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Abstract 

Purpose: Buprenorphine has low oral bioavailability. Regardless of sublingual 

administration, a notable part of buprenorphine is exposed to extensive first-pass 

metabolism by the cytochrome P450 (CYP) 3A4. As drug interaction studies with 

buprenorphine are limited, we wanted to investigate the effect of voriconazole, a strong 

CYP3A4 inhibitor, on the pharmacokinetics and pharmacodynamics of oral 

buprenorphine.  

Methods: Twelve healthy volunteers were given either placebo or voriconazole (orally, 

400 mg twice on day 1 and 200 mg twice on days 2-5) for 5 days in a randomized, cross-

over study. On day 5, they ingested 0.2 mg (3.6 mg during placebo phase) oral 

buprenorphine. We measured plasma and urine concentrations of buprenorphine and 

norbuprenorphine and monitored their pharmacological effects. Pharmacokinetic 

parameters were normalized for a buprenorphine dose of 1.0 mg. 

Results: Voriconazole greatly increased the mean area under the plasma concentration-

time curve (AUC0-18) of buprenorphine (4.3-fold, P < 0.001), its peak concentration (Cmax) 

(3.9-fold), half-life (P < 0.05), and excretion into urine (Ae; P < 0.001). Voriconazole also 

markedly enhanced the Cmax (P < 0.001), AUC0-18 (P < 0.001) and Ae (P < 0.05) of 

unconjugated norbuprenorphine, but decreased its renal clearance (P < 0.001). Mild 

dizziness and nausea occurred during both study phases. 

Conclusions Voriconazole greatly increases exposure to oral buprenorphine, mainly by 

inhibiting intestinal and liver CYP3A4.  Effect on some transporters may explain elevated 

norbuprenorphine concentrations. Although oral buprenorphine is not commonly used, 

this interaction may become relevant in patients receiving sublingual buprenorphine 

together with voriconazole or other CYP3A4 or transporter inhibitors. 
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INTRODUCTION 

Buprenorphine is a partial µ-opioid receptor agonist, which antagonizes ĸ-opioid receptor 

and acts as an agonist at the δ-opioid receptor and opioid receptor-like receptor [1, 2].  

Buprenorphine is increasingly used for treating acute and chronic pain. Analgesic doses 

range from 0.3 to 0.6 mg when intravenous or intramuscular dosing routes are used. 

Buprenorphine is also a good option for substitution therapy to treat opioid dependence 

because of its pharmacokinetic and pharmacodynamic properties. Buprenorphine 

produces long-lasting subjective and physiologic effects without significant respiratory 

depression [3, 4]. Sublingual doses used in opioid substitution therapy are much higher 

than those used in treatment of chronic pain, but buprenorphine is considered to be safe 

because of its ceiling effects [4]. 

Buprenorphine has very low oral bioavailability because of its extensive first-pass 

metabolism [5, 6]. The bioavailability is higher, about 15-30%, when buprenorphine is 

administered sublingually [7, 8]. The mean time to maximum plasma concentration 

following sublingual administration varies from 1 to 3 hours [9 - 12]. After an oral and 

sublingual buprenorphine administration, extensive first-pass metabolism and large 

interindividual variability increase the susceptibility to drug interactions. Furthermore, 

many opioids are substrates to some transporter proteins, such as P-glycoprotein, which 

can affect their absorption and systemic clearance [13 - 15]. 

The main metabolic pathway (65%) of buprenorphine is cytochrome P450 (CYP) 3A4/5 

mediated N-dealkylation of the drug, which yields an active metabolite, 

norbuprenorphine. CYP2C8 and CYP2C9 have been also shown to metabolize 

buprenorphine [16 - 19]. Buprenorphine and norbuprenorphine are conjugated to their 3-

glucuronides mainly by the UDP-glucuronosyl transferases (UGT) 2B7 and 1A1, and 1A3 
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and 1A1, respectively [5, 20, 21]. Previous study with 63Ni electron-capture gas 

chromatographic assay evaluated the levels buprenorphine and its metabolites in human 

urine and feces [23], and approximately 10-30% of the dose was excreted in urine, 

mainly as conjugated metabolites. Similar results have been published, showing that 

15% of conjugated metabolites are excreted in urine [5], and only small amounts of 

unconjugated parent drug or norbuprenorphine are excreted into urine; most of the dose 

is eliminated in the faeces [5, 22]. 

The effect of strong CYP3A4 inhibitors on the pharmacokinetics of buprenorphine is 

largely unknown, particularly after its oral ingestion. A previous study showed that 

ketoconazole does not have clinically significant interactions with transdermally delivered 

buprenorphine [24]. Other interaction studies have been conducted with patients 

receiving simultaneous buprenorphine substitution and antiretroviral therapy [25]. 

Voriconazole is frequently used in immunosuppressed patients with suspected 

aspergillosis. Voriconazole is a potent inhibitor of CYP3A4, CYP2B6, CYP2C9 and 

CYP2C19 enzymes [26 - 28]. Oral buprenorphine is not commonly used in clinical 

settings, but very large doses of sublingual buprenorphine from 16 mg to 32 mg are 

administered in substitution therapy [29, 30]. A considerable part of the sublingual dose 

can be swallowed, making buprenorphine susceptible to first-pass metabolism in the gut 

wall and liver [31, 32]. Here, we wanted to study the pharmacokinetics of oral 

buprenorphine after its immediate swallowing, with or without voriconazole, to evaluate 

the magnitude of interaction after their possible concomitant ingestion. 

MATERIALS AND METHODS 

Study participants 
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In view of our previous studies [12, 33], it was calculated that 10 subjects would be 

needed to detect a 30% difference in the area under the plasma concentration-time curve 

(AUC0–∞) of buprenorphine at a power of 80% and level of significance of P < 0.05. To 

also consider potential dropouts, we recruited 12 healthy non-smoking volunteers (4 

females and 8 men; age range 18 to 29 yr; body-mass index from 20.5 to 27.8 kg/m2).  

Email announcements, assigned to university students, were used to recruit participants. 

A written informed consent was obtained. The criteria for exclusion included concomitant 

drug therapy, previous history of intolerance to any of the drugs studied, past history of 

significant disease, alcoholism, drug abuse or psychological or emotional problems, 

blood donation within 4 weeks prior to study, and participation in any other studies 

involving drug products within one month prior to this study. Female participants were 

given instructions to use safe non-hormonal contraception during the study because 

hormonal contraceptives were not allowed. Clinical examination and routine laboratory 

tests were performed to evaluate participants’ physical health. Their medical history was 

also evaluated and all twelve participants were found to be in good physical health. Urine 

toxicology and pregnancy tests were negative and ECGs were in normal limits. The 

Finnish translation of the Abuse Questions [34] was used to evaluate the risk of 

participants to develop opioid abuse and the risk was found to be low for every 

participant. Volunteers were not allowed to consume coffee, tea, and energy drinks or 

grapefruit juice during the study. 

Study outline and drug administration 

The study protocol was approved by the ethics committee of the Hospital District of 

Southwest Finland and by the Finnish National Agency for Medicines and was registered 

in the EudraCT clinical trials register under code 2011-001939-23. The clinical phase of 

the study was conducted in the research facilities of the Department of Clinical 
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Pharmacology and TYKSLab, University of Turku and Turku University Hospital, Finland. 

The volunteers ingested orally, in randomized order either voriconazole or placebo for 5 

days. Dosing of voriconazole (Vfend® 200mg tablet; Pfizer, Sandwich, Great Britain) was 

400 mg at 8.00 and 20.00 on day 1, 200 mg at 8.00 and 20.00 on days 2-4, and 200 mg 

at 10.00 and 20.00 on day 5. The wash-out interval in this cross-over study was 4 weeks. 

On the fifth day of pretreatment, all subjects ingested a single dose of 0.2 mg (3.6 mg 

during placebo phase) of oral buprenorphine (Temgesic® 0.2 tablet RB Pharmaceuticals 

Limited, Slough, Great Britain) with 200 ml of water at 11.00 on empty stomach. 

Adherence with the voriconazole/placebo dosing schedule was assessed using mobile 

phone text messages. After taking each dose, the subjects sent a mobile phone text 

message to one of the investigators. The investigator contacted the subject if no text 

message was received within 15-20 min after scheduled dosing time and reminded them 

to take the dose. The volunteers fasted overnight (8 h) before the administration of 

buprenorphine. Standardized meals were served 4 and 8 h after buprenorphine 

ingestion. 

Blood sampling and drug analysis 

On the test days, a forearm vein was cannulated, and timed blood samples (10 ml) for 

pharmacokinetic measurements were collected into ethylenediaminetetraacetic acid–

containing tubes immediately before and 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 10, 12, and 18 h after 

the ingestion of buprenorphine. Plasma was separated within 30 min and stored at 

−70 °C until drug analysis. Urine was collected up to 18 h after buprenorphine 

administration. Urine aliquots were stored at – 70°C until analysis. 

The concentrations of buprenorphine and norbuprenorphine in plasma and urine samples 

were analyzed with a validated liquid chromatography tandem mass spectrometric 
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method as previously described [12]. The low limit of quantification (LLQ) for plasma and 

urine buprenorphine was 0.02 ng/ml, and for norbuprenorphine 0.05 ng/ml. 

Concentrations below the LLQ but clearly detectable were used as LLQ/2 in calculation 

of the mean (SD) concentrations. The interday coefficients of variation (CV%) were for 

buprenorphine 8.0% at 5.3 ng/ml, 8.7 % at 0.53 ng/ml and 6.1% at 0.053 ng/ml, and for 

norbuprenorphine 3.7% at 4.8 ng/ml, 8.7% at 0.48 ng/ml, and 11.9% at 0.048 ng/ml. 

Plasma concentrations of voriconazole were determined from the samples taken on day 

5 before administration of buprenorphine by using liquid chromatograph equipped with 

Waters Symmetry C8 column (Waters) and UV-detection at 255 nm wave length as 

described before [35]. Diazepam was used as the internal standard. The LLQ for 

voriconazole was 10 ng/ml. The CVs for voriconazole were below 10% at relevant 

plasma concentration range, i.e. 7.5% at 4000 ng/ml, 3.0% at 1100 ng/ml, and 5.5% at 

110 ng/ml.  

Pharmacokinetic measurements 

The peak plasma concentrations (Cmax) and corresponding time to Cmax (tmax) of 

buprenorphine and norbuprenorphine were observed directly from the data. The areas 

under the buprenorphine and norbuprenorphine plasma concentration–time curves 

(AUC) from 0 to 18 h (AUC0–18) were calculated by noncompartmental methods using 

WinNonlin pharmacokinetics program (version 4.1; Pharsight, Mountain View, CA). The 

terminal log-linear part of each concentration–time curve was identified visually, and the 

elimination rate constant (ke) was calculated from the logarithmically transformed data 

using linear regression analysis. The t½ was calculated using the equation t½ = ln2/ke. The 

cumulative amount of unconjugated buprenorphine and unconjugated norbuprenorphine 

excreted into urine was calculated from 0 to 18 h (Ae), and the renal clearance (Clrenal) 
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using the equation = Ae/AUC0-18 . All pharmacokinetic parameters were normalized for a 

buprenorphine dose of 1.0 mg. 

Statistical analysis 

The AUC0–18 of buprenorphine was the primary outcome variable in the study, and all 

other pharmacokinetic and all pharmacodynamic parameters were secondary variables. 

Geometric mean ratios with 90% CIs were calculated for the pharmacokinetic variables. 

Lack of interaction was assumed if the 90% CI of the geometric mean ratios for 

pharmacokinetic variables were within the acceptance limit of 0.8–1.25. Pharmacokinetic 

variables and pharmacological effects were compared with paired Student t-test. The 

values for tmax were compared by the use of Wilcoxon signed rank test. The statistical 

significance level was P < 0.05. The Pearson product moment correlation coefficient was 

used to investigate the possible relationship between the ratios of the AUC0–18 of 

buprenorphine during the treatment phase (voriconazole) to the AUC0–18 of 

buprenorphine during the control phase, as well as to the Ctrough of voriconazole before 

the administration of buprenorphine. The associations of plasma buprenorphine 

concentrations with psychomotor and analgesic effects were also calculated using the 

Pearson’s product moment correlation coefficient. The results are expressed as mean 

values and variation in data set is expressed as standard deviation (SD). R software 

(version 3.2.0) and ggplot2 (version 2.1.0) were applied for statistical analysis and 

graphical presentation. 

RESULTS 

Voriconazole affected strongly the pharmacokinetics of orally administered 

buprenorphine and increased its effects (Fig. 1, Supplementary Figures 1 - 2, Table 1, 

Supplementary Tables 1-2).  
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Buprenorphine. Compared to placebo phase, voriconazole increased the mean AUC0-18 

of oral buprenorphine 4.3-fold (90% CI 2.7, 6.7 P < 0.001), and its Cmax 3.9-fold (90% CI 

2.6, 5.9; P < 0.001) (Table 1, Supplementary Figure 2). Voriconazole had no significant 

effect on the tmax but it slightly prolonged the t½ of buprenorphine (P < 0.05). Voriconazole 

increased the amount of unconjugated buprenorphine excreted in urine (P < 0.001, 

Supplementary Fig. 1) but had no significant effect on its Clrenal. The Ae of unchanged 

(unconjugated) buprenorphine was less than 0.1% of the dose during 18 hours even 

during the voriconazole phase. 

Norbuprenorphine. Voriconazole increased the mean AUC0-18 of norbuprenorphine nearly 

4-fold (90% CI 3.0, 5.3; P < 0.001), and its Cmax 3.3-fold (90% CI 2.4, 4.4; P < 0.001) 

compared to placebo phase (Table 1). The metabolite to the parent drug ratio 

(AUCm/AUCp) was not changed by voriconazole. Voriconazole enhanced the Ae of 

unconjugated norbuprenorphine by only 1.5-fold (P < 0.02), and accordingly voriconazole 

significantly (P < 0.001) reduced its Clrenal (Supplementary Fig. 2). 

Voriconazole. The mean (SD) plasma concentration of voriconazole (Ctrough) was 1022 

(1509) ng/ml before the administration of buprenorphine during the voriconazole phase, 

and the concentrations ranged from 170 to 5715 ng/ml. 

Pharmacological effects and adverse effects. Buprenorphine caused moderate 

pharmacological effects (Supp. Table 1), but their relevant comparison between the study 

phases is not possible due to different buprenorphine doses. The most common adverse 

effects were mild dizziness and nausea (Suppl. Table 2). There were no severe adverse 

effects, and tropisetron, naloxone or any other rescue medication were not needed.  

DISCUSSION 
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We investigated the effect of voriconazole on buprenorphine pharmacokinetics when 

buprenorphine was swallowed immediately after its oral administration. Although oral 

ingestion is not commonly used in clinical practice with buprenorphine, a considerable 

part of the sublingual buprenorphine dose is usually swallowed and therefore susceptible 

to first-pass metabolism. Furthermore, in some deliberate overdoses, subjects can 

swallow buprenorphine concomitantly with other drugs, which could inhibit buprenorphine 

metabolism and increase respiratory depression. Our major finding was that voriconazole 

greatly increases the exposure to both parent buprenorphine and its active metabolite, 

norbuprenorphine, in some subjects even 6-fold. On average, voriconazole increased the 

AUC of oral buprenorphine 2-3 times more than what we observed in a previous study 

using sublingual administration [12].  

There are only few previous studies characterizing the interactions between 

buprenorphine and drugs which affect its pharmacokinetics. Most of these studies have 

focused on high-dose sublingual buprenorphine substitution therapy. Atazanavir alone 

and with ritonavir increased the AUC of buprenorphine and norbuprenorphine nearly 2-

fold and lead to an increased sedative effect [25]. Darunavir-ritonavir or fosamprenavir-

ritonavir combinations did not cause significant changes in plasma buprenorphine or 

norbuprenorphine levels [36]. Boceprevir increased plasma buprenorphine 

concentrations slightly but decreased norbuprenorphine concentration in plasma [37]. 

Similarly, lopinavir-ritonavir did not affect buprenorphine pharmacokinetics but did 

increase the clearance of norbuprenorphine [38]. We showed recently, that voriconazole 

and posaconazole increase exposure to sublingual buprenorphine [12]. Rifampicin 

decreased the exposure to sublingual but not to intravenous buprenorphine [33]. These 

results seem to emphasize the significant role of CYP3A-mediated first-pass metabolism 

of buprenorphine, which sublingual administration only partially bypasses. 
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The metabolic fate of buprenorphine is complicated, and all its details are still not fully 

elucidated. Buprenorphine is extensively N-dealkylated to norbuprenorphine, mainly by 

CYP3A4 [16, 17] and to some extent by CYP2C8 [18]. Also minor CYP3A4- and 

CYP2C8- catalyzed buprenorphine hydroxylation pathways have been identified [19, 39, 

18]. Voriconazole is a potent (Ki values << 10 µM) reversible inhibitor of CYP2B6, 

CYP2C9, CYP2C19 and CYP3A enzymes [28]. The Ki of voriconazole as a reversible 

inhibitor of the CYP3A4 dependent formation of norbuprenorphine has been estimated to 

be 5.91 µM [39]. In the present study, the average plasma trough concentrations of 

voriconazole were around 3 µM, which suggests a marked inhibition potential for 

CYP3A4 during the whole 12-hour dosing interval. The effects of voriconazole on parent 

buprenorphine can be mainly explained by inhibition of CYP3A4 during the first-pass and 

elimination phases. However, the substantial increases in the AUC and Cmax of 

norbuprenorphine suggest the presence of additional mechanisms because inhibition of 

CYP3A4 should decrease the N-dealkylation of buprenorphine to norbuprenorphine.  

Buprenorphine and norbuprenorphine are also glucuronidated. UGT2B7 accounts for 

more than 40% of buprenorphine glucuronidation, while norbuprenorphine 

glucuronidation is predominantly mediated by UGT1A3 [21]. Buprenorphine and 

norbuprenorhine are excreted in bile as their glucuronides but hydrolysis to unconjugated 

forms by colonic bacterial beta-glucuronidases allows their reabsorption and 

enterohepatic circulation. Faeces contain buprenorphine and norbuprenorphine 

predominantly in unconjugated form; in urine they are mainly in conjugated form [5]. 

Effects of voriconazole and its metabolites on different UGTs and glucuronidases are not 

known. However, according to a semiphysiological population pharmacokinetic model, 

voriconazole emerges as an UGT2B inhibitor in the gut and liver [40]. 
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Voriconazole reduced the Clrenal of norbuprenorphine but not that of buprenorphine. 

Previously, voriconazole has been shown to decrease the Clrenal of diclofenac [41]. 

Reduction of Clrenal –values can be explained by inhibition of membrane transporters as 

norbuprenorphine, but not buprenorphine, is a substrate of the efflux transporter P-

glycoprotein [20]. Because the urinary excretion of (unconjugated) norbuprenorphine was 

very small, reduction of its Clrenal cannot alone explain its high plasma concentrations. 

However, voriconazole (or its metabolites) may have affected transporters also in 

extrarenal tissues, and these effects may have influenced the tissue distribution of 

norbuprenorphine. P-glycoprotein is a major determinant of norbuprenorphine brain 

exposure [20], whereas buprenorphine as a lipophilic compound rapidly penetrates cell 

membranes without transporters. P-glycoprotein can be found in the intestinal wall, 

blood–brain barrier and many other tissues [42]. Thus, inhibition of P-glycoprotein and/or 

other transporters could influence, e.g., enterohepatic circulation and tissue 

concentrations of norbuprenorphine. Of note, norbuprenorphine does not have a ceiling 

effect on respiratory depression, and respiratory toxicity of buprenorphine can result from 

the blockade of P-glycoprotein-mediated efflux of norbuprenorphine at the blood-brain 

barrier [43]. Further studies are needed on the effect of drug interactions on 

norbuprenorphine tissue distribution and buprenorphine toxicity, keeping in mind also 

“opioid toxicity epidemic” [44]. 

In the present study, relevant comparison of pharmacological effects between the two 

phases was not possible because of different buprenorphine doses. We used only 

relatively small doses to minimize the risk of adverse events in healthy volunteers. The 

dose during the placebo phase (3.6 mg vs. 0.2 mg) was set higher, because we assumed 

a low oral bioavailability after immediate ingestion of the tablet. On the contrary, we 

wanted to keep the dose in the voriconazole phase smaller, because of the possibility of 
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strong inhibition of buprenorphine metabolism. We based this assumption on the 

previous results which have established that voriconazole and other CYP3A4 inhibitors 

can dramatically increase exposure to drugs that are metabolized via CYP3A4 [45 - 52]. 

We assumed dose-linearity since recent reports have demonstrated that buprenorphine 

shows a linear increase in the exposure across a wide dose range from 0.060 to 12 mg 

[53, 54]. 

We acknowledge that our study has limitations which include that it was designed mainly 

to evaluate the pharmacokinetics of buprenorphine. For this goal, we normalized the 

pharmacokinetic values to an oral buprenorphine dose of 1 mg. This made doze 

normalization challenging in pharmacodynamical calculations and in estimating 

subjective adverse effects. However, dose normalization cannot be used for 

pharmacodynamical results and subjective adverse effects. We drew blood samples for 

18 hours, and longer sampling time might have increased the reliability in the 

pharmacokinetic calculations, especially in determining the elimination half-life. 

Therefore, the values of elimination half-life and renal clearance should be interpreted 

with these limitations in mind. The strengths of our study were the two-phase cross-over 

design and the controlled conditions that confirmed the compliance to blood sampling 

and urine collection. Using current study design, we could also avoid a possible 

pharmacokinetic interference caused by naloxone on the interaction between 

buprenorphine and voriconazole. 

In conclusion, our results show that clinically used doses of voriconazole greatly increase 

the exposure to oral buprenorphine. Although oral buprenorphine is not commonly used 

in clinical settings, strong inhibition of its first-pass metabolism should be taken into 

account also when voriconazole or other potent CYP3A4 inhibitors are prescribed to 

patients receiving sublingual buprenorphine. Patients should be well informed and 
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familiarized with sublingual dosing, as some part of the dose is easily ingested and 

swallowed. Further studies are warranted on the effect of transporter inhibitors on 

norbuprenorphine pharmacokinetics and pharmacodynamics because its high 

concentrations could increase buprenorphine toxicity.  
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Figure legends 

Figure 1. Mean (SD) plasma concentrations of buprenorphine and norbuprenorphine in 

12 healthy subjects after 3.6 mg (placebo phase) or 0.2 mg (voriconazole phase) of oral 

buprenorphine on the fifth day of pretreatment with placebo (○) or voriconazole (●) 400 

mg twice on day 1 and 200 mg twice on days 2-5. Concentrations are shown both on an 

arithmetic and a semilogarithmic scale (inset). Values are normalized for an oral dose of 

1.0 mg. 

 

Supplemental Figure 1. Individual pharmacokinetic parameters after oral buprenorphine. 

Values for maximum concentration (Cmax), area under plasma concentration–time curve 

(AUC0-18), elimination half-life (t½) and amount of urinary buprenorphine excreted during 

18 h (Ae (0-18)) in 12 healthy subjects after 3.6 mg (placebo phase) or 0.2 mg (voriconazole 

phase) of oral buprenorphine on the fifth day of pretreatment with placebo or 

voriconazole 400 mg twice on day 1 and 200 mg twice on days 2-5. The horizontal line in 

the box represents the median, white diamonds show the mean, the box shows the 

interquartile range, and whiskers show the 10th and 90th percentiles. Values are 

normalized for an oral dose of 1.0 mg. 

Supplemental Figure 2. Individual pharmacokinetic parameters of norbuprenorphine after 

oral buprenorphine. Values for maximum concentration (Cmax), area under plasma 

concentration–time curve (AUC0-18), amount of urinary norbuprenorphine excreted during 

18 h (Ae(0-18)) and renal clearance (Clrenal) in 12 healthy subjects after 3.6 mg (placebo 

phase) or 0.2 mg (voriconazole phase) of oral buprenorphine on the fifth day of 

pretreatment with placebo or voriconazole 400 mg twice on day 1 and 200 mg twice on 

days 2-5. The horizontal line in the box represents the median, white diamonds show the 
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mean, the box shows the interquartile range, and whiskers show the 10th and 90th 

percentiles. Values are normalized for an oral dose of 1.0 mg. 
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Table 1. Pharmacokinetic parameters of buprenorphine and norbuprenorphine after oral 

administration of 3.6 mg (placebo phase) or 0.2 mg (voriconazole phase) buprenorphine on the 

fifth day of pre-treatment with voriconazole (400 mg twice on day 1, 200 mg twice on days 2-5) or 

placebo in 12 healthy subjects. 

Parameter Placebo Voriconazole p-value 
Geometric mean ratio 

(90 % CI) 

Buprenorphine     

 Cmax (ng/ml) 0.057 ± 0.031 0.22± 0.23 <0.001 3.87 (2.55, 5.88) 

 tmax (h) 0.5 (0.5-18) 2 (0.5-10) 0.06 - 

 AUC0-18 (ng∙ h/ml) 0.43 ± 0.26 2.1 ± 1.4 <0.001 4.27 (2.71, 6.73) 

 t1/2 (h) 9.1 ± 2.4 14.5 ±6.8 0.042 1.43 (1.08, 1.89) 

 Ae (µg) 0.10 ± 0.063 0.53 ± 0.29 <0.001 6.76 (4.68, 8.83) 

 CLrenal (l/h) 0.31 ± 0.23 0.73 ± 1.3 0.206 0.51 (0.053 , 4.89) 

Norbuprenorphine     

 Cmax (ng/ml) 0.11 ± 0.025 0.28 ± 0.26 <0.001 3.29 (2.44, 4.43) 

 tmax (h) 2 (0.5-12) 5 (0.5-8) 0.35 - 

 AUC0-18 (ng∙ h/ml) 1.07 ± 0.58 4.0 ± 2.1 <0.001 3.95 (2.97, 5.26) 

 t1/2 (h) 13.1 ± 9.06 17.8 ± 7.9 0.12 1.52 (0.98, 2.38) 

 AUCm/AUCp 3.0 ± 1.5 3.8 ± 5.8 0.78 0.92 (0.57, 1.51) 

 Ae (µg) 6.9 ± 3.3 11.6 ±7.8 0.029 1.54 (1.20, 1.98) 

 CLrenal (L/h) 7.2 ± 2.7 2.9 ±1.2 <0.001 0.39 (0.29, 0.52) 

 

CI, confidence interval; Cmax, peak plasma concentration; tmax, concentration peak time; AUC0-18 

area under curve from 0 to 18 h; t ½, elimination half-life; Ae, amount excreted into urine within 18 

h; CLrenal, renal clearance. Values are normalized for an oral dose of 1.0 mg. Data are shown as 

mean ± standard deviation (SD) and as the geometric mean ratios with the 90% confidence 

interval (CI) in parenthesis - except for tmax, which is given as median and range.  
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Figure 1. 
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Supplementary Figure 1 
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Supplementary Figure 2. 
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Measurement of pharmacological effects 

We evaluated ten possible adverse effects using a questionnaire before, and 3 and 6 h 

after buprenorphine administration. Cold pressor test was used to evaluate the analgesic 

effect of buprenorphine as described earlier (Fihlman et al., 2016). Central processing of 

sensory information was assessed with the digit symbol substitution test (DSST) (Stone 

et al., 1984), the Maddox wing test was used to measure the central coordination of 

extraocular muscles (Hannington-Kiff, 1970) and pupil size was measured with Cogan’s 

pupillometer (Cogan, 1941). Subjective effects of buprenorphine were assessed with 

100-mm visual analogue scales as described previously (Fihlman et al., 2016). 

Pharmacological effects were evaluated prior to and at 1, 2, 3, 4, 5, 6, 8, 10, and 12 h 

after buprenorphine administration. For each effect variable, peak maximum effect 

(Emax) and area under the response–time (AUEC) curve from 0 to 12 h (AUEC0–12) 

was determined using the trapezoidal rule. 

 

Results for pharmacological effects 

There was a linear correlation between plasma buprenorphine concentration and effect in 

all pharmacodynamic variables (P < 0.001). During the voriconazole phase, the high 

concentrations of buprenorphine were associated with sedative effects. The Emax and/or 

area under the plasma effect–time curve (AUEC0-12) for drug effect and nausea during 

the voriconazole phase differed significantly from that in the placebo phase 

(Supplelementary Table 1 and Supplementary Figure 1). The Maddox wing test, Cogan’s 

pupillometer and other tests for subjective effects showed no statistically significant 

differences between the phases.

mailto:teisaa@utu.fi


Supplementary Table 1: Pharmacological effect parameters after oral administration of 
3.6 mg (placebo phase) or 0.2 mg (voriconazole phase) buprenorphine on the fifth day of 
pre-treatment with voriconazole (400 mg twice on day 1, 200 mg twice on days 2-5) or 
placebo in 12 healthy subjects. 
 

 Placebo Voriconazole p-value 

Cold Pain Intensity    

Emax (s) 51 ± 15 47 ± 17 0.23 

AUEC0-12 (VAS units/h) 520 ± 223 495 ± 224 0.6 

AUEC0-12 ratio (voriconazole/placebo) 0.98 ± 0.31 

Digital Symbol Substitution Test    

Emax (symbols/3min) 157 ± 21 160 ± 18 0.64 

AUEC0-12 (symbols/3min/h) 1751 ± 249 1813 ± 225 0.73 

AUEC0-12 ratio (voriconazole/placebo) 1.0 ±0.1 

Nausea    

Emax (VAS mm) 44 ± 31 15 ± 19 0.05 

AUEC0-12 (VAS mm/h) 198 ± 188 86 ± 138 0.09 

AUEC0-12 ratio (voriconazole/placebo) 0.5 ±0.5 

Drug Effect    

Emax (VAS mm) 41 ± 26 20 ± 16 0.01 

AUEC0-12 (VAS mm/h) 215 ± 206 103 ± 123 0.05 

AUEC0-12 ratio (voriconazole/placebo) 0.67 ± 1.0 

Alertness    

Emax (VAS mm) 74 ± 17 83 ± 17 0.73 

AUEC0-12 (VAS mm/h) 495 ± 182 659 ± 254 0.16 

AUEC0-12 ratio (voriconazole/placebo) 1.4 ± 0.36 

Performance    

Emax (VAS mm) 81 ± 13 85 ± 16 0.90 

AUEC0-12 (VAS mm/h) 719 ± 194 836 ± 200 0.08 

AUEC0-12 ratio (voriconazole/placebo) 1.2 ± 0.22 

Emax, peak maximum effect; AUEC0-12 area under the effect-time curve. Data are shown 

as mean ± SD. 



Supplementary Table 2. Adverse effects experienced after oral administration of 3.6 mg (control phase) or 0.2 mg (voriconazole 

phases) of buprenorphine on the fifth day of pre-treatment with voriconazole 400 mg twice daily on the first day and 200 mg for 4 

days) or placebo to 12 healthy volunteers. 

Treatment 
Time 

(h) 

Adverse effect 

Dizziness Xerostomia Weakness Headache Ataxia Nausea Restlessnes

s 

Sedation 

Placebo          

 0 3/0/0* 1/0/0 1/1/0 2/0/1 0/0/0 1/1/0 0/0/0 0/1/0 

 3 5/2/0 2/1/0 6/1/0 2/0/0 3/1/0 5/2/0 0/0/0 4/3/2 

 6 4/0/1 2/0/0 3/1/1 2/0/0 2/1/0 1/4/1 1/0/0 4/3/2 

Voriconazole          

 0 2/0/0 2/1/0 3/0/0 1/3/1 1/0/0 2/0/0 0/0/0 4/2/0 

 3 0/0/0 1/0/0 1/1/0 4/0/0 0/0/0 3/0/0 2/0/0 5/2/0 

 6 0/0/0 1/0/0 1/0/0 2/0/0 0/0/0 2/0/0 1/0/0 5/2/0 

 
 

*The figures show the amount of subjects in each time point experiencing mild/moderate/strong adverse effects 
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