
Speedy Local Search for
Semi-Supervised Regularized Least-Squares

Fabian Gieseke1, Oliver Kramer1, Antti Airola2, and Tapio Pahikkala2

1 Department Informatik
Carl von Ossietzky Universität Oldenburg

26111 Oldenburg, Germany
fabiangieseke@googlemail.com

okramer@icsi.berkeley.edu

2 Turku Centre for Computer Science,
Department of Information Technology,

University of Turku, 20520 Turku, Finland
{antti.airola,tapio.pahikkala}@utu.fi

Abstract. In real-world machine learning scenarios, labeled data is of-
ten rare while unlabeled data can be obtained easily. Semi-supervised
approaches aim at improving the prediction performance by taking both
the labeled as well as the unlabeled part of the data into account. In
particular, semi-supervised support vector machines favor decision hy-
perplanes which lie in a “low-density area” induced by the unlabeled
patterns (while still considering the labeled part of the data). The as-
sociated optimization problem, however, is of combinatorial nature and,
hence, difficult to solve. In this work, we present an efficient implemen-
tation of a simple local search strategy that is based on matrix updates
of the intermediate candidate solutions. Our experiments on both artifi-
cial and real-world data sets indicate that the approach can successfully
incorporate unlabeled data in an efficient manner.

1 Introduction

If sufficient labeled training data is available, well-known classification techniques
like the k-nearest neighbor -classifier or support vector machines (SVMs) [10]
often yield satisfying results. In real-world applications, however, labeled data is
mostly rare. One of the current research directions in machine learning is semi-
supervised learning [5,18]. Compared to purely supervised learning approaches,
semi-supervised techniques try to take advantage not only of the labeled but also
of the unlabeled data which can often be gathered more easily. One of the most
prominent semi-supervised classification approaches are semi-supervised support
vector machines (S3VMs) [11], which depict the direct extension of support
vector machines to semi-supervised scenarios: Given a set of labeled training
patterns, the goal of a standard support vector machine consists in finding a
hyperplane which separates both classes well such that the “margin” induced by
the hyperplane and the patterns is maximized, see Figure 1 (a). This concept can

2 Fabian Gieseke, Oliver Kramer, Antti Airola, and Tapio Pahikkala

(a) Supervised (b) Unsupervised (c) Semi-Supervised

Fig. 1. In supervised scenarios, we are only given labeled patterns (squares and trian-
gles). Thus, given only a small amount of data, a support vector machine cannot yield
a good classification model, see Figure (a). Both unsupervised and semi-supervised
support vector machines try to incorporate unlabeled patterns (dots) to reveal more
information about the structure of the data, see Figures (b) and (c).

also be considered in learning scenarios where only unlabeled training patterns
are given. Here, the goal consists in finding the optimal partition of the data
into two classes (given some constraints) such that a subsequent application of a
support vector machine leads to the best possible result, see Figure 1 (b). Semi-
supervised support vector machines can be seen as “intermediate” approach
between the latter two ones. Here, the aim of the learning task consists in finding
a hyperplane which separates both classes well (based on the labeled part of the
data) and, at the same time, passes through a “low-density area” induced by
the unlabeled part of the data, see Figure 1 (c).

1.1 Related Work and Contribution

The original problem formulation of semi-supervised support vector machines
was given by Vapnik and Sterin [16] under the name transductive support vector
machines. Aiming at practical settings, Joachims [11] proposed a label-switching
strategy which iteratively tries to improve an initial “guess” obtained via a
(modified) support vector machine on the labeled part of the data. A variety
of different techniques has been proposed in recent years which are based on
semi-definite programming [2], the convex-concave procedure [8], deterministic
annealing [14], the continuation method [4] and other techniques [1,7,17]. Many
other approaches exist and we refer to Chapelle et al. [5] and Zhu et al. [18] for
comprehensive surveys. In this paper, we propose an efficient implementation
of a least-squares variant for the original problem definition. More precisely, we
propose an efficient implementation of a simple local search strategy which is
based on matrix update schemes of the intermediate candidate solutions. Our
experiments indicate that the resulting approach can incorporate unlabeled data
successfully in an extremely efficient manner.3

3 The work at hand is related to our previous work for the unsupervised case [9]; we
would like to point out that the new (matrix) derivations for the semi-supervised
stetting comprehend the old ones as a special case.

Speedy Local Search for Semi-Supervised Regularized Least-Squares 3

1.2 Notations

We use [n] to denote the set {1, . . . , n}. Further, the set of all n ×m matrices
with real coefficients is denoted by Rn×m. Given a matrix M ∈ Rn×m, we
denote the element in the i-th row and j-th column by [M]i,j . For two sets
R = {i1, . . . , ir} ⊆ [n] and S = {k1, . . . , ks} ⊆ [m] of indices, we use MR,S

to denote the matrix that contains only the rows and columns of M that are
indexed by R and S, respectively. Moreover, we set MR,[m] = MR. At last, we
use yi to denote the i-th coordinate of a vector y ∈ Rn.

2 Semi-Supervised Regularized Least-Squares

In supervised classification scenarios, a set Tl = {(x′1, y′1), . . . , (x′l, y
′
l)} of training

patterns x′i belonging to a set X with associated class labels y′i ∈ Y = {−1,+1}
is given. For semi-supervised settings, we are additionally given a set Tu =
{x1, . . . ,xu} ⊂ X of training patterns without any class information.

2.1 Regularized Least-Squares Classification

Our approach can be seen as an extension of the regularized least-squares clas-
sification [12] technique. Both support vector machines and this concept belong
to regularization problems of the form

inf
f∈H

1

l

l∑
i=1

L
(
y′i, f(x′i)

)
+ λ||f ||2H, (1)

where λ > 0 is a fixed real number, L : Y × R → [0,∞) is a loss function
measuring the “performance” of the prediction function f on the training set,
and ||f ||2H is the squared norm in a so-called reproducing kernel Hilbert space
H ⊆ RX = {f : X → R} induced by a kernel function k : X ×X → R [13,15].

By using the square loss L(y, t) = (y − t)2, one obtains

inf
f∈H

1

l

l∑
i=1

(
y′i − f(x′i)

)2
+ λ||f ||2H. (2)

Due to the representer theorem [13], any minimizer f∗ ∈ H of (2) has the form

f∗(·) =

l∑
j=1

cjk(x′j , ·) (3)

with appropriate coefficients c = (c1, . . . , cl)
T ∈ Rl. Hence, by using ||f∗||2H =

cTKc [13], where K ∈ Rl×l is the symmetric kernel matrix with entries of the
form [K]i,j = k(xi,xj), we can rewrite the problem (2) as

minimize
c∈Rl

1

l
(y′ −Kc)

T
(y′ −Kc) + λcTKc, (4)

where y′ = (y′1, . . . , y
′
l)

T
. This optimization problem is convex and, thus, easy

to solve given standard techniques for convex optimization [3].

4 Fabian Gieseke, Oliver Kramer, Antti Airola, and Tapio Pahikkala

2.2 Semi-Supervised Extension

The goal of the semi-supervised learning process is to find an “optimal” predic-
tion function for unseen data based on both the labeled and the unlabeled part
of the training data. More precisely, we search for a function f∗ ∈ H and a label-
ing vector y∗ = (y∗1 , . . . , y

∗
u)

T ∈ {−1,+1}u for the unlabeled training patterns
which are optimal with respect to

minimize
f∈H, y∈{−1,+1}u

1

l

l∑
i=1

L
(
y′i, f(x′i)

)
+ λ′

1

u

u∑
i=1

L
(
yi, f(xi)

)
+ λ||f ||2H (5)

s.t.

∣∣∣∣∣ 1u
u∑
i=1

max(0, yi)− bc

∣∣∣∣∣ < ε,

where λ′, λ > 0 are cost parameters and where ε > 0. The last equation of
the above task is called the balance constraint ; it enforces the class ratio on
the unlabeled part of the data to be approximately the same as an user-defined
parameter bc. We will denote assignments y fulfilling the latter constraint as
valid. Again, due to the representer theorem [13], any optimal function f∗ ∈ H
for a fixed partition vector y ∈ {−1,+1}u has the form

f∗(·) =

l∑
j=1

cjk(x′j , ·) +

l+u∑
j=l+1

cjk(xj−l, ·) (6)

with appropriate coefficients c = (c1, . . . , cl+u)
T ∈ Rl+u. Hence, by plugging in

the square loss, one can reformulate the above optimization problem as

minimize
c∈Rn, y∈{−1,+1}n

J(c,y) = (Λy −ΛKc)
T

(Λy −ΛKc) + λcTKc (7)

s.t.

∣∣∣∣∣ 1u
n∑

i=l+1

max(0, yi)− bc

∣∣∣∣∣ < ε,

and yi = y′i for i = 1, . . . , l,

where K is the kernel matrix (based on the sequence x′1, . . . ,x
′
l, x1, . . . ,xu),

Λ a diagonal matrix with entries of the form [Λ]i,i =
√

1
l for i = 1, . . . , l and

[Λ]i,i =
√

λ′

u for i = l + 1, . . . , n, and where n = l + u.

3 Local Search Revisited

We follow the optimization scheme proposed for the unsupervised case [9] and
apply a local search strategy along with efficient matrix updates for the involved
intermediate candidate solutions.

Speedy Local Search for Semi-Supervised Regularized Least-Squares 5

Algorithm 1 Local Search

Require: A set of labeled training patterns {(x′1, y′1), . . . , (x′l, y
′
l)}, a set of unlabeled

training patterns {x1, . . . ,xu}, and model parameters λ′, λ, bc, ε.
Ensure: An approximation (c∗,y) for the task (7).
1: Initialize y ⊆ {−1,+1}n (see text)
2: t = 0
3: while t < τ do
4: Generate ȳ by flipping a single coordinate j ∈ {l + 1, . . . , l + u} of y
5: if F (ȳ) < F (y) and ȳ is valid then
6: Replace y by ȳ
7: end if
8: t = t+ 1
9: end while

10: Compute c∗ for minimizec∈Rn J(c,y)
11: return (c∗,y)

3.1 Local Search

The local search strategy is depicted in Algorithm 1: Starting with an initial
candidate solution, we iterate over a sequence of τ iterations. For each iteration,
we generate a new candidate solution by flipping a single coordinate and take
the best performing solution out of the two current ones. The “quality” of an
intermediate solution y is measured in terms of

F (y) = minimize
c∈Rn

J(c,y). (8)

Once the overall process is finished, the best final candidate solution along with
its corresponding vector c∗ is returned. For the generation of the initial candidate
solution, we resort to a well-known heuristic in this field [4,8,11], i.e., we initialize
the unlabeled patterns with the predictions provided via a supervised model
(which is trained on the labeled part and determined by (4)). If the balance
constraint is not fulfilled after this assignment, we use the largest positive (and
real-valued) predictions of the model as “positive” class assignments and the
remaining ones as “negative” class assignments. We will briefly investigate the
benefits and drawbacks of such an initialization strategy in Section 4.

3.2 Convex Intermediate Tasks

The intermediate optimization task (8) for a fixed partition vector y can be
solved as follows: The function G(c) = J(c,y) is differentiable with gradient

∇G(c) = −2(ΛK)
T

(Λy −ΛKc) + 2λKc.

Further, G is convex on Rn since the kernel matrix K and thus the Hessian

∇2G(c) = 2(ΛK)
T
ΛK + 2λK

6 Fabian Gieseke, Oliver Kramer, Antti Airola, and Tapio Pahikkala

are positive semidefinite. Hence, ∇G(c) = 0 is a necessary and sufficient con-
dition for optimality [3] and an optimal solution c∗ for (8) can be obtained via

c∗ = Λ(ΛKΛ + λI)
−1

Λy = ΛGΛy. (9)

with G = (ΛKΛ + λI)
−1

. Note that ΛKΛ is positive semidefinite since K is
positive semidefinite; hence, ΛKΛ + λI is positive definite and thus invertible.

3.3 Efficient Matrix Updates

The recurrent computation of the objective values in Step 5 of Algorithm 1 is still
cumbersome. However, similar to our previous work [9], it is possible to update
these intermediate solutions efficiently when only one coordinate (or a constant
number of coordinates) of an intermediate candidate solution is flipped: Let ȳ
be the current candidate solution and let y be its predecessor. By plugging in
Equation (9) into (8), one gets

F (ȳ) = (Λȳ −ΛKc∗)
T

(Λȳ −ΛKc∗) + λ(c∗)
T
Kc∗

= ȳTΛ
(
I−KG−GK + GKKG + λGKG

)︸ ︷︷ ︸
=:H

Λȳ, (10)

where K = ΛKΛ. Now note that, for a given coordinate j to be flipped, one
can update the right hand side via

HΛȳ = HΛy − 2yj(HΛ)[n],{j} (11)

in O(n) time, assuming that the matrix HΛ ∈ Rn×n and the information
HΛy ∈ Rn for the predecessor are available (in memory). Further, since Λ
is a diagonal matrix and since HΛȳ ∈ Rn is a vector, the remaining opera-
tions for computing (10) can be performed in O(n) time too. Thus, by spending
O(n3) time for the initialization of the corresponding matrices, the solutions of
the intermediate tasks can be “updated” in O(n) time per iteration:

Theorem 1. One can compute F (ȳ) in Step 5 of Algorithm 1 in O(n) time.
Further, O(n3) preprocessing time and O(n2) space is needed.

We would like to point out that it is possible to integrate the so-called Nyström
approximation in an efficient manner. More specifically, one can replace the
original kernel matrix K by K̃ = (KR)T(KR,R)−1KR, where R = {i1, . . . , ir} ⊆
[n] is a subset of indices. The acceleration can be done in an analogous way to

the unsupervised case [9] by making use of the low-rank nature of K̃; the longish
derivations are omitted due to lack of space.

Theorem 2. By applying the approximation scheme, one can compute F (ȳ) in
Step 5 of Algorithm 1 in O(r) time. Further, O(nr2) preprocessing time and
O(nr) space is needed.

Speedy Local Search for Semi-Supervised Regularized Least-Squares 7

(a) Gaussian2C (b) Gaussian4C (c) Moons

Fig. 2. The (red) squares and (blue) triangles depict the labeled part of the data; the
remaining (small) points correspond to the unlabeled part.

4 Experiments

We will now describe the experimental setup and the outcome of the evaluation.

4.1 Experimental Setup

Our approach (S2RLSC) is implemented in Python using the Numpy package. The
runtime analyses are performed on a 2.66 GHz Intel CoreTM Quad PC running
Ubuntu 10.04.

Data Sets The first artificial data set is composed of two Gaussian clusters; to
generate it, we draw n/2 points from each of two Gaussian distributions Xi ∼
N (mi, I), where m1 = (−2.5, 0.0, . . . , 0.0) ∈ Rd and m2 = (+2.5, 0.0, . . . , 0.0) ∈
Rd. The class label of a point corresponds to the distribution it was drawn from,
see Figure 2 (a). If not noted otherwise, we use n = 500 and d = 500 and
denote the induced data set by Gaussian2C. The second artificial data set aims
at generating a (possibly) misleading structure: Here, we draw n/4 points from
each of four Gaussian distributions Xi ∼ N (mi, I), where

m1 = (−2.5,−5.0, 0.0, . . . , 0.0) ∈ Rd, m2 = (−2.5,+5.0, 0.0, . . . , 0.0) ∈ Rd,
m3 = (+2.5,−5.0, 0.0, . . . , 0.0) ∈ Rd, m4 = (+2.5,+5.0, 0.0, . . . , 0.0) ∈ Rd,

see Figure 2 (b). The points drawn from the first two distributions belong to
the first class and the remaining one to the second class. Again, we fix n = 500
and d = 500 and denote the corresponding data set by Gaussian4C. Finally, we
consider the well-known Moons data set with n = 500 points and dim = 2, see
Figure 2 (c). In addition to these artificial data sets, we make use of the USPS [10]
data set, where USPS(i,j) is used to denote a single binary classification task,
see Figure 3. If not noted otherwise, the first half of each data set is used as
training and the second half as test set. To induce a semi-supervised scenario,
we split up the training set into a labeled and an unlabeled part and use different
ratios for the particular setting; the specific amount of data is given in brackets
for each data set, where l, u, t denotes the number of labeled, unlabeled, and
test patterns (e.g. Gaussian2C[l=25,u=225,t=250]).

8 Fabian Gieseke, Oliver Kramer, Antti Airola, and Tapio Pahikkala

Fig. 3. The USPS data set [10] containing images of handwritten digits. Each digit is
represented by a 16× 16 gray scale image (8 bits).

Model Selection To select the final models, several parameters need to be
tuned. In a fully supervised setting, this is usually done via an extensive grid
search over all involved parameters. However, in a semi-supervised setting, model
selection is more difficult due to the lack of labeled data and is widely considered
to be an open issue [5]. Due to this model selection problem, we consider two
scenarios to select the (non-fixed) parameters: The first one is a non-realistic
scenario where we make use of the test set to evaluate the model performance.4

Note that by making use of the test set (with a large amount of labels), one
can first evaluate the “flexibility” of the model, i.e., one can first investigate if
the model is in principle capable of adapting to the inherent structure of the
data while ignoring the (possible) problems caused by a small validation set.
The second one is a realistic scenario where only the labels of the labeled part
of the training set are used for model evaluation (via 5-fold cross-validation).

Parameters In both scenarios, we first tune the non-fixed parameters via grid
search and subsequently retrain the final model on the training set with the best
performing set of parameters. As similarity measures, we consider both a linear

kernel k(xi,xj) = 〈xi,xj〉 and a RBF kernel k(xi,xj) = exp(− ||xi−xj ||2
2σ2) with

kernel width σ. To tune the cost parameters λ and λ′, we consider a small grid
(λ, λ′) ∈ {2−10, . . . , 210} × {0.01, 1, 100} of parameters. Concerning the balance
constraint, we set bc to an estimate obtained from all available labels and fix
ε = 0.1. The iterative process of the local search is stopped if no changes have
occured for n consecutive iterations; further, a round-robin scheme is used to
select the coordinates to be flipped per iteration.

Competing Approaches We use the regularized least-squares classifier (RLSC)
as supervised model; to tune the parameter λ, we perform a grid search with λ ∈
{2−10, . . . , 210}. As semi-supervised competitor, we resort to the UniverSVM ap-
proach [8], which depicts one of the state-of-the-art semi-supervised support
vector machine implementations. The parameters are also tuned via grid search
with (C,C∗) ∈ {2−10, . . . , 210} × { 0.01u , 1.0u ,

100.0
u }. The ratio between the two

classes is provided to the algorithm via the -w option; except for the -S option
(which we set to −0.3), the default values for the remaining parameters are used.

4.2 Results

We will now provide the outcome of the experiments conducted.

4 This setup is usually considered in related evaluations [5].

Speedy Local Search for Semi-Supervised Regularized Least-Squares 9

0

5

10

15

20

25

10 20 30 40 50 60 70 80

T
es
t
E
rr
or

(%
)

Amount of Labeled Data (%)

RLSC

S
2
RLSC

(a)

0

5

10

15

20

25

10 20 30 40 50 60 70 80

T
es
t
E
rr
or

(%
)

Amount of Unlabeled Data (%)

RLSC

S
2
RLSC

(b)

Fig. 4. Our semi-supervised approach can successfully incorporate unlabeled data to
improve the generalization performance, see Figure (a). However, sufficient unlabeled
data is needed as well for the learner to yield a satisfying performance, see Figure (b).

Amount of Data For semi-supervised approaches, the amount of unlabeled
data used for training is an important issue as well. To analyze how much la-
beled and unlabeled data is needed for our S2RLSC approach, we consider the
Gaussian2C data set and vary the amount of labeled and unlabeled data. For
this experiment, we consider the non-realistic scenario and use the supervised
RLSC approach as baseline. First, we vary the amount of labeled data from 5% to
80% with respect to (the size of) the training set; the remaining part the train-
ing set is used as unlabeled data. In Figure 4 (a), the result of this experiment
is shown: Even with little labeled data, the semi-supervised approach performs
better compared to the supervised one. Now, let us fix the amount of labeled
data to 20% and and let us vary the amount of unlabeled data from 5% to 80%
with respect to (the size of) the training set, see Figure 4 (b). Clearly, the semi-
supervised approach is only capable of generating an appropriate model once
sufficient unlabeled data is given.

Classification Performance We consider two different ratios of labeled and
unlabeled data for each particular data set. The average test errors and the one
standard deviation obtained on 10 random partitions of each data set into la-
beled, unlabeled, and test patterns are reported. For all data sets and for all
competing approaches, a linear kernel is used. The results are given in Table 1.
It can be clearly seen that the semi-supervised approaches yield better results
compared to the supervised model. The results also indicate that by taking
more labeled data into account, the gap between the performances of the su-
pervised approach and the semi-supervised approaches becomes smaller. Hence,
both semi-supervised approaches can incorporate the unlabeled data success-
fully. Compared to the results for the non-realistic scenario, the performances
for the realistic one are clearly worse. Hence, the lack of labeled data for model
selection as well as a (possibly) bad estimate for the balance parameter bc seem
to have a negative influence on the final classification performance. The overall
classification performances of both semi-supervised approaches is comparable;
the S2RLSC approach seems work slightly better on the USPS data set whereas

10 Fabian Gieseke, Oliver Kramer, Antti Airola, and Tapio Pahikkala

Data Set RLSC UniverSVM S2RLSC

non-realistic realistic non-realistic realistic non-realistic realistic

Gaussian2C[l=25,u=225,t=250] 10.6± 2.3 11.4± 2.4 1.0± 0.5 1.8± 0.9 0.6± 0.5 6.6± 2.6
Gaussian2C[l=50,u=200,t=250] 4.9± 1.9 5.3± 2.1 1.0± 0.4 1.8± 0.8 0.6± 0.5 3.3± 2.6
Gaussian4C[l=25,u=225,t=250] 16.1± 7.0 16.5± 6.8 7.6± 12.2 13.3± 15.2 6.8± 12.5 12.0± 13.6
Gaussian4C[l=50,u=200,t=250] 6.1± 2.1 6.5± 1.9 1.6± 0.8 2.5± 1.5 0.8± 0.6 4.1± 2.4

USPS(2,5)[l=16,u=806,t=823] 7.9± 2.9 9.3± 2.3 3.2± 0.5 9.0± 5.6 2.9± 0.4 6.3± 2.8
USPS(2,5)[l=32,u=790,t=823] 4.4± 0.5 5.8± 1.6 3.2± 0.5 5.7± 1.8 2.9± 0.4 6.4± 2.0
USPS(2,7)[l=17,u=843,t=861] 3.6± 2.4 4.0± 2.4 1.5± 0.3 6.1± 5.3 1.0± 0.1 1.4± 0.2
USPS(2,7)[l=34,u=826,t=861] 2.2± 0.7 3.1± 1.7 1.4± 0.2 3.4± 2.4 1.0± 0.1 1.3± 0.2
USPS(3,8)[l=15,u=751,t=766] 9.8± 6.6 11.0± 6.4 4.8± 1.1 8.7± 3.9 4.1± 1.3 6.2± 2.7
USPS(3,8)[l=30,u=736,t=766] 6.3± 2.0 7.7± 1.4 4.0± 0.1 7.1± 1.8 3.9± 1.2 6.4± 2.8
USPS(8,0)[l=22,u=1108,t=1131] 4.8± 1.9 6.6± 3.3 1.7± 0.7 3.2± 2.2 1.2± 0.2 1.8± 0.6
USPS(8,0)[l=45,u=1085,t=1131] 2.6± 0.8 3.3± 0.9 1.3± 0.4 3.3± 1.8 1.1± 0.2 2.0± 0.5

Table 1. The table shows the classification performance of all approaches on all data
sets considered. Clearly, both semi-supervised approaches can successfully incorporate
unlabeled data to improve the performance on the test set.

the UniverSVM approach works slightly better on the artificial data sets in the
realistic scenario.

Computational Considerations Let us finally analyze the practical runtimes
of the considered semi-supervised approaches. Naturally, these runtimes depend
heavily on the particular implementation and the used programming language.
Thus, the provided results shall only give a rough idea of the runtimes needed in
practice (e.g., for generating Table 1). For this sake, we consider the Gaussian2C
and the USPS(8,0) data sets. Again, we resort to a linear kernel and fix the
model parameters (λ = 1 and λ′ = 1 for S2RLSC and C = 1 and C∗ = 1 for
UniverSVM). Further, the amount of labeled patterns is fixed to l = 50 and l = 22,
respectively. In Figure 5, the runtime behavior for both approaches for a varying
amount of unlabeled patterns is given. The plots indicate a comparable runtime
performance of both approaches. Thus, the computational shortcut renders our
simple local search scheme competitive to state-of-the-art implementations.5

More Optimization Most of the related optimization schemes use the labeled
part to obtain an initial “guess” via a supervised model (e.g., UniverSVM) which
is then improved iteratively (i. e., no restarts are performed rendering such ap-
proaches deterministic). While such a strategy reduces the practical runtime,
a natural question is whether the results can be improved by putting more
effort into optimization. To exemplarily investigate this question, we consider
the Moons data set with RBF kernel as similarity measure (and kernel width
σ = 0.1s, where the value s is an estimate of the maximum distance between
any pair of samples). Further, we fix the two cost parameters to λ = 2−10 and

5 The UniverSVM implementation is based on C whereas S2RLSC is implemented in
Python; in general, code in Python is said to be much slower than pure C code and
we expect a considerable speed-up with a pure C implementation of our approach.

Speedy Local Search for Semi-Supervised Regularized Least-Squares 11

0

1

2

3

4

5

6

50 150 300 400 500

R
u
nt
im

e
(s
ec
on
d
s)

Unlabeled Patterns

UniverSVM

S
2
RLSC

(a) Gaussian2C

0

2

4

6

8

10

100 300 500 700 1000

R
u
nt
im

e
(s
ec
on
d
s)

Unlabeled Patterns

UniverSVM

S
2
RLSC

(b) USPS(8,0)

Fig. 5. Runtimes of the semi-supervised competitors on the Gaussian2C and the
USPS(8,0) data sets; in both cases, the average runtimes of 10 executions are reported.

λ′ = 0.1. The comparison between the single restart approach (used above) and
a multiple restart scheme (with 200 restarts and random initialization) is shown
in Figure 6. Clearly, the single restart variant fails on this particular problem
instance while using more restarts leads to the global optimum. Thus, there are
problem instances where the heuristic of improving a single guess fails and where
it pays off to spend more effort into optimization. We would like to point out
that for such settings, the proposed approach is well suited since performing
restarts is very cheap (preprocessing has only to be done once).

5 Conclusions and Outlook

We proposed an optimization framework for semi-supervised regularized least-
squares classification. The key idea consists in making use of a simple local
search strategy which is accelerated by means of efficient matrix updates for
the intermediate candidate solutions. Our experimental evaluation demonstrates
that such a simple (but accelerated) search scheme yields classification results
comparable to state-of-the-art methods in an extremely efficient manner.

We think that the derivations presented in this work are extendible and
applicable in various directions: For instance, Adankon et al. [1] have recently
proposed an alternating optimization scheme (also based on the square loss)
which can potentially be accelerated by means of the matrix-based updates given
here. Further, we expect the computational shortcuts to be beneficial in the
context of (exact) branch-and-bound strategies for the task at hand like the one
proposed by Chapelle et al. [6]. We plan to investigate these issues in near future.

References

1. M. Adankon, M. Cheriet, and A. Biem. Semisupervised least squares support
vector machine. IEEE Transactions on Neural Networks, 20(12):1858–1870, 2009.

2. T. D. Bie and N. Cristianini. Convex methods for transduction. In Adv. in Neural
Information Proc. Systems 16, pages 73–80. MIT Press, 2004.

3. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Uni. Press, 2004.

12 Fabian Gieseke, Oliver Kramer, Antti Airola, and Tapio Pahikkala

(a) S2RLSC (single) (21.3±14.9) (b) S2RLSC (multiple) (0.0±0.0)

Fig. 6. If only one restart (with initial guess) is performed, the local search approach
can converge to a (bad) local optimum, see Figure (a). Performing sufficient restarts
(with random initial candidate solutions) yields good solutions, see Figure (b). The
average test error (with one standard deviation) on over 10 random partitions is given.

4. O. Chapelle, M. Chi, and A. Zien. A continuation method for semi-supervised
SVMs. In Proc. Int. Conf. on Machine Learning, pages 185–192, 2006.

5. O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT
Press, Cambridge, MA, 2006.

6. O. Chapelle, V. Sindhwani, and S. S. Keerthi. Branch and bound for semi-
supervised support vector machines. In Adv. in Neural Information Proc. Systems
19, pages 217–224. MIT Press, 2007.

7. O. Chapelle and A. Zien. Semi-supervised classification by low density separation.
In Proc. 10th Int. Workshop on Artificial Intell. and Statistics, pages 57–64, 2005.

8. R. Collobert, F. Sinz, J. Weston, and L. Bottou. Trading convexity for scalability.
In Proc. International Conference on Machine Learning, pages 201–208, 2006.

9. F. Gieseke, T. Pahikkala, and O. Kramer. Fast evolutionary maximum margin
clustering. In Proc. Int. Conf. on Machine Learning, pages 361–368, 2009.

10. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer, 2009.

11. T. Joachims. Transductive inference for text classification using support vector
machines. In Proc. Int. Conf. on Machine Learning, pages 200–209, 1999.

12. R. Rifkin, G. Yeo, and T. Poggio. Regularized least-squares classification. In Adv.
in Learning Theory: Methods, Models and Applications. IOS Press, 2003.

13. B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. In
D. P. Helmbold and B. Williamson, editors, Proc. 14th Annual Conf. on Compu-
tational Learning Theory, pages 416–426, 2001.

14. V. Sindhwani, S. Keerthi, and O. Chapelle. Deterministic annealing for semi-
supervised kernel machines. In Proc. Int. Conf. on Machine Learning, pages 841–
848, 2006.

15. I. Steinwart and A. Christmann. Support Vector Machines. Springer-Verlag, New
York, NY, USA, 2008.

16. V. Vapnik and A. Sterin. On structural risk minimization or overall risk in a
problem of pattern recognition. Aut. and Remote Control, 10(3):1495–1503, 1977.

17. K. Zhang, J. T. Kwok, and B. Parvin. Prototype vector machine for large scale
semi-supervised learning. In Proceedings of the International Conference on Ma-
chine Learning, 2009.

18. X. Zhu and A. B. Goldberg. Introduction to Semi-Supervised Learning. Morgan
and Claypool, 2009.

	Speedy Local Search for Semi-Supervised Regularized Least-Squares
	Introduction
	Related Work and Contribution
	Notations

	Semi-Supervised Regularized Least-Squares
	Regularized Least-Squares Classification
	Semi-Supervised Extension

	Local Search Revisited
	Local Search
	Convex Intermediate Tasks
	Efficient Matrix Updates

	Experiments
	Experimental Setup
	Data Sets
	Model Selection
	Parameters
	Competing Approaches

	Results
	Amount of Data
	Classification Performance
	Computational Considerations
	More Optimization

	Conclusions and Outlook

