenselkä ridgeline pro-

vided people access to vast eastern and northern hunting grounds. In Levänluhta, we see

inland people, particularly the LL1 subgroup, pursuing strongly terrestrial livelihoods with

high protein consumption for centuries. These people were likely instrumental in hunting and

subsequent fur trading activities, thus contributing in the evolution of the Ostrobothnian pros-

perity during the Iron Age.

Fig 3. Subgroup-specific food group intake distributions. Solid lines represent the mean values of the subgroup-specific food group intake distributions and the

dashed lines represent the median values obtained by the FRUITS dietary reconstructions by assuming the Bothnia scenario. The boxes and whiskers illustrate one and

two standard deviations of the distributions. The illustrated data is coherent with the Table 2.

https://doi.org/10.1371/journal.pone.0231787.g003
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Additionally, seal hunting (S1 Appendix) was already an important source of livelihood for

both sides of the Gulf of Bothnia from the Mesolithic[18,63,64]. The worldwide importance of

seal hunting circa AD 300 is visible through the ancient Roman price list Edict of Diocletian

[63,65,66]: skins of seals were the most expensive ones. Seal hunting has been important even

closer to the modern era. In the 16th century, typically 55–75% of peasants in Ostrobothnia

participated in massive seal hunting expeditions lasting several months[63]. Based on these

thousands of years of traditions, seal hunting likely provided a significant component of the

marine dietary influence observed, naturally accompanied by fishing.

Levänluhta timeline

Quantitative understanding of dietary habits allows for estimating the influences of both

marine and freshwater reservoir effects within the measured radiocarbon dates. Archaeologi-

cally, the Levänluhta water burial has been estimated to span from AD 300 to AD 800[19,22].

Radiocarbon analyses and reservoir-effect corrections based on isotopic evidence (Table 3),

and subsequent Bayesian chronological modelings (Table 4, S7 Appendix) prove this long

human timeline ranging through centuries. Particularly, the kernel density estimation (KDE)–

based summed calendar-year probability distribution (scpd) continues from AD 300 to AD

800 and displays peaked burial activities at about AD 400 and AD 650 (Fig 4). According to

the confidence limit estimates, the latter peak particularly stands out from the distribution.

The increase of scpd during the AD 300s reflects the start of the Levänluhta burial activity

during the Late Roman Iron Age. The subsequent peak can be linked to the Southern Ostro-

bothnian culture flourishing, particularly during the Migration period of AD 400–550 when

the area became the richest within the Eastern Fennoscandia[19]. Bayesian modeling yields

the start boundary (median) of the burial activity as AD 405. The latter peak coincides with the

earliest interpretations of the site dating (AD 600–650)[19] based on large numbers of Mero-

vingian artifacts found. This emphasizes the increasing importance of the Levänluhta, particu-

larly during the Merovingian period. Toward AD 800 the burial activity declines and the end

boundary (median) is modeled as AD 750. The decline in the burial activity within circa AD

Table 2. Mean subgroup-specific food group intakes.

Subgroup N Area TerrestrialαTR FreshwaterαFA Marine αMA Protein βProtein Energy βEnergy

LL1 22 Bothnia 0.85 0.06 0.09 0.47 0.53

Baltic 0.86 0.07 0.07 0.47 0.53

Total 0.85 0.07 0.08 0.47 0.53

LL2 4 Bothnia 0.85 0.02 0.13 0.44 0.56

Baltic 0.82 0.02 0.16 0.46 0.54

Total 0.83 0.02 0.15 0.45 0.55

LL3 4 Bothnia 0.48 0.03 0.49 0.57 0.43

Baltic 0.58 0.06 0.36 0.53 0.47

Total 0.54 0.04 0.42 0.55 0.45

KM 4 Bothnia 0.80 0.05 0.15 0.48 0.52

Baltic 0.81 0.06 0.13 0.48 0.52

Total 0.80 0.05 0.14 0.48 0.52

The mean subgroup-specific food group intakes (αk, k = TR, FA, MA) have been obtained from dietary modeling together with the estimated protein and energy

fractions (βf, f = Protein, Energy) of food. The values assume either Bothnian Bay (63–66˚N i.e. Bothnia), Baltic Sea from Öland to Kvarken (56–63˚N i.e. Baltic), or both

(56–66˚N i.e. total) as the area of origin for the marine dietary input. LL = Levänluhta, KM = Käldamäki, N = number of individuals within the subgroup (Nall = 34, NLL

= 30).

https://doi.org/10.1371/journal.pone.0231787.t002
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Table 3. Radiocarbon ages and their corrections.

Site Sample #, k Lab code (Hela-xxxx, ETH-xxxxx) RA (BP) σ RAadopted (BP) σadopted MREk (14C yr) σMRE FREk (14C yr) σFRE RAcorr (BP) σcorr

LL 1 2128 1339 30 1339 30 17 12 10 8 1312 33

LL 2 2243 1473 30 1473 30 13 10 13 10 1447 33

LL 3 2244 1675 30 1675 30 6 6 9 7 1660 31

LL 6 2251 1376 30 1376 30 10 8 4 4 1362 31

LL 10 2262 1433 30 1433 30 13 10 13 10 1407 33

LL 11 2263 1633 30 1633 30 8 7 11 8 1614 32

LL 12 2264 1547 30 1547 30 7 7 4 4 1536 31

LL 13 3268 1423 30 1423 30 19 14 3 4 1401 33

LL 14 3269 1630 31 1630 31 57 36 3 3 1570 47

LL 15 3270 1626 31 1626 31 48 30 4 4 1574 43

LL 16 3271 1539 31 1539 31 5 5 7 6 1527 32

LL 19 3274 1664 33 1599 66 8 7 10 8 1580 66

LL 19 57297 1533 26

LL 20 3275 1232 30 1232 30 11 9 7 6 1214 32

LL 21 3276 1441 31 1441 31 27 18 7 7 1406 37

LL 22 3277 1309 31 1287 31 6 6 10 7 1272 32

LL 22 57298 1265 26

LL 23 3278 1654 29 1654 29 6 5 10 8 1638 31

LL 24 3279 1481 28 1481 28 5 5 7 6 1470 29

LL 25 3280 1402 28 1402 28 13 10 14 10 1375 31

LL 26 3281 2288 29 1414 28 6 6 8 7 1400 29

LL 26 55271 1414 28

LL 27 3282 1691 28 1691 28 29 19 4 4 1658 34

LL 29 3284 1532 28 1523 28 7 7 8 7 1507 30

LL 29 57299 1513 26

LL 30 3285 1405 29 1405 29 6 6 9 7 1391 30

LL 31 3286 1530 27 1530 27 9 8 6 6 1515 29

LL 33 3288 1466 27 1466 27 6 5 10 8 1450 29

LL 34 3289 1439 28 1439 28 9 8 11 8 1419 30

LL 35 3290 1648 27 1648 27 8 7 7 6 1633 29

LL 36 3291 1314 27 1314 27 8 7 12 9 1294 29

LL 37 3292 1656 28 1656 28 6 6 9 7 1641 29

LL 38 3293 1304 27 1304 27 12 10 4 4 1288 29

LL 39 3294 1401 27 1401 27 13 10 9 7 1380 30

KM 40 3295 1470 27 1470 27 8 7 8 7 1453 29

KM 41 3296 1581 27 1581 27 21 15 7 6 1553 31

KM 42 3297 1596 27 1596 27 11 9 8 7 1577 29

KM 43 3298 1663 28 1663 28 17 12 7 6 1640 31

Radiocarbon ages (RA) measured within this study. LL = Levänluhta, KM = Käldamäki, Hela-xxxx = four-digit code for the University of Helsinki 14C dates, ETH-

xxxxx = five-digit code for ETH Zürich 14C dates, σ’s = standard deviations of 14C dates, MRE = marine reservoir effect correction, FRE = freshwater reservoir effect

correction, σyy’s = uncertainties (of MRE, FRE or corrected age). The following results were rejected from the subsequent analysis based on quality criteria or

radiocarbon dating. #4: radiocarbon age too young (139 ± 30 BP, the color of bone was also whiter); #5: right femur; #7: high C/N value; #8,9: C-% not measured; #17:

too small sample; #18: radiocarbon age too old (4124 ± 34 BP); #28: C-%, N-% not measured, #32: risk of being duplicate. The following samples were measured also

through University of Tübingen & ETH Zürich, since verification was needed based on technical indications: #19, 22, 26, 29, 32. In the cases when adopted 14C age was

determined as an average of these measurements (#19, 22, 29, 32), adopted uncertainties were deduced as either statistical uncertainties of the individual measurements

or asRAHela−RAETH/2, whichever was highest. The Bothnian Bay scenario as the origin of marine carbon was assumed for all the samples. Altogether, there were 30 and

4 acceptable measurements of Levänluhta and Käldamäki individuals, respectively.

https://doi.org/10.1371/journal.pone.0231787.t003
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700–800 is coherent with the general decline[19] of the inhabitation within Ostrobothnia. This

eventual loss has been explained as a consequence[18] of the collapse of the North Sea trading

network in around AD 800[67].

Fig 4. Kernel density analysis of the summed calendar-year probability distribution. Indicates burial density based on

reservoir-effect corrected Levänluhta dates of 30 individuals (Table 3) obtained through kernel density estimate (KDE)

analysis[27] and by assuming Bothnian Bay as the source of marine carbon. Red crosses: individual radiocarbon dates; open

dark grey circles: medians of the posterior calendar-year probability distributions; open light grey circles: medians of the

individual cpds; dark grey distribution: summed posterior calendar-year probability distribution obtained by KDE analysis;

blue line and blue overlying band: mean ± 1σ confidence limit of the produced KDE distribution. This indicates the

significance of the observed features.

https://doi.org/10.1371/journal.pone.0231787.g004

Table 4. Results of the Bayesian chronological models.

Event 68% HPD,

early

68% HPD,

late

95% HPD,

early

95% HPD,

late

mean σ median

LL start, Bothnia 385 425 345 465 400 25 405

LL start, Baltic 405 530 390 540 475 45 490

LL start, total 405 530 385 540 470 45 485

LL start, archaeology� 300

LL end, Bothnia 715 775 700 810 750 30 750

LL end, Baltic 720 775 705 815 755 30 750

LL end, total 715 770 700 810 750 30 750

LL end, archaeology� 800

Quantitative results of the Bayesian chronological models for the Levänluhta burial given as calendar year estimates. HPD = highest posterior density, σ = standard

deviation of calendar-year probability distribution provided by the calibration. The boundaries include the cortical bone own age correction of 18 ± 5 years[48] and thus

the values reflect the moments when the burial activity has started/ended.

�Archaeological datings, assumed to correspond to the median ages, were adopted from the literatur [19,22].

https://doi.org/10.1371/journal.pone.0231787.t004
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Unforeseen climatic downturn hit the population

Folktales have been told throughout the Northern Hemisphere on extended cold periods.

These include the three-year Fimbulvinter in Scandinavia[12], the three-year loss of Sun in

Buryatia[68] and the theft of the Sun and Moon in Finnic regions[69] (Table O in S9 Appen-

dix). The geographical spread of the tales of the lost Sun is coherent with the hemispheric-scale

tree-growth decline during the mid-6th century AD[2] and the recently proven extensive loss

of light of several years during the AD 540s[8] (S1 Appendix). If the cold period of Fimbulvin-

ter has its counterpart in reality, the years of AD 541–544 would provide its explanation in

terms of length, magnitude, and even its mid-millennial timing.

Less intensive volcanic analogies of the 17th century AD caused significant crop losses,

acute food shortages, and human struggle, which eventually yielded severely increased mortal-

ity in Eastern Fennoscandia and particularly in Ostrobothnia[10] (S1 Appendix). If the terres-

trial isotopic signal observed in Levänluhta is strong due to cultivation, one would expect

multitude of potential effects in the data due to the climatic downturn. Post-anomalous decline

in the terrestrial food group intake would probably appear due to crop losses. Further, the sub-

group-specific burial intensity estimates by scpds would probably be affected subsequent to the

downturn. Long-lasting starvation and malnutrition could, in principle, be also seen in isoto-

pic ratios as an increase of δ15N values in human tissues due to catabolism and a slight decrease

of δ13C values due to the recycling of body fat with distinctly low carbon isotopic ratios [70,71]

although slow turnover rate of cortical bone could possibly surpass these effects. On the other

hand, a strong role of cultivation practices could have elevated the δ15N values through manur-

ing[72–74] exercised already at high latitudes[59]. Cattle manure could have been used to

enhance crop yields thus elevating the plant δ15N values that were transferred into bone colla-

gen through diet.

There is no statistically significant increase in the δ15N data after the downturn (AD 536–

570) (Fig 5, Table F in S4 Appendix). Probably the climatic downturn did not induce malnutri-

tion long enough to be seen within the long bones with a slow turnover rate. In addition, there

is no significant post-anomalous decrease in the terrestrial diet either (Fig 6A, Table L-M in S6

Appendix) that could potentially be attributed to crop losses. Low-TR individuals had already

appeared before the anomaly and were characterized by large consumption of marine food.

Furthermore, one does not see an immediate change in post-anomalous burial intensity (Fig

7B, Fig Na in S8 Appendix). Instead, the most significant scpd increase peaks a century later—

too late to be interpreted as an increased mortality due to harvest failures caused by the anom-

aly. During the peak, two individuals with elevated δ15N values (Fig 5) can be explained (Text

in S4 Appendix) as children still bearing breastfeeding influence[51,75]. The remaining LL1

individuals within the peak do not have statistically significant increase in their δ15N values

with respect to the pre-anomalous era (Table F in S4 Appendix). So, regardless of the multi-

tude of high-latitude indications of cultivation in the area[57–59,76,77], it seemed to remain

isotopically a fairly invisible livelihood. This is consistent with the recent observation of only

sporadic signs of barley and rye pollen from around AD 690 and continuous cultivation only

from around AD 1350 onward close to Levänluhta[22]. In addition, it agrees with the proposed

significant use of animal protein within diets. It seems that the base population continued to

supplement their animal husbandry with hunting and fishing under the pressure of the decadal

climatic downturn, and they were likely to have originally relied less on cultivation.

An interesting feature coinciding the climatic anomaly and the subsequent LALIA is the

decreased role of LL2 and LL3 subgroups during the strongest LALIA (Figs 5 and 6, Text in S8

Appendix). As the mean values of cpds of LL2 and LL3 do not fall within AD 540–650 the scat-

tering of the isotopic ratios decrease drastically (Fig Nb in S8 Appendix) during AD 540–600
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i.e. essentially during the strongest LALIA. This reflects the continuation of burials of only LL1

individuals during the period and, particularly, disappearance of burials of strongly marine LL3

individuals. However, as the individual cpds are typically centennial-wide, the point-estimates of

means may provide an incomplete view. Nevertheless, this feature is worth to consider further.

Seal hunting essentially relies on the extent of the ice margin[63]. For example, the cooling

of the climate from AD 1570 to AD 1610 decreased the Ostrobothnian seal prey drastically

since the edge of the firm ice moved southward, away from the strait of Kvarken[63,78]. The

pre-anomalous climatic conditions in Ostrobothnia were essentially the same in the 16th cen-

tury AD as in the 6th (Text in S1 Appendix). Therefore, analogous to the 16th-century cold

period and shortage of seal prey, the ice edge receded southward due to decades of LALIA

coldness, which probably resulted in poorer opportunities for seal hunting near the Kvarken.

This would be consistent with the disappearance of strongly marine (LL3) individuals from

the Levänluhta material and the subsequently reduced scatter within the isotopic values when

sources of subsistence were reduced. However, within the LL1 base population, non-negligible

marine fraction still remained. This emphasizes the role of the marine resources as a minor

dietary supplement even through the climatic downturn. After the LALIA, the climate partly

recovered and the ice edge inevitably returned northward, closer to the old sealing grounds,

and probably increasing again the diversity of livelihoods and thus scattering. Throughout the

Levänluhta era, the land uplift gradually evolved and, altogether, the shoreline receded away

by about 10–15 km during four centuries (S3 Appendix). The post-glacial rebound created

additional pressure for the Levänluhta people to reduce opportunities for marine subsistence.

This may be reflected in the general trend of decreasing marine influence over the centuries.

Discussion

Resilience founded on versatile livelihoods

The standard deviations of their isotopic values (Fig Nb in S8 Appendix) quantify the observed

livelihood heterogeneity—the spread of isotopic values is largest during the pre-anomalous

period suggesting various and temporally overlapping livelihoods. This versatility is visible

also within individual subgroups–nearly all subpopulations seemed to utilize all the available

dietary resources, except LL2. The temporal overlap is further proven by scpds of the three sub-

groups LL1-LL3 since they all possessed a certain amount of calendar-year probability (Fig 7)

during the Migration period, indicating their contemporaneity with the pre-anomalous

period. The diversity of livelihoods and flexibility to take advantage of changing conditions are

the essence of resilience[79] that supported, for instance, persistence of the Canadian indige-

nous populations[80] and the Iron Age cultures of northern Sweden[81]. Sources of resilience

were probably similar among the Levänluhta people: living on the boundaries of marine, fresh-

water, and terrestrial ecosystems enabled the diverse livelihoods that allowed them to adapt

their dietary routines under the climatic downturn carrying them over the Fimbulvinter. Such

resilience was likely sustained in Ostrobothnia as diverse livelihoods have been also suggested

for the Bronze Age[17] and by the isotopic evidence of human remains for the historical Little

Ice Age[82].

Fig 5. Time dependence of the subgroup-specific isotopic data. The time estimates have been obtained as mean values of the individual calendar-

year probability distributions based on Bothnia (63–66˚N) scenario. The two highest δ15N values of LL1 are of children and are indicated by arrows.

The solid line is a moving average (m.a.) with a 50-year time window. As a sensitivity analysis, values (dashed lines) are given by also assuming the

majority of the marine carbon originated from the whole Baltic basin (56–66˚N, total). Chronologically, the round symbols correspond to the mean

values of the calendar-year probability distributions of individual RE-corrected radiocarbon dates, taking into account 18 ± 5 yr bone own age[48].

The blue bars schematically illustrate the influence of the Late Antique Little Ice Age (LALIA) triggered by the volcanic anomaly of AD 536–550[6].

https://doi.org/10.1371/journal.pone.0231787.g005
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Indigenous Sámi have demonstrated versatile ways of living during the Iron Age, likely

comparable to the Levänluhta population. Notably, in Northern Sweden their livelihoods

resembled those of their Germanic neighbors in the south, including cultivation, animal hus-

bandry and seal hunting[81]. Such punctuated sedentism, utilizing both the marine shoreline

and terrestrial inland resources, provided them a long-term strategy for survival and main-

tained their sources of subsistence[83]. Indeed, starting from around AD 600, archaeological

stray finds appear increasingly within the Northern Ostrobothnian river islands[84], indicat-

ing stronger shore–inland connections through these natural passageways. For the Levänluhta

population, such an economy would have been mediated by the Kyrö river, supported by

ridgelines[17]. Nearly equal division between the marine and terrestrial resources of LL3 indi-

viduals and the significant marine component of LL2 and KM (Table 2) indicate utilization of

both marine littoral and terrestrial inland resources. Similarly, the peaked number of burials

around AD 600–660 could also be linked to such increased shore–inland connections, bring-

ing in a moderate marine influence to the LL1 base population, regardless of the shoreline

displacement.

Evolving of versatile community

Significant changes occurred all around the Baltic Sea during the anomalous period of the 6th

century. At the western side of the Gulf of Bothnia, the large settlements of Gene and Högom

were abandoned around AD 550–600[85], when climatic hardships and the collapse of Roman

trading routes possibly intermingled in a disastrous way[19]. The cold event is so visible in pal-

ynological and archaeological data in Estonia that the moment has been seen as a chronologi-

cal boundary for a whole new archaeological era[13]. Cultures along the Northern

Ostrobothnian shores, a couple of hundred kilometers north from the Levänluhta site, that

relied on sealing and fishing, also seemed to have vanished circa AD 600 indicating that the

collapse of the long-distance trading networks of Rome reached the northern areas[18]. In a

broader context, the Justinian Plague spread within Europe from AD 542 onward, killing one-

third of its population[86]. While the world seemed to fall apart around Eastern Fennoscandia

after AD 536, the Merovingian culture flourished from around AD 550 onward in the old his-

torical southwestern provinces of Finland proper, Satakunta, and Tavastia[61]. The notable

increase of burials at Levänluhta during the Merovingian period may not be an independent

phenomenon. Low population density, still successful trade, versatile livelihoods—not largely

dependent on cultivation—and rich natural resources beyond the Suomenselkä ridgeline may

have been attractive. Thus, instead of increased natality and/or mortality of the local popula-

tion, another explanation for the AD 600–660 increase could be an inflow of new people prac-

ticing livelihoods similar to the base population.

Wide-ranging contacts with neighboring regions are seen throughout the Ostrobothnian

Iron Age[61]—artifacts of Roman, Scandinavian, Baltic, and Eastern and Western European

characteristics have been found[19]. Thus, the Ostrobothnian Iron Age culture was an integral

part of the Northern European-wide trading network. The weak links to freshwater sources

and the mixed diet of terrestrial and marine food of the LL2 individuals—resembling that of

Viking Age Gotlanders—are coherent with a scenario in which these people assimilated their

Fig 6. Time dependence of the food group fractions. The values have been obtained based on Bothnia (63–66˚N) scenario. The solid line is a

moving average (m.a.) with a 50-year time window. a) Terrestrial resources. b) Freshwater animals. c) Marine animals. As a sensitivity analysis,

values (dashed lines) are given by also assuming the majority of the marine carbon originated from the whole Baltic basin (56–66˚N, total).
Chronologically, the round symbols correspond to the mean values of the calendar-year probability distributions of individual RE-corrected

radiocarbon dates, taking into account 18 ± 5 yr bone own age[48]. The blue bars schematically illustrate the influence of the Late Antique Little Ice

Age (LALIA) triggered by the volcanic anomaly of AD 536–550[6].

https://doi.org/10.1371/journal.pone.0231787.g006

PLOS ONE Buried in water, burdened by nature—Resilience carried the Iron Age people through Fimbulvinter

PLOS ONE | https://doi.org/10.1371/journal.pone.0231787 April 21, 2020 19 / 27

https://doi.org/10.1371/journal.pone.0231787.g006
https://doi.org/10.1371/journal.pone.0231787


PLOS ONE Buried in water, burdened by nature—Resilience carried the Iron Age people through Fimbulvinter

PLOS ONE | https://doi.org/10.1371/journal.pone.0231787 April 21, 2020 20 / 27

https://doi.org/10.1371/journal.pone.0231787


bone collagen isotopic signals within the Baltic proper instead of Ostrobothnia. Burials dated

mainly to AD 550–700 are coherent with the contemporaneous archaeological finds of Levän-

luhta that indicate connections all around the Baltic Sea and especially to the Vendel period

Scandinavia[19,22]. Indeed, the LL2 individuals might have been involved in forming contacts

between these regions.

Two studies have recently shed light on the genetic and geographical background of the

Levänluhta people[35,87]. The genome of the majority (4/5 i.e. 80%) of the studied Levänluhta

individuals resembles that of the modern Sámi and one of modern Scandinavians/Lithuanians

(Table P in S9 Appendix). This majority corresponds to the LL1 base population in magnitude

(22/30 i.e. 73%; Table 2), suggesting a potential linkage between these populations. The exist-

ing Sr isotopic data on four individuals show also spread, indicating diverse geographical ori-

gins, including local, eastern Fennoscandian, or Scandinavian backgrounds[87]. A recent

study of the oldest place names in the region does not support Iron Age toponyms of Finnish,

Scandinavian, or Baltic origin[88]. Instead, several Sámi-based place names are recognized

and the oldest river names—such as Kyrö—may point toward language reconstruction of

Proto-Finno–Permian although contribution of Paleo-European languages cannot be

excluded[88]. Thus, archaeologically visible versatility is reflected by genetics and linguistics,

and this is consistent with the observed broad and fragmented isotopic distributions. Conse-

quently, this establishes a testable hypothesis of a multiethnic and multiorigin community to

be assessed in the future by studying life histories of individuals with additional ancient-DNA

and oxygen and strontium isotope analyses.

What is the Levänluhta water burial?

The Levänluhta water burial was first interpreted as a place for human sacrifice[89] and this

interpretation gathered support throughout the 20th century[90,91]. The human sacrifice

would then be frequent (one every fourth year), spanning through several centuries and

involving a heterogeneous community in terms of diet and cultural features. Such a massive

and long-term sacrificial tradition would be truly unique worldwide. Further, the observed

long period of usage excludes the possibility of the deceased being solely a result of an abrupt

event of famine, disease, or battle. The peripherally located bog or lake with a hidden nature

has motivated a new theory of the individuals being socially, ideologically, or ethnically deviant

people within their society[22]. This is possible since socially or ideologically distinct commu-

nities might have practiced versatile livelihoods and thus resulted in broad isotopic

distributions.

The site being a burial for ordinary people, or slaves, was discussed in the 1950s[16]. Yet,

valuable artifacts related to the elite (Text in S2 Appendix) do not support the slave hypothesis.

The number of grave goods (22 pcs), however, mismatches the number of buried individuals

(98 pcs). The low number of grave goods can be explained in several ways. Not all deceased

(probably children) were buried with grave goods, the goods were made of organic material

that could have disintegrated in water, and early archaeological excavations may not have been

able to sieve all the soil material excavated. The lack of significant portion of artifacts may also

be connected to an archaeologically invisible period of AD 250–800 in Northern Finland,

linked to fur trade and the ethnogenesis of the modern Sámi[92].

Fig 7. Summed calendar-year probability distributions. a) Divided according to subgroup LL1-3 and b) subtracted by the scpds of randomly

distributed 14C dates. The distributions indicate that a) the LL1 subgroup is responsible for most of the burial activity and b) the most intense period for

the burial activity is AD 600–660, standing out from overall randomly distributed average. The blue bars schematically illustrate the influence of the Late

Antique Little Ice Age (LALIA)[6], triggered by the climatic anomaly of AD 536–550.

https://doi.org/10.1371/journal.pone.0231787.g007
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A concept of sáiva is linked to sacred places in the Sámi mythology, one manifestation

being a spring-containing freshwater lake[93,94]. These lakes have been considered as a realm

of human and animal spirits. The Levänluhta site was likely originally in a spring-containing

lake[19]. In the Levänluhta and Käldamäki sites, the essential elements of sáiva are present:

they are spring-containing freshwater underworlds of people with mainly Sámi-related genetic

heritage (Levänluhta) and of people and domesticated animals (Käldamäki). Therefore, the

sáiva tradition may have its roots in beliefs similar to those we witness in the Levänluhta and

Käldamäki burials. If so, the past appearance of the site as a spring-containing lake could even

explain why the Levänluhta location was chosen to bury the deceased. Over the centuries, this

early manifestation has been hidden by the post-glacial land uplift that have gradually turned it

into a bog, and later people have converted it to a field. Presently, three springs with upwelling

reddish water carry remembrance of the past burial site.

Conclusions

A chronological, dietary and livelihood synthesis is established based on radiocarbon and sta-

ble isotopic studies of human bone remains on the Iron Age population excavated from the

unique spring burial of Levänluhta. Extraordinarily broad isotopic distribution is observed

with standard deviations of multiple times compared to the reference populations within the

Baltic Sea. Clustering analysis reveals three subgroups, most of them relying essentially on ter-

restrial, strongly animal, resources with significant contribution of marine and lesser freshwa-

ter food. This emphasizes the versatile livelihoods practiced at the boundary of marine,

freshwater, and terrestrial ecosystems. Although the strongest marine signal disappears around

the climatic downturn of the 6th century AD, this versatility provided resilience to overcome

the scourges of nature during and after the Fimbulvinter. Further, the study establishes testable

hypotheses to assess potential role of multiethnicity within the broad isotopic distribution of

the studied human remains. Eventually, the Levänluhta site is displayed as being a water burial

of a versatile and resilient community of a population probably in the midst of an ethnogenesis

toward the modern Sámi.
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Heli Etu-Sihvola, Samuli Helama, Heli Huhtamaa, Maria Lahtinen, Kristiina Mannermaa,
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63. Ylimaunu J. Itämeren hylkeenpyyntikulttuurit ja ihminen-hylje-suhde [Baltic seal hunting cultures and

human-seal relationship]. Helsinki: Suomalaisen Kirjallisuuden Seura; 2000.

64. Seger T. Refuse fauna from the pre-Roman sites of Trofastbacken and Orrmoan in Korsnäs, S.Ostro-

bothnia, Finland. Fin Museum. 1987; 94: 40–44.

65. Frank T. An economic survey of ancient Rome, Vol. V. New York; 1940.

66. Kropff A. New English translation of the Price Edict of Diocletianus. 2016. Available: http://www.

academia.edu/23644199/New_English_translation_of_the_Price_Edict_of_Diocletianus

67. Hodges R. Dark Age Economics: The Origins of Towns and Trade, A.D. 600–1000. Bloomsbury Aca-

demic; 1989.

68. Haavio M. Kirjokansi—Suomen kansan kertomarunoutta [Celestial sphere—Folklore of Finnish Peo-

ple]. Porvoo: WSOY; 1952.

69. Suomen Kansan Vanhat Runot [Old Poems of Finnish People]. 2019 [cited 26 Aug 2019]. Available:

https://skvr.fi/
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