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Summary  

 

Background and aims: Our objective was to study relationships between the new biomarker of 

vascular health, carotid artery longitudinal wall motion (CALM) and metabolic syndrome 

(MetS).  

Methods: Carotid ultrasound and assessment of MetS and its components were performed with 

281 subjects aged 30–45 years. In the longitudinal motion analysis, the amplitude of motion 

and the antegrade-oriented and retrograde-oriented components of motion between the intima-

media complex and adventitial layer of the common carotid artery wall were assessed.  

Results: MetS, according to the harmonized criteria, was detected in 53 subjects (19%). MetS 

was significantly associated with increased antegrade and decreased retrograde longitudinal 

motion in the carotid artery wall. Augmented antegrade amplitude of longitudinal motion was 

associated with obesity (β = 0.149, P < 0.05) and low HDL-cholesterol (β = 0.177, P < 0.01). 

Attenuated retrograde amplitude of longitudinal motion was associated with hypertension (β = 

−0.156, P < 0.05), obesity (β = −0.138, P < 0.05) and hyperinsulinemia (β = −0.158, P < 

0.01). Moreover, insulin resistance (homeostasis model assessment index above 2.44) was 

associated with adverse changes in CALM.   

Conclusion: MetS and insulin resistance were associated with alterations in CALM. In 

particular, hypertension, obesity and hyperinsulinemia were associated with reduced total 

peak-to-peak amplitude as well as increased antegrade and reduced retrograde amplitudes, all 

of which might be markers of unfavourable vascular health.  

 

Keywords: arterial stiffness, cardiovascular risk factors, hyperinsulinemia, hypertension, 

insulin resistance, motion tracking, ultrasound imaging.  

 

 

 

 

 

 



  



Introduction 

 

Metabolic syndrome (MetS) is a cluster of multiple cardiovascular risk factors such as central 

obesity, hypertension, dyslipidemia, glucose intolerance and insulin resistance (Eckel et al., 

2005). MetS is associated with increased risk of cardiovascular diseases and all-cause as well 

as cardiovascular disease mortality (Gami et al., 2007; Mottillo et al., 2010).  Mechanisms 

through which MetS increases cardiovascular risk involve several pathophysiological changes 

in the arterial wall (Qiao et al., 2007). Although MetS components are interrelated, each 

component may act independently through different mechanisms, with adverse effects on the 

structure and function of the vascular system. Therefore, when investigating consequences of 

MetS, parallel use of methods that characterize the structure and function of blood vessels 

provides opportunity for a comprehensive evaluation of pathophysiological changes. Carotid 

artery longitudinal wall motion (CALM) is a relatively new biomarker reflecting vascular 

health that can be measured by using carotid ultrasound imaging together with assessment of 

carotid intima-media thickness and distensibility measurement in the same session (Yli-Ollila 

et al., 2013). CALM has not been studied systematically in subjects with MetS.  

One important consequence of MetS is arterial stiffening, which is known to contribute to 

prognosis in diabetic patients (Prenner & Chirinos, 2015). Components of MetS have different 

associations with arterial stiffness parameters (Vagovicova et al., 2015). Furthermore, distinct 

clusters of components of MetS show differing patterns of associations with arterial stiffness 

(Scuteri et al., 2014). The results of our previous studies suggest that arterial stiffening is 

associated with alterations in CALM (Taivainen et al., 2015; Yli-Ollila et al., 2016; Yli-Ollila 

et al., 2016). Therefore, arterial stiffening is a potential link between CALM and MetS.  

In addition to visceral adiposity, a key feature of MetS is insulin resistance (Salmenniemi et 

al., 2004). Insulin itself has obvious vascular effects (Yki-Järvinen, 2003). Insulin resistance is 

accompanied closely by endothelial dysfunction, which is thought to be an important 

mechanism through which insulin resistance results in harmful effects on the vasculature (Yki-

Järvinen, 2003; Nesto, 2004). Adiponectin is an insulin-sensitizing and anti-inflammatory 

adipokine, the concentration of which decreases with weight gain; its levels are indirectly 

associated with insulin resistance (Trujillo & Scherer, 2005). Because adiponectin is protective 

against the development of arteriosclerosis, it is an interesting possible link between MetS and 

CALM.  



To investigate associations between CALM parameters and components of MetS, we 

performed carotid ultrasound imaging and measured CALM in a large population of individual 

participants in the Cardiovascular Risk in Young Finns Study. Furthermore, CALM in 

association with insulin resistance, hyperinsulinemia and low adiponectin concentration was 

studied. 

 

 

Methods 

 

Subjects and study design 

The Cardiovascular Risk in Young Finns Study is an ongoing, five-centre follow-up study of 

atherosclerosis risk factors in Finnish children and adolescents. The first cross-sectional survey 

was conducted in 1980, when 3596 3- to 18-year-old children and adolescents participated. 

Participants were randomly chosen from each area in Finland through a national register. With 

this cohort, follow-up studies were conducted regularly at intervals of from 3 to 6 years during 

the years 1980–2007 (Raitakari et al., 2008). The study was approved by the Ethics Committee, 

Hospital District of Southwest Finland. The participants provided written informed consent. 

Kuopio University Hospital investigates the population of Eastern Finland and is one of the 

five centres involved. The present cross-sectional study consists of Kuopio centre data from 

2007, when the subjects were 30 to 45 years of age. Vascular ultrasound studies were available 

for 465 subjects, and successful CALM analysis was performed for 292 subjects. Five female 

individuals were excluded due to pregnancy, and four individuals were excluded because of 

type 1 diabetes. Furthermore, there was a lack of anthropometric data for two individuals; thus, 

the final study population included 281 participants. Adiponectin data were lacking for seven 

participants. Hence, in the univariate analysis of CALM and adiponectin, 274 participants were 

analysed.  

 

 

 



Assessment of risk factors 

Height was measured to an accuracy of 1 cm and weight to an accuracy of 1 kg. Body mass 

index (BMI) was calculated as weight in kilograms divided by height in metres squared. Waist 

circumference was measured using an anthropometric tape at the end of expiration at the 

midpoint between the iliac crest and the lowest rib, with an accuracy of 0.1 cm, and the average 

of two measurements was used. Systolic and diastolic blood pressure were measured in the 

sitting position from the brachial artery using a random zero sphygmomanometer (Hawksley 

& Sons Ltd, Lancin, UK). The average of three measurements was used in the analysis. 

Cigarette smoking, medications, diagnosed diseases and pregnancy were measured with 

questionnaires, and smoking was processed as a dichotomous variable (smoking/non-

smoking). Subjects smoking regularly daily were regarded as smokers.  

Venous blood samples were drawn after an overnight 12 h fast for the determination of serum 

lipid, adiponectin, insulin and glucose levels. All measurements of lipid levels as well as 

glucose, insulin and adiponectin levels were performed in duplicate in the same laboratory. To 

measure levels of serum total cholesterol, triglycerides and high-density lipoprotein cholesterol 

(HDL-C), standard enzymatic methods were used. The Friedewald formula was used to 

calculate low-density lipoprotein cholesterol (LDL-C) concentration for participants with 

triglycerides <4 mmol/L. Details for these methods have been described previously (Juonala et 

al., 2004; Raiko et al., 2010). Serum insulin concentration was measured through microparticle 

enzyme immunoassay (IMx insulin reagent, Abbott Diagnostics, USA) on an IMx instrument, 

and glucose concentrations were analysed enzymatically (Raiko et al., 2010). The homeostasis 

model assessment (HOMA-IR) index was calculated using the following formula: fasting 

glucose (mmol/L) × fasting insulin (µU/mL)/22.5. Serum adiponectin concentrations were 

analysed through radioimmunoassay (Human Adiponectin and Leptin RIA kits, Linco 

Research, Inc, MO, USA; Saarikoski et al., 2010). 

 

Definition of metabolic syndrome, hypertension, hyperglycaemia, hyperinsulinemia and 

insulin resistance 

Metabolic syndrome was defined according to the harmonized criteria, and the definition 

included the following: waist circumference ≥88 cm in women and ≥102 cm in men; fasting 

plasma glucose ≥5.6 mmol/L or drug treatment; hypertriglyceridemia ≥1.7 mmol/L or 

treatment; HDL-C ≤1.3 mmol/L in women and 1.0 in men or drug treatment; and systolic blood 



pressure ≥130 mmHg or diastolic blood pressure ≥85 mmHg or antihypertensive drug 

treatment. A diagnosis required that any three of the five criteria be present (Alberti et al., 

2009). Hyperinsulinemia was defined as non-diabetic subjects having fasting insulin level in 

the highest quartile, where 11.06 mU/L was used as the cut-off point (cut-off point of the entire 

study population of the Young Finns Study, year 2007). Low adiponectin as a risk factor was 

defined according to the lowest quartile in this study population; the cut-off value was 

6.22 μg/mL. High HOMA-IR as a risk factor was defined as the highest quartile in this study 

population and it was ≥2.44.  

 

Carotid ultrasound imaging 

Ultrasound studies were performed by trained sonographers following the standardized 

protocol described previously (Raitakari et al., 2003). Carotid artery imaging was performed 

using a Sequoia512 ultrasound scanner (Acuson, Mountain View, CA, USA) equipped with a 

14 MHz linear array transducer. The ECG signal (modified chest lead 5) was recorded and 

presented alongside B-mode image sets. The left common carotid artery (CCA) was scanned 

using a resolution box function to record a 25 mm-wide and 15 mm-high image, including the 

beginning of the carotid bifurcation and the distal CCA. A 5-s cine loop (25 frames per second) 

was digitally stored for subsequent offline analysis.  

 

Longitudinal motion 

Assessment of CALM was performed in line with recently published practical guidelines (Rizi 

et al., 2020). Carotid artery wall motion analysis was performed using an in-house motion 

tracking program developed by our research group (Yli-Ollila et al., 2013). The software is 

written in MATLAB (2007b, The MathWorks Inc., Natic, MA, USA) and is capable of reading 

the graphical ECG-information of the ultrasound recording and simultaneously tracking the 

longitudinal and radial motions of the arterial wall. The basic method used in the motion 

tracking was a two-dimensional cross-correlation (block matching) enhanced with a contrast 

optimization technique to reduce noise from video. 

In the longitudinal motion analysis, regions of interest were drawn on the ultrasound image on 

the intima-media complex, on the adventitial layer and on the surrounding tissue outside the 

adventitia. The motion tracking of the longitudinal motion was considered suitable for analysis 



if the tracking successfully recorded at least two heart cycles, otherwise the motion data were 

discarded. Details of the method have been described (Yli-Ollila et al., 2013; Taivainen et al., 

2015).  

We measured longitudinal motion curves between the intima-media complex and the 

adventitial layer (IA). The curves of longitudinal motion have been previously shown to vary 

extensively between individuals (Yli-Ollila et al., 2013). We investigated the amplitude of the 

motion (IAampl), the forward-oriented (IAante) and the backward-oriented (IAretro) 

component of the motion between the different layers of the CCA wall. Furthermore, we 

evaluated the main deviation of the longitudinal motion (IAdev) between the arterial layers by 

computing the average of the motion curve over a cardiac cycle. A schematic figure showing 

the different measured parameters of carotid artery longitudinal wall motion in two original 

registrations is presented in Figure 1.  

 

Statistical methods 

Distributions of longitudinal motion parameters were only slightly skewed and residuals in 

models were normally distributed, thus parametric tests were considered acceptable to use. 

Independent samples t-test was used to determine the significance of differences between study 

groups with and without metabolic syndrome. Linear regression model adjusted for age and 

sex was used to define conformities between the indices of longitudinal motion and the 

components of metabolic syndrome, HOMA-IR as well as adiponectin. A multivariate 

regression model with stepwise method adjusted for age and sex was used to find independent 

effects of the individual components of metabolic syndrome and longitudinal motion 

parameters.  

 

 

  



Results  

 

Clinical characteristics of subjects with MetS (MetS+) and without (MetS−) are shown in Table 

1. Significant differences between these two groups were found in all characteristic measures 

of MetS, including levels of insulin, glucose and adiponectin as well as in HOMA-IR. For 

smoking, age and sex, no statistically significant difference was found between the study 

groups. Differences in the CALM parameters between the MetS+ and MetS− groups are shown 

in Figure 2. Among the CALM parameters, significant differences between the MetS+ and 

MetS− groups were found in all examined parameters except IAampl. In subjects belonging to 

the MetS+ group, IAante was larger (P < 0.01) and IAretro was smaller (P < 0.001) than in 

the MetS− group. Individuals without MetS showed negative IAdev, whereas subjects in the 

MetS+ group had slightly positive values in IAdev. Representative examples of carotid artery 

longitudinal wall motion in a subject without MetS and with MetS are presented in Figure 1.  

Table 2 presents associations (linear regression model adjusted for age and gender) between 

the CALM parameters and the components of MetS. IAdev showed positive and IAretro 

negative correlations with hypertension (P < 0.05 for both). No significant correlations were 

found between IAante, IAampl and hypertension. IAante and IAdev exhibited positive 

correlations with obesity (P < 0.05 for both). IAretro showed a negative correlation with 

obesity (P < 0.05). IAampl showed no significant correlation with obesity. No significant 

associations were found between CALM parameters and hypertriglyceridemia. Dyslipidemia, 

with low HDL-C a risk factor, showed a positive correlation (P < 0.01) with IAante, but there 

were no statistically significant associations with other CALM parameters. No significant 

correlations were observed between longitudinal motion parameters and either hyperglycaemia 

or adiponectin. IAretro and IAampl exhibited negative correlations with hyperinsulinemia (P 

< 0.01 and P < 0.05, respectively). IAretro and IAampl showed negative correlations with 

HOMA-IR (P < 0.05 for both). 

In the multivariate analysis with a stepwise method, hypertension was associated with IAretro 

(β = −0.175, P < 0.01) and IAdev (β = 0.145, P < 0.05), but no other significant associations 

between CALM parameters and hypertension were seen. Low HDL-C was associated with 

IAante (β = 0.164, P < 0.01) and IAampl (β = 0.126, P < 0.05) but not with other CALM 

parameters. Hyperinsulinemia exhibited an inverse association with IAretro (β = −0.124, P < 

0.05) and IAampl (β = −0.156, P < 0.01) but not with other CALM parameters. 



Hyperglycaemia and obesity did not show any significant associations with CALM in these 

multivariate models.   

  

Discussion 

The novel finding of this study is that MetS is associated with alterations in CALM among 

young (30–45-year-old) adults. We found statistically significant differences between MetS+ 

and MetS− groups in all examined CALM parameters except IAampl. When studying 

separately associations of different components of MetS with CALM, statistically significant 

independent associations were found for hypertension, dyslipidemia and hyperinsulinemia. 

Hyperglycaemia or low adiponectin did not exhibit any significant associations with CALM 

parameters. In general, MetS and adverse profile in its components were associated with 

augmented antegrade and attenuated retrograde motion of intima-media complex in relation to 

the adventitia layer, which might be markers of unfavourable vascular health (Taivainen et al., 

2015; Taivainen et al., 2018). 

The relation between MetS and CALM parameters has not previously been systematically 

evaluated. However, there have been reports demonstrating significant associations between 

MetS and arterial stiffness (Li et al., 2005; Koskinen et al., 2009; Koskinen et al., 2010; 

Gomez-Sanchez et al., 2016; Vilmi-Kerälä et al., 2017; Topouchian et al., 2018). Thus, our 

finding of altered CALM in subjects with MetS is not surprising. One article reported CALM 

in type 2 diabetic subjects (Zahnd et al., 2011). In older type 2 diabetic subjects, mean 

amplitudes of CALM were lower than in young, healthy subjects. However, the study groups 

were not well comparable since, in older diabetic subjects, atherosclerotic process is more 

pronounced due to arterial ageing compared with a younger reference population. Therefore, it 

was not possible to detect a possible independent role of diabetes behind altered CALM. The 

influence of normal ageing process to CALM has been of interest to Cinthio and colleagues, 

who studied 150 healthy non-obese patients aged 20–76 years and determined that the 

antegrade-oriented phase of longitudinal motion increased with ageing and was earlier in men 

than in women (Cinthio et al., 2018). An important advantage of the present study is that MetS+ 

and MetS− groups were comparable with regard to age and sex distributions. Furthermore, 

statistically significant associations between MetS components and CALM were detected even 

after adjustment for age and sex.  



We have reported previously relationships between CALM and cardiovascular risk factors in 

a study which is based on the same research population than this (Taivainen et al., 2018). In 

the present study, many of the same risk factors were included as components of MetS. In our 

previous study, systolic and diastolic blood pressure, BMI, total cholesterol and LDL-C showed 

significant associations with CALM (Taivainen et al., 2018). This is in line with the present 

study demonstrating changes in CALM to be associated with hypertension, obesity and 

dyslipidemia. When investigating the different MetS components of the harmonized criteria, 

the results were parallel to those of our previous study – antegrade longitudinal motion 

increased and retrograde longitudinal motion decreased with the existence of cardiovascular 

risk factors and, now, with MetS components (Taivainen et al., 2018).  

The present study also included assessments of hyperinsulinemia, insulin resistance and low 

adiponectin, which are closely related to impaired glucose metabolism and therefore enable 

elaborate evaluation of metabolic disorders related to MetS. Novel findings are that 

hyperinsulinemia and insulin resistance also showed significant associations with CALM. No 

significant association was identified between hyperglycaemia and CALM in the present study, 

but reasonable, insulin-metabolism, and on demand hyperinsulinemia, regulates glucose levels 

and aim is to maintain euglycemia. Hyperinsulinemia is not included in all MetS criteria 

although it has been reported to be an important feature of MetS in the literature (e.g. Kassi et 

al., 2011).  

Hyperinsulinemia is accepted to be essential in the pathophysiology of MetS, and an 

overabundance of free fatty acids is acknowledged to be a considerable contributor to the 

development of hyperinsulinemia (Eckel et al., 2005). In glucose metabolism, defects of insulin 

action contribute to glucose uptake and metabolism in insulin-sensitive tissues such as muscle 

and adipose tissue, and attenuates the insulin capability to suppress glucose production of the 

liver (Eckel et al., 2005). Furthermore, among some insulin-resistant individuals who secrete 

enough insulin to maintain near normal or normal glucose tolerance and do not acquire type 2 

diabetes compensatory hyperinsulinemia can also act on in a way that predisposes the 

development of essential hypertension (Reaven, 2011). Some mechanisms behind essential 

hypertension in individuals with insulin resistance may arise from the fact that not all tissues 

are equally insulin-resistant; that is, the kidney is not resistant to the influence of insulin, and 

insulin enhances renal sodium retention in hyperinsulinemic/insulin-resistant individuals 

(Facchini et al., 1999). This could predispose to elevated blood pressure and in long term add 

risk to vascular changes.  



In our study, adiponectin levels were significantly lower and HOMA-IR significantly higher in 

the MetS+ group compared with the MetS− group. Adiponectin levels decrease with visceral 

fat accumulation, and adiponectin has been found to protect against hypertension, type 2 

diabetes, inflammation and atherosclerotic diseases (Matsuzawa, 2010; Ohashi et al., 2011). 

Among young adults in the Young Finns Study (n = 1693), high adiponectin levels were shown 

to associate with decreased incidence of MetS (Juonala et al., 2011). Despite significant 

univariate correlations with obesity, hypertension, hyperinsulinemia and insulin resistance, we 

did not find any significant correlations between adiponectin levels and CALM parameters.  

Mechanisms underlying the relationship between MetS and CVD are likely to occur via direct 

or indirect influences of different components on endothelial function, the deposition of LDL 

cholesterol (LDL-C) or the recruitment, migration and proliferation of monocytes in smooth 

muscle cells in the arterial wall (Qiao et al., 2007). MetS can promote arterial stiffening 

through a variety of mechanisms including increased sympathetic activity, enhanced activity 

of the renin-angiotensin-aldosterone system, increased production of inflammatory cytokines 

and reactive oxygen species and reduction of nitric oxide availability (Saladini & Palatini, 

2018). When evaluating the mechanisms behind the association between MetS and CALM, 

these same mechanisms should also be taken into consideration.  

Our study was undertaken with a large, well-characterized study population comprising 30- to 

45-year-old adults. The population consisted of white European subjects, and, for that reason, 

these results may not be generalizable to other ethnic groups. The size of the study population 

was large but notably smaller than in many other reports of The Cardiovascular Risk in Young 

Finns Study. Longitudinal motion analysis of CCA is challenging and requires good frame-to-

frame image quality in ultrasound videos. In 2007, the ultrasound imaging protocol was 

optimized to measure carotid intima-media thickness and distensibility but not to assessments 

of CALM, and this is the reason for the relatively large number of unsuccessful scans, as 

described previously (Taivainen et al., 2018). However, the final number of study subjects in 

the study herein is large, and, for the majority, the signal quality of the data was good.  

 

Conclusion 

Our findings support the hypothesis that MetS alters CALM. In particular, hypertension, 

obesity and hyperinsulinemia were associated with reduced total peak-to-peak amplitude, 



increased antegrade and reduced retrograde amplitudes, all of which might be markers of 

unfavourable vascular health.  
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Figure 1. Representative examples of carotid artery longitudinal wall motion in a subject 

without metabolic syndrome (MetS-) and another with metabolic syndrome (MetS+). Time 

point 0.0 seconds corresponds to end-diastolic frame (incident with the R-wave on a 

continuously recorded electrocardiogram). In MetS+ antegrade oriented motion was larger 

and retrograde oriented was smaller than in MetS-.  Abbreviations: IAante = Antegrade 

amplitude of the longitudinal motion between intima-media and adventitia layers, IAretro = 

Retrograde amplitude of the longitudinal motion between intima-media and adventitia layers, 

and IAampl = Peak-to-peak amplitude of the longitudinal motion between intima-media and 

adventitia layers. 
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Figure 2. Carotid artery longitudinal motion (CALM) parameters between subjects without 

(MetS−) and with (MetS+) metabolic syndrome. IAante = Antegrade amplitude of the 

longitudinal motion between intima-media and adventitia layers, IAretro = Retrograde 

amplitude of the longitudinal motion between intima-media and adventitia layers, IAampl = 

Peak-to-peak amplitude of the longitudinal motion between intima-media and adventitia layers, 

IAdev = Average deviation of the longitudinal motion between intima-media and adventitia 

layers. 

 

 

 

 

  



Table 1. Clinical characteristics of subjects without (MetS−) and with (MetS+) metabolic 

syndrome. 

  

__________________________________________________________________________________ 

MetS− (n = 228) MetS+ (n = 53) 

__________________________________________________________________________________ 

Age (years)   37.9 (4.9)   39.1 (4.5)  

Sex (% women)  63.2%  49.1%  

Smoking (%)   16.3%  22.6%  

Body mass index (kg/m2)  24.6 (3.7)  30.5 (5.2) *** 

Waist circumference (cm)  83.1 (10.2)  101.1 (11.8) *** 

Systolic blood pressure (mmHg) 126 (13)  137 (14) *** 

Diastolic blood pressure (mmHg) 79 (9)  89 (9) *** 

Total cholesterol (mmol/L)  4.95 (0.83)  5.49 (0.93) *** 

Low-density lipoprotein cholesterol  3.04 (0.73)  3.40 (0.81) ** 

(mmol/L)  

High-density lipoprotein cholesterol  1.42 (0.30)  1.20 (0.43) *** 

(mmol/L)  

Triglycerides (mmol/L)  1.08 (0.44)  2.05 (0.90) *** 

Glucose (mmol/L)  5.20 (0.44)  5.75 (0.60) *** 

Insulin (mU/L)  6.78 (4.70)  14.26 (7.96) *** 

HOMA-IR   1.60 (1.26)  3.68 (2.17) *** 

Adiponectin   10.90 (5.75)  7.11 (3.18) *** 

__________________________________________________________________________________ 

Values are mean (SD) / %. Significances: ** = P < 0.01, *** = P < 0.001. Abbreviations: HOMA-IR 

= Homeostasis model assessment of insulin resistance. 

  



Table 2. Age- and sex-adjusted relationships between components of metabolic syndrome and 

longitudinal motion parameters.  

____________________________________________________________________ 

   B (SE)  Beta 

____________________________________________________________________ 

Hypertension (Blood pressure ≥ 130/85 or medication) 

IAante    0.015 (0.008)  0.119  

IAretro   −0.029 (0.012) −0.156 * 

IAampl   −0.015 (0.012) −0.083  

IAdev   0.014 (0.007)  0.131 * 

Obesity (Waist circumference ≥ 102 cm in men and ≥ 88 cm in women) 

IAante   0.022 (0.009)  0.149 *  

IAretro   −0.031 (0.013) −0.138 *  

IAampl   −0.009 (0.013) −0.042  

IAdev   0.018 (0.008)  0.136 *  

Dyslipidemia (Triglycerides  ≥ 1.7 mmol/L or medication):   

IAante   0.016 (0.009)  0.102  

IAretro   −0.022 (0.014) −0.093  

IAampl    −0.006 (0.013) −0.027  

IAdev   0.006 (0.008)  0.045  

Dyslipidemia (HDL-C < 1.00mmol/L in men and < 1.3 in women or medication)  

IAante   0.024 (0.008)  0.177 **  

IAretro   −0.006 (0.012) −0.029  

IAampl   0.018 (0.012)  0.092  

IAdev   0.014 (0.007)  0.114  

Hyperglycemia (Glucose ≥ 5.6 mmol/L or treatment) 

IAante   0.010 (0.009)  0.070  

IAretro   −0.018 (0.013) −0.081  

IAampl   −0.008 (0.013) −0.037  

IAdev   0.008 (0.008)  0.060  

     Continues … 

  



… Continued 

Hyperinsulinemia (Insulin ≥ 11.06 mU/L) 

IAante   0.006 (0.009)  0.037  

IAretro   −0.036 (0.013) −0.158 ** 

IAampl   −0.030 (0.013) −0.141 * 

IAdev   0.014 (0.008)  0.109  

Insulin resistance (HOMA-IR ≥ 2.44) 

IAante   0.003 (0.008)  0.024  

IAretro   −0.031 (0.013) −0.145 * 

IAampl   −0.028 (0.012) −0.136 * 

IAdev   0.009 (0.007)  0.073  

Low adiponectin (≤ 6.22 µg/mL)  

IAante   0.009 (0.009)  0.065  

IAretro   0.002 (0.014)  0.007  

IAampl   0.011 (0.013)  −0.052  

IAdev   −0.003 (0.008) −0.021  

____________________________________________________________________ 

 

Significances: *P < 0.05, **P < 0.01. Abbreviations, IAante = Antegrade amplitude of the longitudinal 

motion between intima-media and adventitia layers, IAretro = Retrograde amplitude of the longitudinal 

motion between intima-media and adventitia layers, IAampl = Peak-to-peak amplitude of the 

longitudinal motion between intima-media and adventitia layers, and IAdev = Average deviation of the 

longitudinal motion between intima-media and adventitia layers, HDL-C = high-density lipoprotein 

cholesterol, HOMA-IR = Homeostasis model assessment of insulin resistance. 

 



Table 3. Multivariate relationships between each component of metabolic syndrome and longitudinal motion parameters adjusted for age and sex.  

 

 Hypertension 

B ± SE, Beta 

Obesity 

B ± SE, Beta 

Low HDL-C 

B ± SE, Beta 

High triglycerides 

B ± SE, Beta 

Hyperglycaemia 

B ± SE, Beta 

Hyperinsulinemia 

B ± SE, Beta 

IAante (mm)   0.02 ± 0.01, 0.164 **    

IAretro (mm) −0.03 ± 0.01, −0.175 **     −0.03 ± 0.01, −0.124 * 

IAampl (mm)   0.03 ± 0.01, 0.126 *   −0.03 ± 0.01, −0.156 ** 

IAdev (mm) 0.02 ± 0.01, 0.145 *      

 

Statistical significances: *P < 0.05, **P < 0.01, ***P < 0.001. Unstandardized coefficients B ± Std.Error, Beta, Sig. Abbreviations, IAante = Antegrade 

amplitude of the longitudinal motion between intima-media and adventitia layers, IAretro = Retrograde amplitude of the longitudinal motion between intima-

media and adventitia layers, IAampl = Peak-to-peak amplitude of the longitudinal motion between intima-media and adventitia layers, and IAdev = Average 

deviation of the longitudinal motion between intima-media and adventitia layers, HDL-C = high-density lipoprotein cholesterol.
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