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5Lead contact

*Correspondence: partho.sen@utu.fi (P.S.), riitta.lahesmaa@utu.fi (R.L.), matej.oresic@oru.se (M.O.)
https://doi.org/10.1016/j.celrep.2021.109973
SUMMARY
T cell activation, proliferation, and differentiation involve metabolic reprogramming resulting from the inter-
play of genes, proteins, and metabolites. Here, we aim to understand the metabolic pathways involved in the
activation and functional differentiation of human CD4+ T cell subsets (T helper [Th]1, Th2, Th17, and induced
regulatory T [iTreg] cells). Here, we combine genome-scale metabolic modeling, gene expression data, and
targeted and non-targeted lipidomics experiments, together with in vitro gene knockdown experiments, and
show that human CD4+ T cells undergo specific metabolic changes during activation and functional differen-
tiation. In addition, we confirm the importance of ceramide and glycosphingolipid biosynthesis pathways in
Th17 differentiation and effector functions. Through in vitro gene knockdown experiments, we substantiate
the requirement of serine palmitoyltransferase (SPT), a de novo sphingolipid pathway in the expression of
proinflammatory cytokines (interleukin [IL]-17A and IL17F) by Th17 cells. Our findings provide a comprehen-
sive resource for selective manipulation of CD4+ T cells under disease conditions characterized by an imbal-
ance of Th17/natural Treg (nTreg) cells.
INTRODUCTION

CD4+ T cells orchestrate immune responses and mediate pro-

tective immunity against pathogens (Zhu and Paul, 2008). An

aberrant T cell response is associated with cancer and autoim-

mune disorders (Kallionpää et al., 2019; Liblau et al., 2002;

Nurieva et al., 2013). Circulating naive T helper cells aremetabol-

ically quiescent and predominantly use oxidative phosphoryla-

tion (OXPHOS) to fuel their biological processes (Chang and

Pearce, 2016; Dimeloe et al., 2017; Macintyre and Rathmell,

2013; MacIver et al., 2013). When exposed to antigens, naive

T cells undergo activation, clonal expansion, and differentiation

to various effector T (Teff) cells, including T helper (Th)1, Th2,

Th17, and regulatory T (Treg) cells, each driving various aspects

of the immune responses (O’Shea and Paul, 2010; Tuomela and

Lahesmaa, 2013).

Upon activation, T cells undergo metabolic reprogramming in

order to provide energy and biosynthetic intermediates for

growth and effector functions (Buck et al., 2015; Chang and

Pearce, 2016; MacIver et al., 2013; Pearce and Pearce, 2013;

Sugiura and Rathmell, 2018). At this stage, aerobic glycolysis

is augmented (theWarburg effect), which increases the activities
C
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of glycolytic enzymes. Their extracellular uptake of glucose in-

creases by 40%–50% (Coloff et al., 2011), which, in turn, en-

hances their lactate production. Concomitantly, oxygen (O2)

intake is increased by �60% (Calder, 1995), while the utilization

of glucose via OXPHOS is reduced (Macintyre and Rathmell,

2013). Activated T cells induces a metabolic sensor, i.e.,

mammalian target of rapamycin (mTOR), to either differentiate

into Teff cells or become suppressive Treg cells (Barbi et al.,

2013). mTOR signaling induces the transcription factors Myc

and HIF-1a, driving the expression of genes important for glycol-

ysis and glutaminolysis as well as regulating STAT signaling for

T cell differentiation (Powell and Delgoffe, 2010).

Dysregulation of metabolic reprogramming of T cells can

impair their clonal expansion (Dimeloe et al., 2017; MacIver

et al., 2013). Depletion of glutamine in in vitro culture markedly

impairs proliferation and cytokine production of T cells (Carr

et al., 2010). Increased intracellular L-arginine is also linked to

metabolic regulation, survival, and the anti-tumor activity of

T cells (Geiger et al., 2016). T cell subsets such as Th1, Th2,

and Th17, require acetyl-coenzyme A (CoA) carboxylase I

(ACC1) for maturation (Chang and Pearce, 2016). In mice,

T cell-specific ACC1 deletion, or inhibition by the inhibitor
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soraphen A, prevents Th17 differentiation and cell-mediated

autoimmune disease development (Berod et al., 2014).

Taken together, there is evidence that T cell activation, differ-

entiation, and effector functions are intrinsically linked to meta-

bolic pathways (Buck et al., 2015; Chang and Pearce, 2016;

Chang et al., 2013; Gerriets and Rathmell, 2012; MacIver et al.,

2013; Pearce and Pearce, 2013; Pearce et al., 2013; Puleston

et al., 2021; Sugiura and Rathmell, 2018; Wagner et al., 2021).

However, not much is known about the common and specific

metabolic signatures in human CD4+ T cells and their functional

subsets. Such knowledge could enable the selective manipula-

tion of metabolism in these cells, with relevance to specific dis-

ease conditions (O’Sullivan and Pearce, 2015).

Genome-scale metabolic models (GEMs) are computational

frameworks that link genes, proteins/enzymes, metabolites,

and pathways found in cells, tissues, organs, and organisms (Ag-

ren et al., 2012; Orth et al., 2010; Sen et al., 2018; Thiele and

Palsson, 2010). During the past decade, genome-scale meta-

bolic modeling (GSMM) has emerged as a powerful tool to study

metabolism in human cells (Mardinoglu et al., 2014; Sen et al.,

2018, 2020). GSMM allows us to infer mechanistic relationships

between genotype and phenotype (Agren et al., 2012; Orth et al.,

2010; Sen et al., 2018; Thiele and Palsson, 2010).

Here, we combined gene expression data, targeted and non-

targeted lipidomics experiments, and in vitro gene silencing in

order to build GEMs of human CD4+ T cells and applied

GSMM to understand how these immune cells modulate their

metabolism during activation and subsequent functional

differentiation. Our integrative approach identified several meta-

bolic processes of interest. We reveal the essentiality of glyco-

sphingolipid (GSL) pathways in Th17 cells and show that the

sphingolipid metabolic pathways were altered in the CD4+

T cells (Kallionpää et al., 2019) and peripheral blood mononu-

clear cells (PBMCs) (Kallionpää et al., 2019; Sen et al., 2020) of

the children who developed islet autoantibodies.

RESULTS

HTimmR: A genome-scale metabolic reconstruction of
human CD4+ T cells
We developed ‘‘human T-immuno reconstructor’’ (HTimmR), a

generic and consensus metabolic reconstruction of human

CD4+ T cells. HTimmR includes 3,841 metabolic genes (MGs),

7,558 reactions, and 5,140 metabolites. HTimmR includes eight

cellular compartments, i.e., extracellular cavity, peroxisome,

mitochondria, cytosol, lysosome, endoplasmic reticulum, Golgi

apparatus, and nucleus, as well as a cellular boundary that

mimics a CD4+ T cell. HTimmR was contextualized, i.e., the

active metabolic reactions in the model were selected using

the gene expression data (see STAR Methods). Cell-type func-

tional GEMs for T naive (T helper precursor [Thp]), Th1, Th2,

Th17, and induced Treg (iTreg) cells were developed (Figure 1A).

Identification of MGs of human CD4+ T cell activation
and subset differentiation
When mapping the published gene expression data of each

CD4+ T cell subset (i.e., Thp, Th1, and Th2 [Kanduri et al.,

2015], Th17 [Tuomela et al., 2016], and iTreg cells [Ubaid Ullah
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et al., 2018]) to the various available human metabolic recon-

structions and pathway databases (see STAR Methods), we

found that approximately 17% of the genes expressed in each

CD4+ T cell subset were found in the human metabolic reaction

(HMR2) (Mardinoglu et al., 2014) database, while only �5% of

the genes were found in the Kyoto Encyclopedia of Genes and

Genomes (KEGG) (Kanehisa and Goto, 2000) and the Encyclo-

pedia of Human Genes and Metabolism (HumanCyc) (Trupp

et al., 2010) pathway databases (Figure S1). The mapped genes

for each CD4+ T cell subset were assembled and listed as MGs.

A total of 638 MGs were common to both the human metabolic

reconstructions and metabolic pathway databases, while 750

MGs were unique to HMR2 (Figure 1B). Since HMR2 had the

highest coverage of MGs in our CD4+ T cell datasets, it was

used as a background model for the reconstruction of HTimmR.

When we investigated the differential expression of MGs be-

tween naive (Thp), activated (Th0), and differentiated CD4+

T cell subsets, we found that 853 MGs were differentially ex-

pressed (adjusted p [p.adj] < 0.05, adjusted for false discovery

rate [FDR]), i.e., upregulated or downregulated in Th0 cells as

compared to Thp cells (Figure S1). Similarly, 173, 506, 106,

and 99 MGs were differentially expressed (p.adj < 0.05) between

Th1, Th2, Th17, and iTreg cells, respectively, as compared to

Th0 cells at 72 h of polarization (Figure S1). Gene Ontology

(GO) term mapping of biological processes linked to the MGs

suggested that 30.43% of MGs identified in CD4+ T cell subsets

encode metabolic processes (GO:0008152), while 31.52% and

1.09% encode cellular processes (GO:0009987) and immune re-

sponses (GO:0002376), respectively (Figure 1C).

Reporter metabolites of specific lipids and amino acids
are altered during activation of human CD4+ T cells
Reporter metabolite (RM) analysis is an approach for the identi-

fication of metabolites in a metabolic network, around which

significant transcriptional changes occur (Cakir et al., 2006; Patil

and Nielsen, 2005). RM analysis can predict hotspots in a meta-

bolic network that are altered between two different conditions,

in this case, Th0 versus Thp cells.

The RM analysis suggests that biosynthetic intermediates of

glycolysis and the tricarboxylic acid (TCA) cycle are altered

upon CD4+ T cell activation (Figure 2A). RMs such as acetyl-

CoA (p.adj = 0.02), oxaloacetate (OAA) (p.adj = 0.01), itaconate

(p.adj = 0.04), and itaconyl-CoA (p.adj = 0.04) were upregulated,

while citrate (p.adj = 0.02) and fumarate (p.adj = 0.01) were down-

regulated in Th0 cells as compared to Thp cells. This implies that,

upon activation of CD4+ T cells, citrate can be diverted from the

TCA cycle to form itaconate via aconitate. This phenomenon

has been observed previously in macrophages (Ryan and O’Neill,

2017), where itaconate is upregulated under inflammatory condi-

tions to promote an anti-inflammatory response. However, it re-

mains to be elucidated whether itaconate accumulation during

T cell receptor (TCR) activation plays a significant role in meta-

bolic reprogramming (Hooftman and O’Neill, 2019) of T cells.

RMs of amino acids (valine, p.adj = 0.03; cystine, p.adj =

0.007; leucine, p.adj = 0.03; isoleucine, p.adj = 0.03; tyrosine,

p.adj = 0.03; phenylalanine, p.adj = 0.01; and threonine,

p.adj = 0.01) and glycerophospholipids (phosphatidylcholine

[PC] [p.adj = 0.008) and phosphatidylethanolamine [PE]



Figure 1. Metabolic reconstruction of human CD4+ T cell subsets

(A) Schematic representation showingmetabolic reconstruction of generic CD4+ T cells (HTimmR), and contextualization of HTimmR to functional genome-scale

models (GEMs) for T-naive (Thp), T-activated (Th0), and differentiated T helper (Th) subsets, using lineage-specific gene expression datasets.

(B) Venn diagram showing metabolic genes (MGs) of human CD4+ T cells identified in this study, which were commonly or uniquely found in various human

metabolic reconstructions (HMR2, ETHMN, RECON) and pathway databases (KEGG and humanCyc).

(C) Pie chart showing the Gene Ontology (GO term) mapping of several biological processes exhibited by the MGs of the CD4+ T cells.
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[p.adj = 0.008]) were upregulated in Th0 cells as compared to

Thp cells (Figure 2A).

Intriguingly, several intermediates of sphingolipids, particularly

GSL pathways such as lactosylceramides (LacCers) (p.adj = 0.01)

and D-galactosyl-N-acylsphingosine (p.adj = 0.03), were downre-

gulated in Th0 cells as compared to Thp cells (Figure 2A).

Overrepresentation analysis of the RM pathways showed that,

primarily, lipid (glycerophospholipids and GSLs) and amino acid

metabolism were altered (hypergeometric test, q < 0.05) upon

CD4+ T cell activation (Figure S2).

Differentiation of human CD4+ T cell subsets depicts
regulation of unique metabolic pathways
RMs of Th1, Th2, Th17, and iTreg cells were identified at 72 h of

polarization (Figure 2A). In Th1 cells, we observed that RM pools

of NADP+ (p.adj = 0.004) and NADPH (p.adj = 0.01) were upregu-

lated as compared to Th0 cells. Differentiation of Th1 cells may

alter intracellular levels of oxidative stress, as suggested by the

downregulation of peroxisomal glutathione (GSH) (p.adj = 0.01)

and H2O2 (p.adj = 0.009). Prostaglandins and leukotrienes (12-

dehydro-leukotriene B4 and 12-oxo-leukotriene B3) were also

downregulated (p.adj = 0.017) (Figure 2A). Overrepresentation

analysis of RM pathways suggests that prostaglandin biosyn-
thesis, aromatic amino acid, estrogen, fructose, and mannose

metabolism are altered (hypergeometric test, q < 0.05) in the

Th1 cells as compared to Th0 cells (Figure 2B).

In Th2 cells, mitochondrial fatty acyl-CoA, including myristoyl-

CoA (p.adj = 0.002) and palmitoyl-CoA (p.adj = 0.005) RMs were

upregulated as compared to Th0 cells. Intriguingly, these acti-

vated fatty acyl-CoAs might induce fatty acid oxidation (FAO)

and degradation. Alternatively, cytosolic malonyl-CoA (p.adj =

0.04) was elevated in Th2 cells. Malonyl-CoA inhibits the rate-

limiting step of FAO, i.e., transport of FAs to mitochondria via

the carnitine shuttle. Our results suggest that there might be a

trade-off between fatty acid synthesis (FAS) and FAO that under-

pins the functional differentiation of Th2 cells (Figure 2A). Several

RM pathways such as b-oxidation of unsaturated fatty acids,

alanine, aspartate, glutamate, and histidine metabolism, and

the pentose phosphate pathway (PPP), GSL, and nucleotide

metabolism were altered (hypergeometric test, q < 0.05) in Th2

cells as compared to Th0 cells (Figure 2C).

RM analysis of Th17 showed a markedly different pattern of

regulation as compared to Th1 and Th2 cells. Several classes

of GSLs (cerebrosides, gangliosides [GMs], N-acetylneuraminic

acid [NANA]) were upregulated (p.adj < 0.05) in the differentiated

CD4+ Th17 cells as compared to Th0 cells at 72 h. In addition,
Cell Reports 37, 109973, November 9, 2021 3



Figure 2. Reporter metabolites and overrepresented pathways of CD4+ T cell activation and differentiation at 72 h of polarization

(A) Heatmap of reporter metabolites (RMs) that are significantly (p.adj < 0.05) upregulated (red) or downregulated (blue) or remained unchanged (white) in the

CD4+ T cell subsets as compared to their paired control (Th0 cells). The RMs were grouped by their metabolic subsystems/pathways and marked by the color

bars. *p < 0.05, **p < 0.01, ***p < 0.001.

(B–E) Bar plots showing overrepresented (q < 0.05) reporter pathways (RPs) of the CD4+ T cell subsets.

Article
ll

OPEN ACCESS
some of the aromatic amino acids were downregulated (p.adj <

0.05) (Figure 2A). Overrepresentation analysis of RM pathways

showed that sphingolipids, particularly GSL, amino acid meta-

bolism, and other related metabolic processes were altered (hy-

pergeometric test, q < 0.05) in Th17 cells as compared to Th0

cells (Figure 2D). Notably, GSLs (LacCers, GMs, and NANA)

were found to be a unique signature of differentiated CD4+

Th17 cells as compared to Th1 and Th2 cells. Some of these

GSLs displayed a similar trend in the iTreg versus Th0 cells,

but the changes did not reach statistical significance (p.adj =

0.09). Additionally, RMs of the tryptophan/kynurenine pathways,

i.e., kynurenine, 3-hydroxyanthranilate, formylanthranilate, and

quinones, were downregulated (p.adj = 0.0008) (Figure 2A). Of

note, tryptophan is metabolized to kynurenine by indoleamine

2,3-dioxygenase, an enzyme that is induced by pro-inflamma-

tory cytokines (Dantzer, 2017). In addition, several short- and

long-chain fatty acids such as butyric (p.adj = 0.06), decanoic

(p.adj = 0.06), and valeric (p.adj = 0.06) acids were upregulated

in the iTreg versus Th0 cells. Overrepresentation analysis of

RM pathways showed that tryptophan, glutathione, butanoate,

galactose, and purine metabolismwere overrepresented in iTreg

cells as compared to Th0 cells (Figure 2E).

Dynamic regulation of molecular lipids in human CD4+

T cell subsets
Taken together, RM analysis of CD4+ T cell activation and differ-

entiation predicted several classes of metabolites and pathways
4 Cell Reports 37, 109973, November 9, 2021
as being altered between the various subsets (Figure 2; Figures

S2–S4). RMs of lipids and amino acids were found to be the pre-

dominant classes significantly altered in CD4+ T cells during acti-

vation and at 72 h of differentiation. While the importance of

amino acids in CD4+ T cell differentiation is well established

(Carr et al., 2010; Poffenberger and Jones, 2014), the role of mo-

lecular lipids in the differentiation of human CD4+ T cells remains

uncharacterized. Furthermore, RMs of glycerophospholipids

and GSLs were markedly altered in Th17 and iTreg cells as

compared to Th1 and Th2 cells (Figure 2). Thus, the above find-

ings directed us to investigate the dynamics of molecular lipids in

CD4+ T cell differentiation.

Naive CD4+ T cells were isolated from individual human umbil-

ical cord blood donors and were TCR activated using anti-CD3

and anti-CD28. By adding different cytokines, naive CD4+

T cells were differentiated into distinct effector T helper (Th1,

Th2, and Th17) and iTreg cell subsets, which are characterized

by expression of lineage-specific transcriptional regulators, cell

surface markers, and secretion of key cytokines. For the control

cells (Th0), CD4+ T cells were TCR stimulated with anti-CD3 and

anti-CD28without differentiating cytokines and cultured in paral-

lel. In addition, naive, unstimulated CD4+ T cells were collected

from each donor as functional immature Thp cells. Differentiated

T helper subsets were characterized by expression of lineage-

specific transcriptional regulators, cell surface markers, and

secretion of key cytokines. Th1 and Th2 differentiation was char-

acterized by lineage-specific transcription factors T-bet and
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GATA3, respectively, using flow cytometry. Polarization of Th17

cells was validated by the expression of the surface chemokine

receptor CCR6 and the expression and secretion of Th17 key cy-

tokines IL-17A and IL-17F. As FOXP3 is the master transcription

factor regulator in Treg cells, its expression was analyzed in iTreg

cells (see STAR Methods).

We profiled the molecular lipids of human CD4+ T cell subsets

(n = 5) using the established lipidomics platform, which is based

on ultra-high-performance liquid chromatography and quadru-

pole time-of-flight mass spectrometry (UHPLC-QTOFMS).

Sparse partial least-square discriminant analysis (sPLS-DA) (Lê

Cao et al., 2011) of the lipidomics dataset reveled that the lipi-

dome of resting naive (Thp) cells was different from the activated

or differentiated T cell subsets (R2X = 0.933, R2Y = 0.988, N = 7-

fold cross-validated Q2 = 0.886; Figure 3A). Th17 and iTreg cells

were different from each other and also from the Th1 and Th2

cells (Figure 3A). Several classes of lipids, such as lysophospha-

tidylcholines (LPCs), PCs, PEs, sphingomyelins (SMs), ceram-

ides (Cers), and triacylglycerols (TGs) were altered (regression

coefficient [RC] > ±0.05 and variable importance in projection

[VIP] scores [Farrés et al., 2015] >1) in the CD4+ T cell subsets

at 72 h of differentiation (Figure 3B).

To gain statistical confidence in the selection of the lipid

markers between two different cell types, we combined two

statistical approaches, i.e., multivariate (sPLS-DA, n = 7-fold

cross-validation [CV]) and univariate (paired t test). We thereby

identified lipids that were significantly altered between CD4+

T cell subsets (n = 5) and their paired Th0 cells (controls) (Fig-

ure 3C) (see STAR Methods). We found that PCs, LPCs, SMs,

and Cers were altered in the T cell subsets during activation

and early differentiation (Figure 3C), consensually determined

by two statistical approaches (sPLS-DA: area under the curve

[AUC] �0.85, RC > ±0.05, and VIP scores >1.2, and paired t

test, p.adj < 0.05, adjusted for FDR) (see STAR Methods). Most

cellular PCs were upregulated in the Th2, Th17, and iTreg cells,

while these were downregulated in Th1 cells, as compared to

their paired Th0 cells (Figure 3C). Cer(d18:1/16:0), Cer(d18:1/

24:1), and dihexosyl ceramide (diHexCer)(d18:1/16:0) were

elevated in Th17 and iTreg cells. Mostly, SMs were altered in

Th2 and iTreg cells. Some SMs, i.e., SM(d32:1), SM(d36:1),

and SM(d42:1), were upregulated in Th17 cells (versus Th0 cells),

while they were downregulated in iTreg cells (versus Th0 cells)

(Figure 3C). Cellular TGs were markedly elevated in iTreg and

Th17 cells (Figure 3C). The lipidome data suggest that glycero-

phospholipids (PCs, PEs, and LPCs) and sphingolipids (Cers,

GSLs, and SMs) are the major indicators of CD4+ T cell differen-

tiation (Figures 3B and 3C).

Dynamic regulation of Cers and GSLs during the early
differentiation of human CD4+ Th17 and iTreg cells
GSLs and Cers play an important role in maintaining the integrity

of the plasma membrane. They are involved in cellular signaling,

proliferation, endocytosis, and modulate cellular responses to

inflammatory and apoptotic stress signals (Apostolidis et al.,

2016; Zhang et al., 2019). However, the functional role of these

metabolites in CD4+ T cell activation and differentiation remains

unknown (Zhang et al., 2019). Here, RMpredictions and lipidome

analysis of human CD4+ T cells have, together, identified several
species of GSLs that were altered in Th17 (versus Th0) and iTreg

cells (versus Th0 cells) at 72 h of differentiation (Figures 2A, 3B,

and 3C).

Next, by applying RM analysis, we investigated the regulation

of GSLs and Cers in Th17 and iTreg cells during the first 48 h of

polarization. RM analysis was performed between Th17 versus

Th0 cells at 0.5, 1, 2, 4, 6, 12, 24, and 48 h of differentiation.

Initially, the RMs of Cers were elevated at 1 h, and subsequently

there was a transient decrease at 2 h, followed by an increase at

12, 24, and 48 h of differentiation (Figure S3). A similar pattern of

regulation was also observed in ceramide 1-phosphate (C1P), an

active intermediate of sphingolipid metabolism (Figure S3).

In iTreg cells, several RMs of the sphingolipid pathway such as

digalactosylceramides, D-galactosyl-N-acylsphingosine, UDP-

galactose, and di-hexosylceramides (diHexCers), particularly

LacCers, were upregulated (versus Th0 cells) by 6 h of polariza-

tion (Figure S4). However, no change in the levels of LacCers

were observed in Th17 cells at these early time points (Figure S3).

Targeted lipid measurements reveal the regulation of
Cer levels in human CD4+ Th17 and iTreg cells at 72 h of
differentiation
A targeted lipidomics experiment was designed to measure the

levels of Cers and GSLs (i.e., HexCers and diHexCers in human

CD4+ Th17 (n = 3) and iTreg cells (n = 5), at 72 h of differentiation

(Figure 4; Table S1). Increased levels of Cers, as well as

decreased levels of HexCers, were found in both Th17 and iTreg

cells, except for HexCer(18:1/24:0), which was elevated (p =

0.04) in iTreg cells (Figure 4H). Intriguingly, diHexCers (d18:1/

16:0) were elevated in Th17 versus Th0 cells (p = 0.001), while

these changes were not apparent (p > 0.05) in iTreg versus Th0

cells (Figure 4I).

There was congruence between the results obtained from

GSMM-RM predictions (Figure 2A) and from non-targeted (Fig-

ures 3B and 3C) and targeted (Figure 4) lipidomics measure-

ments showing that GSLs (specifically Cers and diHexCers)

were elevated in CD4+ Th17 cells (p < 0.05).

Relative contribution of the sphingolipid pathways to the
production of Cers in Th17 cells
We evaluated the effect of various metabolic reactions of the

sphingolipid pathway on Cer production in CD4+ Th17 cells at

72 h of differentiation (Figure 5A). An in silico knockout (KO) anal-

ysis of Th17 cells was performed usingGSMM,where each reac-

tion of the sphingolipid pathway was knocked out iteratively, one

at a time, and the percentages of maximum flux contributions for

Cer production via different neighboring reactions (NRs) were

estimated (Figures 5A and 5B) (see STAR Methods). Optimiza-

tion of Cer production in a wild-type (WT) model (no KOs) sug-

gests that�30%of the total flux of Cer production can be carried

by de novo synthesis, i.e., by conversion of dihydroceramide to

Cer (Figures 5A and 5B). As expected, by knocking out serine

palmitoyltransferase (SPT), a rate-limiting step in the de novo

sphingolipid synthesis pathway (Hanada, 2003), decreased the

total flux of Cer production; however, it could not completely

abolish the Cer production (Figure 5B). This is due to the pres-

ence of redundant sphingolipid reactions that replenish Cers in

Th17 cells (Figures 5A and 5B).
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Figure 3. Lipidome of human CD4+ T cell activation and differentiation

(A) Scatterplot/score plot for the PLS-DA classification model (model performance: R2X = 0.933, R2Y = 0.988, N = 7-fold cross-validated (CV), Q2 = 0.886),

showing differences in the lipidomes of the T cell subsets, isolated from the umbilical cord of (n = 5) healthy neonates. Ellipse denotes 95% confidence region.

(B) Bar plot showing VIP scores of the lipids included in the PLS-DA classification model. The lipids are grouped and color coded by their chemical classes.

Different classes of lipids such as cholesterol esters (CEs), phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs), phosphatidylethanolamines (PEs),

sphingomyelins (SMs), ceramides (Cers), dihexosyl ceramides (diHexCers), and triacylglycerols (TGs) with (VIP scores > 1) are shown.

(C) Heatmap showing log2 fold changes (FCs) of the significantly altered lipids between T cell subsets versus Th0 cells at 72 h of polarization. Red denotes

increase while blue denotes decrease; white denotes no change. *p < 0.05, significant difference in the levels of the lipids as determined by univariate (paired t

test, p.adj < 0.05) and multivariate (PLS-DA; abs(RCV) > 0.05 and VIP > 1.2) analyses.
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Effects of SPTLC1,2,3 silencing on Cer levels in human
CD4+ Th17 cells
De novo biosynthesis of Cer starts with the SPT pathway, a rate-

limiting step that aids in the condensation of serine and

palmitoyl-CoA by an enzyme complex called serine palmitoyl

transferase (SPTLC) (Figures 5A and 6A). Currently, there are

three major SPTLC subunits identified, including SPTLC1,

SPTLC2, and SPTLC3, which are known to be expressed in hu-

mans (Hornemann et al., 2009).

Based on our RNA sequencing (RNA-seq) data, the three

SPTLC subunits are expressed during human Th17 cell differen-

tiation (Figure S5). To examine changes in Cer biosynthesis dur-

ing Th17 cell development, we simultaneously silenced these

three SPTLC subunits (SPTLC1,2,3 triple knockdown [TKD]) us-

ing small interfering RNAs (siRNAs). As illustrated in Figures 6B–

6E, the three siRNAs successfully downregulated their targets.

Importantly, silencing of SPTLC decreased the expression of

the proinflammatory cytokines IL-17A (p = 0.08) and IL-17F

(p = 0.001) in Th17 cells at 72 h following cell activation (Figures

6F and 6G), suggesting that Cer synthesis is vital for Th17 cell

function.

Similarly, through amass spectrometry-based targeted lipido-

mics experiment, we measured the Cer levels in these Th17

(TKD) cells at 72 h of polarization. Several species of Cers and

GSLs (HexCers, diHexCers) were significantly decreased in
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SPTLC-deficient Th17 cells (Figures 6H–6P). Most importantly,

diHexCers levels were significantly reduced upon SPTLC

silencing, suggesting that regulation of diHexCers is associated

with the Th17 differentiation and effector function (Figures 6N–

6P). Overall, these results suggest that silencing of the three

SPTLC subunits negatively influences the development and

secretory function of human CD4+ Th17 cells (Figures 6F and

6G).

Effect of UGCG silencing on HexCer and LacCer
synthesis in human CD4+ Th17 cells
diHexCers (LacCers) can be generated from HexCers (GlcCers),

which, in turn, are produced fromCers and glucose, catalyzed by

glucosylceramide synthase (GCS) (EC 2.4.1.80), encoded by the

UGCG gene. This is the first committed step in the production of

GlcCer-related GSLs (Alam et al., 2015) (Figures 5A, 7A, and 7D).

Results from the SPTLC gene silencing experiment in Th17 cells

showed an effective downregulation of diHexCers (Figures 6N–

6P). Furthermore, these findings guided us to evaluate the

importance of the GCS pathway for the production of GlcCers

and diHexCers in human CD4+ Th17 cells.

Similarly, by taking a siRNA-mediated silencing approach, we

knocked down expression of the UGCG gene (Figure 7B), which

encodes GCS in Th17 cells (Figure S5). Although expression of

the IL-17 cytokine was not influenced by UGCG knockdown in



Figure 4. Targeted quantification of ceramide levels in Th17 and iTreg cells

(A and D) Bean plots showing ceramide levels (log2 [ng/mL]) measured in Th17 and iTreg cells differentiated from CD4+ T cells isolated from the umbilical cord of

healthy neonates (n = 5) and their paired controls (Th0) at 72 h of polarization.

(E–I) Cellular levels of HexCers and diHexCers in the Th17 and iTreg cells along with their paired controls (Th0), at 72 h of polarization. Significant differences

(paired t test, p < 0.05) are shown by the p values. The dotted line denotes the mean of the population, and the black dashed lines in the bean plots represent the

group mean.
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Th17 cells, we decided to determine changes in the production

of HexCers, diHexCers, and SMs in UGCG-deficient Th17 cells.

As expected, several species of Cers, HexCers (GlcCers and/or

GalCers), and diHexCers (except diHexCer(d18:1/16:0)) were

decreased in the UGCG-silenced Th17 cells (Figure 7C). A

decrease in Cer levels implies that Cer can be diverted to other

sphingolipid pathways (CerS, SMS, C1PP; Figure 5A), and thus

might enhance the production of sphingosines, SMs, and cer-

amide 1-phosphate, respectively. Intriguingly, several species

of SMswere elevated in theUGCG-silenced Th17 cells, suggest-

ing that production of SMs via the SMS-pathway was enhanced

with a pertinent decrease in Cers and GSLs (Figure 5A;

Figure S5).

Cer pathways were altered in the immune cells of
children who progressed to islet autoimmunity and type
1 diabetes later in life
Next, we examined potential relevance of our findings to the un-

derstanding of lipid-related pathways in the development of type

1 diabetes (T1D). Our previous lipidomics study suggests that

T1D is preceded by specific alteration of lipids in PBMCs from

children who progressed to islet autoimmunity or overt T1D later

in life (Sen et al., 2020). Here, we investigated whether sphingo-

lipids and their metabolic pathways are altered in the immune

cells with the appearance of b cell autoantibodies and/or overt
clinical T1D. By using GSMM together with the published

‘‘multi-omics’’ datasets we studied the regulation of sphingolipid

metabolism in CD4+ T cells and PBMCs of the children who

developed b cell autoimmunity (cases) and/or progressed to clin-

ical T1D (cases), as compared to the healthy controls (HCs) from

two perspective cohorts (Kallionpää et al., 2019; Sen et al.,

2020).

Differential expression analysis of MGs showed that the

SPTLC3 gene, encoding the de novo SPT pathway (Figures 5

and 6A), was upregulated (p.adj < 0.05, adjusted for FDR) in

the CD4+ T cells and PBMCs of the children who develop b

cell autoimmunity (>1 islet autoantibodies) versus HCs (Fig-

ure S6). These changes were apparent in all the cases at

24 months of age, i.e., after seroconversion (median age ± SD

of 18 ± 4.5 months) (Kallionpää et al., 2019) (Figure S6). At that

age, the expression levels ofCERS6 and SGMS1,2 that facilitate

Cer and SM production, respectively, were also elevated in the

CD4+ T cells of the cases (versus HCs) (Figure 5A; Figure S6).

Additionally, the GBA gene that facilitates Cer production from

HexCers (GlcCers) via the b-glucocerebrosidase (GCDase)

pathway was elevated (p.adj < 0.05) in the CD4+ T cells and

PBMCs of the cases versus HCs at 18 months of age (Figure 5A;

Figure S6). Intriguingly, the expression of these genes wasmark-

edly (p.adj < 0.05) decreased in the cases (versus HCs) at

36 months of age (Figure S6).
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Figure 5. Regulation of sphingolipid pathways in human CD4+ T cells

(A) Illustration of sphingolipid metabolism in human CD4+ T cells. R# and P# denote reaction and pathway identifiers, respectively. A reaction involving different

co-factors was optimized separately. The identifiers of these reactions are prefixed with letters. Neighboring reactions (NRs) that were maximized (objective

function) and contributed directly toward Cer production are marked with yellow arrows.

(B) In silico knockout (KO) analysis showing the % of ‘‘maximized’’ fluxes of different NRs by in silico knockout (one-by-one) of an alternate reaction of the

sphingolipid pathway.

C1P, ceramide 1-phosphate; CDase, ceramidase; CerS, ceramide synthase; DES, dihydroceramide desaturase; GalCDase, galactosidase; GCDase, glucosi-

dase; S1P; sphingosine 1-phosphate; S1PPase, sphingosine phosphate phosphatase; SK, sphingosine kinase; SMase, sphingomyelinase pathway; SPT, serine

palmitoyl-CoA transferase.
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By using the gene expression datasets, we developed cell-

type functional GEMs for CD4+ T cells and PBMCs (see STAR

Methods). GSMM of these cells showed that there is an overall

(at all time points) increase in the average flux of sphingolipid

pathways in the CD4+ T cells of the children who develop b cell

autoimmunity versus HCs (Figure S7). The key pathway changes

were observed around SM, LacCer, and dihydroceramide pools

(Figure 5A; Figure S7).

Tovalidate the intracellular levelsofCers in thedevelopmentofb

cell autoimmunity and/or clinical T1D,we extended our analysis to

another longitudinal T1D cohort (Sen et al., 2020). Here, we

expanded the panel of sphingolipids previously measured in the

PBMCs (Sen et al., 2020) obtained from the children who devel-

oped b cell autoimmunity (R1 islet autoantibodies) without pro-

gressing to T1D (P1Ab, n = 27) or later progressed to clinical T1D

(PT1D, n = 34), as well as HCs (seronegative) (n = 10) (Sen et al.,

2020). Differential analysis between the cases (P1Ab or PT1D)

versus HCs showed an increase in the intracellular levels of Cers

at 24 months of age; the effect was more prominent in the P1Ab

(versus HC) group. Of note, some of these Cers were elevated

(p.adj < 0.05) in Th17 (versus Th0) and/or iTreg (versus Th0) cells

but not in Th1 and Th2 cells at 72 h of polarization (Figures 3 and

4; Figure S7). At 36 months of age, several molecular species of

Cers such as Cer(d44:2), Cers(d18:1/20-25), Cer(d36:1),

Cer(d40:1), andCer(d42:1), aswell asSM(d18:1/24:0),weredown-

regulated (p.adj < 0.05) in PT1D versus HC groups (Figure S7).
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DISCUSSION

We showed that human CD4+ T cell subsets, i.e., Th1, Th2, Th17,

and iTreg cells, undergo both common and subset-specificmeta-

bolicalterations inorder tobothsuccessfullydifferentiateandsub-

sequently carry out their specific functions. RM analysis suggests

that, upon the activation of naive T cells, the levels of the amino

acids increase, whilemost of these amino acids then decrease to-

ward a Treg cell phenotype. Indeed, iTreg cells are thought to be

lessdependent onaminoacids (Newtonet al., 2016). For instance,

depletion of glutamine can skew the differentiation of CD4+ T cells

toward a Treg cell lineage (Klysz et al., 2015).

Cers are key intermediates of sphingolipid metabolism,

composed of a sphingosine base and a fatty acyl chain

(C14:0–C26:0) (Gault et al., 2010). Cers are important for T cell

activation and differentiation at multiple levels, such as intracel-

lular signal transduction, modulation of membrane fluidity, re-

ceptor clustering, and by contributing to CD95-mediated cell

death via multiple mechanisms (Adam et al., 2002). However,

the Cer pathways are highly redundant. One of the key novel ob-

servations from our RM and lipidomics analyses was that several

species of Cers and GSLs aremarkedly altered in Th17 and iTreg

cells at 72 h of differentiation. The observed alterations in the

levels of Cers and GSLs (HexCers, diHexCers) were prominent

in Th17 cells as compared to iTreg cells. diHexCers (LacCers)

were markedly high in the differentiated Th17 versus Th0 cells.



Figure 6. Effect of SPTLC deficiency on the serine palmitoyltransferase (SPT) de novo pathway and Th17 differentiation

(A) Illustration of SPT (SPTLC) TKD.

(B–E) Immunoblots and corresponding quantified intensities of SPTLC1 and SPTLC2 protein expression at 24 h and fold changes of SPTLC3 mRNA expression

by quantitative real-time PCR (TaqMan) at 72 h upon SPTLC TKD in Th17 cell differentiation (Scr versus SPTLC TKD; n = 3; paired t test, p < 0.05).

(F and G) Fold changes of IL-17A and IL-17F mRNA expression by quantitative real-time PCR (Scr versus SPTLC TKD) at 72 h of Th17 cell differentiation (n = 3;

paired t test, p < 0.05).

(H–P) Bean plots showing the targeted quantification levels of (log2 [ng/mL]) Cers, HexCers, and diHexCers measured in control (Scr) and SPTLC-deficient Th17

cells at 72 h (n = 3). Significant differences (paired t test, p < 0.05) are shown by the p values. The dotted line denotes the mean of the population, and the black

dashed lines in the bean plots represent the group mean.
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Furthermore, in vitro knockdown experiments substantiated the

essentiality of sphingolipid metabolic pathways (SPT, GCS) in

the formation of Cers and GlcCers/diHexCers, and these are

intrinsically linked to proinflammatory cytokine (IL-17A and IL-

17F) expression in Th17 cells. Several species of diHexCers

were decreased in the knockdowns, suggesting that accumula-

tion of diHexCers is required for Th17 cell differentiation. In addi-

tion, RM analysis of Th17 cells showed a persistent increase in

the Cer pool from 12 h until 72 h of polarization.

An earlier study observed accumulation of Cers in Treg cells as

a consequence of low sphingomyelin synthase SMS1 (encoded

by Sgms1), an enzyme catalyzing the conversion of Cers and

PCs to diacylglycerols and SMs (Apostolidis et al., 2016). In

line with this, several species of SMs measured in our study

were shown to be decreased in the iTreg versus Th0 cells, and

increased in Th17 versus Th0 cells, while few SMs (SM(d16:1/

18:1) and SM(d42:3)) were elevated in both iTreg and Th17 cells

(Figure 3C). In Treg cells, FOXP3 directly binds to Sgms1 to sup-

press SMS1, and retroviral overexpression of FOXP3 in Jurkat

human T lymphocytes decreased the expression of SGMS1

(Apostolidis et al., 2016; Arvey et al., 2014). The accumulation

of Cers constrains SET activity toward protein phosphatase A

(PP2A). Intriguingly, PP2A can suppress mTORC1 activity and

promotes Treg and Th17 cell differentiation (Apostolidis et al.,

2013, 2016; Xu et al., 2019)
Furthermore, several studies indicate that co-expression of

CD39 (ENTPD1) and CD161 (KLRB) in Th17 cells increases the

activity of acid sphingomyelinase (ASM), an enzyme encoded

by the gene SMPD1, which hydrolyzes SMs to form Cers and

phosphorylcholine, in turn leading to an increase in the Cer

pool (Bai and Guo, 2017; Bai et al., 2014; Bai and Robson,

2015). Although ENTPD1 levels remain unchanged during the

early differentiation of iTreg and Th17 cells, KLRB is specifically

downregulated in Th17 cells (Tuomela et al., 2016; Ubaid Ullah

et al., 2018). Furthermore, SMPD1 is upregulated in iTreg cells

(Ubaid Ullah et al., 2018), suggesting intrinsic regulation of

Cers in both Th17 and iTreg cells.

We found specific regulation of the sphingolipid pathways in

the CD4+ T cells and PBMCs associated with the development

of b cell autoimmunity and progression to T1D. T1D is character-

ized by a T cell-mediated autoimmune destruction of the pancre-

atic b cells in genetically predisposed individuals (Atkinson,

2014; Eisenbarth, 1986). Our previous lipidomics studies sug-

gest that T1D is preceded by specific disturbances in the lipid

metabolism, including dysregulation of sphingolipid metabolism

in the PBMCs (Sen et al., 2020). Recently, in a longitudinal cohort

setting, Kallionpää et al. (2019) showed that several genes were

differentially regulated in the CD4+ T cell fractions, as well as un-

fractionated PBMCs, collected from children who developed b

cell autoimmunity versus the HCs. By performing integrative
Cell Reports 37, 109973, November 9, 2021 9



Figure 7. Targeted quantification of the Cer and GSL levels in the UGCG-deficient Th17 cells

(A) Illustration of the GCS pathway and UGCG knockdown.

(B) Fold change of UGCG gene expression determined by quantitative real-time PCR, in control (Scr) and UGCG-deficient Th17 cells at 12 h (n = 3; paired t test,

p < 0.05).

(C) Bar plot showing log2 fold changes of the Cers, HexCers, and diHexCers measured in UGCG-deficient (KD) versus control (Scr) Th17 cells at 72 h (n = 3).

(D) Elevated RM pathway module (p < 0.05) comprising GlcCers, diHexCers, and their congeners in Th17 cells, identified in this study.
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analysis of two longitudinal T1D cohorts (Kallionpää et al., 2019;

Sen et al., 2020), we found that expression of MGs and predicted

fluxes of sphingolipid pathways were altered in the CD4+ T cells

and PBMCs after seroconversion, or at the onset of clinical T1D.

There was an increase in the expression of MGs and predicted

fluxes across the Cer pathways in CD4+ T cells of the children

with the appearance of multiple (>1) b cell autoantibodies

(24 months, after seroconversion). These might be facilitated

by de novo SPT (SPTLC3),CerS (CerS5), and SMS (SGMS) path-

ways. At that age, accumulation of several molecular species of

Cers(d18:1/20–25) that were identified in the PBMCs of the chil-

dren progressed to clinical T1D (versus HCs). In our study,

Cers(d18:1/20–25) were found to be accumulated in Th17

(versus Th0) and iTreg (versus Th0) cells at 72 h of polarization.

Furthermore, in vitro knockdown experiments have substanti-

ated the importance of Cers in the proinflammatory cytokine

expression of CD4+ Th17 cells. Furthermore, no such changes

were marked in the Th1 (versus Th0) and Th2 cells (versus Th0

cells).

When examining the sphingolipid pathways in immune cells of

children who progressed to islet autoimmunity and clinical T1D

later in life, based on data from previous studies (Kallionpää

et al., 2019; Sen et al., 2020), we found them markedly changed.

For example, the de novo SPT pathway (SPTLC3 gene) was

altered in the CD4+ T cells (cases versus HCs). Since in the pre-

sent study we have demonstrated the essentiality of Cers and

GSL synthesis pathways for Th17 differentiation and effector

function, our findings may suggest the impact of Cer pathways

in CD4+ T cell activation, differentiation, and effector functions

in the pathogenesis of T1D. To this end, our study identified
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several common and subset-specific metabolic signatures and

pathways in human CD4+ T cells for their activation and func-

tional differentiation. This enabled us to improve understanding

of how molecular lipids are regulated in different subsets of

CD4+ T cells. The study may, therefore, provide a comprehen-

sive resource for identifying CD4+ T cell-specific metabolic path-

ways and useful targets for their selective manipulation under

disease conditions characterized by an imbalance of Th17/natu-

ral Treg (nTreg) cells (Chang and Pearce, 2016; O’Sullivan and

Pearce, 2015; Sen et al., 2020; Sugiura and Rathmell, 2018).

Our study may also offer clues about the poorly understood

overlap in co-morbidities between these immune-mediated dis-

eases and metabolic diseases, such as has been found to occur

in coronavirus disease 2019 (COVID-19) (Sattar et al., 2020).

Obesity is commonly associated with chronic elevation of circu-

lating fatty acids, which results in the accumulation of, among

others, toxic lipids, such as Cers, in peripheral cells/tissues, a

phenomenon referred to as lipotoxicity (Virtue and Vidal-Puig,

2010). The presence of elevated levels of Cers in conditions

such as obesity and insulin resistance may thus skew the

Th17/nTreg balance toward the pro-inflammatory Th17 pheno-

type, which is also being reported as one of the notable hall-

marks of severe COVID-19 (Wang et al., 2020; Wu and Yang,

2020).

Limitations of study
Our study unveiled the importance of Cers and the de novo

sphingolipid pathway in functional differentiation and effector

function of CD4+ T cell subsets, particularly Th17 cells. As a lim-

itation, only subtle phenotypic changes were observed by
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knocking down specific MGs of GSL pathways, which may be

due to the partial knockdowns of these targets by siRNA. In order

to enhance and substantiate the effect of specific gene deletions

on CD4+ T cells, mechanistic CRISPR-Cas9 knockout experi-

ments will need to be performed in the future. Fluxomics studies

are also needed to deconvolute the regulation of sphingolipid

pathways in CD4+ T cell subsets under aberrant conditions.

GEMs constrained with experimental fluxes may improve the ac-

curacy of prediction of phenotypes. It also remains to be estab-

lished how sphingolipid pathways are regulated in autoimmune

disease, and whether manipulating these pathways can inhibit

an excessive immune response, which, in turn, might suppress

the onset of autoimmune disease such as T1D.
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berg, T., Komsi, E., Siljander, H., Honkanen, J., Härkönen, T., et al. (2019).

Early detection of peripheral blood cell signature in children developing

b-cell autoimmunity at a young age. Diabetes 68, 2024–2034.

Kanduri, K., Tripathi, S., Larjo, A., Mannerström, H., Ullah, U., Lund, R., Haw-
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Materials availability
This study did not generate new unique reagents.

Data and code availability

d The lipidomic datasets generated in this study is available at the NIH Common Fund’s National Metabolomics Data Repository

(NMDR) website, the Metabolomics Workbench (https://www.metabolomicsworkbench.org), where it has been assigned a

Project ID: PR001078. The data can be accessed directly via it’s Project DOI: 10.21228/M8C111. The GEMs for human

CD4+ T cell subsets were deposited in BioModels (Malik-Sheriff et al., 2020) (https://www.ebi.ac.uk/biomodels/), and assigned

an identifier: MODEL2101270002.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this work paper is available from the Lead Contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human experiments
Human CD4+ T cells isolated from the human umbilical cord blood as described previously (Hawkins et al., 2013; Khan et al., 2020;

Tripathi et al., 2017; Ubaid Ullah et al., 2018). The use of the blood of unknown donors was approved by the Ethics Committee of the

Hospital District of Southwest Finland (24.11.1998, article 323).
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METHOD DETAILS

Human CD4+ T cell isolation, activation, and differentiation
CD4+ T cells were isolated from umbilical cord blood as described previously by (Hawkins et al., 2013; Khan et al., 2020; Tripathi et al.,

2017; Ubaid Ullah et al., 2018). Human umbilical cord blood was layered on ficol (GE Healthcare, cat# 17-1440-03) for isolation of

white blood cells. CD4+ T cells were then isolated using the bead-based CD4+ isolation kit from Invitrogen (cat# 11331D). For acti-

vation of T cells, a combination of plate-bound anti-CD3 (3750 ng/6-well culture plate well) (Beckman Coulter, cat# IM-1304) and

soluble anti-CD28 (1 mg/mL)(Beckman Coulter, cat# IM1376) antibodies were used.

For Th17 cell differentiation, isolated CD4+ cells were activatedwith a combination of plate-bound anti-CD3 (750 ng/24-well culture

plate well; Immunotech/Beckman Coulter REF # IM-1304) and soluble anti-CD28 ((1ug/mL; Immunotech/Beckman coulter REF #

IM1376) antibodies in serum-free X-Vivo 20 medium (Lonza), in the absence (Th0) or presence (Th17) of IL-6 (20ng/ml, Roche,

Cat# 11138600 001); IL-1b (10ng/ml, R&D Systems Cat # 201 LB); TGF-b1 (10ng/ml, R&D Systems Cat# 240); anti-IL-4 (1 mg/ml)

R&D Systems Cat# MAB204) and anti-IFN-g (1 mg/ml R&D Systems Cat#MAB-285). Differentiation of Th17 cells was confirmed

by measuring IL-17 expression by quantitative real-time PCR, at 72 hours of Th17/Th0 culturing (Khan et al., 2020).

For iTreg cell culturing, after CD25+ cells were depleted using LD columns from CD25 depletion kit (Miltenyi Biotec), CD4+CD25�

cells were activated with plate-bound anti-CD3 (500 ng/24-well culture plate well) and soluble anti-CD28 (500 ng/mL) at a density

of 2 3 106 cells/mL of X-vivo 15 serum-free medium (Lonza). For iTreg differentiation, the medium was supplemented with IL-2

(12 ng/mL), TGF-b (10 ng/mL) (both from R&D Systems), all-trans retinoic acid (ATRA) (10 nM; Sigma-Aldrich), and human serum

(10%) and cultured at 37�C in 5% CO2. Control Th0 cells were stimulated with plate-bound anti-CD3 soluble anti-CD28 antibodies

without cytokines. For confirmation of iTreg cell differentiation, we used intracellular staining to measure, at 72 hours of iTreg

culturing, expression of FOXP3which is themajor transcription factor driving Treg differentiation. Intracellular stainingwas performed

using buffer sets of Human Regulatory T cell Staining Kit (eBioscience/Thermo Fisher Scientific), following the manufacturer’s pro-

tocol. The following antibodies were used: anti-human FOXP3-PE (eBioscience, Cat. No. 12-4776-42) and rat IgG2a isotype control

(eBioscience, Cat. No. 72-4321-77A). All samples were acquired by a flow cytometer (LSRII) and analyzed either with FlowJo

(FLOWJO, LLC) or with Flowing Software (Ubaid Ullah et al., 2018).

Th1 and Th2 cell differentiation were done as described previously (Hawkins et al., 2013). Briefly, purified naive CD4+ T cells were

activated with plate-bound anti-CD3 (500 ng/24-well culture plate well) and 500 ng/ml soluble anti-CD28 and cultured in the absence

(Th0) or presence of 2.5 ng/ml IL-12 (R&DSystems) (Th1) or 10 ng/ml IL-4 (R&DSystems) (for Th2). At 48 hours following the activation

of the cells, 17 ng/ml IL-2 (R&D Systems) was added to the cultures. Differentiation of Th1 and Th2 cells was confirmed bymeasuring

(using flow cytometry) the expression of T-bet and Gata3 at 72 hours after cell activation. Briefly, cells were fixed and permeabilized

using the Intracellular Fixation & Permeabilization Buffer Set (eBioscience/Thermo Fisher Scientific), according the manufacturer’s

protocol. The following antibodies were used: anti-human GATA3-PE (eBioscience, 12-9966), anti-human T-bet-BV711 (BD,

563320) and corresponding isotype controls (BV711 Mouse IgG1, BD, 563044 and PE Rat IgG2b, eBioscience, 12-4031-82). Sam-

ples were acquired by BD LSRFortessa cell analyzer and data were analyzed using FlowJo software (FLOWJO, LLC).

siRNA-mediated gene knockdown
For SPTLC triple knock down (TKD) and UGCG single knock down (KD) experiments, freshly-isolated CD4+ cells were suspended in

Optimem I (Invitrogen) and transfected with siGenome SMARTpool small interference RNA (siRNA) oligonucleotides (Dharmacon)

using the nucleofection technique by Lonza. Scrambled non-targeting siRNA (50-AAUUCUCCGAACGUGUCACGU-30) was used

as control (Sigma). Briefly, four million cells were transfected with 12 mg of SPTLC-targeting siRNAs (4 mg of SMARTpool SPTLC1

siRNA M-006673-02; 4 mg of SMARTpool SPTLC2 siRNA M-006674-01; and 4 mg of SMARTpool SPTLC3 siRNA M-010285-02)

or 12 mg of Scramble siRNA. For UGCG single knockdown experiments 12 mg of UGCG-targeting siRNA (siGenome SMARTpool,

M-006441-02) were used. Cells were rested for 24h in RPMI 1640 medium (Sigma-Aldrich) supplemented with penicillin/strepto-

mycin, 2 mM L-glutamine and 10% FCS and subsequently activated and cultured under Th17 conditions. SPTLC1 and SPTLC2

knockdown was validated by western blot at 24 hours, UGCG and SPTLC3 knockdown was determined using quantitative real-

time PCR (at 12 and 72 hours, respectively).

Western blot
Fresh cell samples were lysed in RIPA buffer (Thermo) supplemented with complete EDTA-free Protease inhibitor cocktail and phos-

phatase inhibitors (Roche) and sonicated on a Bioruptor (Diagenode). Protein concentration was determined using DC Protein assay

(Biorad). After boiling in 6 3 loading dye (330 mM Tris-HCl, pH 6.8; 330 mM SDS; 6% b-ME; 170 mM bromophenol blue; 30% glyc-

erol), the samples were loaded on Mini-PROTEAN TGXPrecast Protein Gels (BioRad Laboratories) and transferred to PVDF mem-

branes (Trans-Blot TurboTransfer Packs, BioRad Laboratories). The following primary antibodies were used: SPTLC1 (sc-374143,

Santa Cruz), SPTLC2 (ab236900, abcam) and beta-actin (A5441, Sigma-Aldrich).

Quantitative real-time PCR
Total RNAwas extracted using the AllPrep DNA/RNA/miRNA Universal Kit (QIAGEN) and treated in-column with DNase (RNase-Free

Dnase Set; QIAGEN) for 15 minutes. For quantitative real-time PCR purified RNA was treated with DNase I (Invitrogen) to ensure
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complete removal of genomic DNA followed by cDNA synthesis with SuperScript II Reverse Transcriptase (Invitrogen). Quantitative

real-time PCR (qPCR) was performed using the TaqMan� Gene Expression UGCG Assay ID:Hs00916612_m1 and SPTLC3 Assay

ID:Hs00217867_m1 (Thermo Fisher Scientific) or KAPA probe fast qPCR Master Mix (Kapa Biosystems) and Universal ProbeLibrary

probes (Roche Applied Science) with custom ordered primers. The qPCR runs were analyzed with Applied Biosystems QuantStudio

12K Flex Real-Time PCR System. All reactions were performed in triplicate.

Analysis of molecular lipids
The samples were randomized and extracted using a modified version of the previously-published Folch procedure (Pedersen et al.,

2018). Briefly, 150 mL of 0.9% NaCl was added to cell pellets, and samples then vortexed and ultrasonicated for 3 minutes. Next,

20 mL of the cell suspension was mixed with 150 mL of the 2.5 mg mL-1 internal standards solution in ice-cold CHCl3:MeOH (2:1,

v/v). The internal standard solution contained the following compounds: 1,2-diheptadecanoyl-sn-glycero-3-phosphoethanolamine

(PE (17:0/17:0)), N-heptadecanoyl-D-erythro-sphingosylphosphorylcholine (SM(d18:1/17:0)), N-heptadecanoyl-D-erythro-sphingo-

sine (Cer(d18:1/17:0)), 1,2-diheptadeca-noyl-sn-glycero-3-phosphocholine (PC(17:0/17:0)), 1-heptadecanoyl-2-hydroxy-sn-glyc-

ero-3-phosphocholine (LPC(17:0)) and 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphocholine (PC(16:0/d31/18:1)). These were

purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). In addition, triheptadecanoin (TG(17:0/17:0/17:0)) was purchased

from (Larodan AB, (Solna, Sweden). The samples were vortexed and incubated on ice for 30 min after which they were centrifuged

at 78003 g for 5 min. Finally, 60 mL from the lower layer of each sample was collected andmixed with 60 mL of ice cold CHCl3:MeOH

(2:1, v/v) in LC vial. The total protein content in cells was measured by the Bradford method(Bradford, 1976).

The UHPLC-QTOFMS analyseswere done in a similar manner to as described earlier, with somemodifications (Nygren et al., 2011;

Pedersen et al., 2018) on two separate instruments. The initial lipidomic results were acquired on a UHPLC-QTOFMS system from

Agilent Technologies (Santa Clara, CA, USA) combining a 1290 Infinity LC system and 6545 quadrupole time of flight mass spectrom-

eter (QTOFMS), interfaced with a dual jet stream electrospray (dual ESI) ion source. MassHunter B.06.01 software (Agilent Technol-

ogies, Santa Clara, CA, USA) was used for all data acquisition. The SM results forUGCG-silenced Th17 cells data were acquired on a

UHPLC-QTOF system from Bruker (Bruker, Billerica, MA, USA) combining an Elute UHPLC binary pump and an Impact II system

QTOF system. The samples for this experiments were the same extracts that the Cer data were acquired from and had SM(18:1/

17:0) spiked in prior to acquisition. The data were acquired using the Hystar suite of software. MZmine 2 was used for all the untar-

geted data processing (Pluskal et al., 2010).

Chromatographic separation was performed using an Acquity UPLCBEHC18 column (100mm3 2.1 mm i.e., 1.7 mmparticle size)

and protected using aC18 precolumn, both fromWaters Corporation (Wexford, Ireland). Themobile phaseswerewater (phase A) and

acetonitrile:2-propanol (1:1, v/v) (phase B), both containing 1%1Mammonium acetate and 0.1% (v/v) formic acid ammonium acetate

as ionization agents. The LC pump was programmed at a flow rate of 0.4 mL min–1 and the elution gradient was as follows: from min

0–2, the percentage of phase B was modified from 35% to 80%, frommin 2-7, the percentage of phase B was modified from 80% to

100%and this final percentage held for 7min. A post-time of 7min was used to regain the initial conditions for the next analysis. Thus,

the total analysis time per sample was 21 min (including postprocessing). The settings of the dual ESI ionization source were as fol-

lows: capillary voltage 3.6 kV, nozzle voltage 1500 V, N2 pressure in the nebulizer 21 psi, N2 flow rate and temperature as heat gas 11 L

min–1 and 379�C, respectively. Accurate mass spectra in MS scan were acquired in the m/z range 100 – 1700 in positive ion mode.

MS data were processed using the open source software MZmine 2.53 (Pluskal et al., 2010). The following data processing steps

were applied to the raw MS data: (1) Crop filtering with a m/z range of 350 – 1200 m/z and a retention time (RT) range of 2 to 15 mi-

nutes; (2) Mass detection with a noise level of 900; (3) Chromatogram builder with amin time span of 0.08minutes, minimum height of

900 and m/z tolerance of 0.006 m/z or 10.0 ppm; (4) Chromatogram deconvolution using the local minimum search algorithm with a

70% chromatographic threshold, 0.05 min minimum RT range, 5% minimum relative height, 1200 minimum absolute height, a min-

imum ration of peak top/edge of 1.2 and a peak duration range of 0.08 - 1.01 minutes; (5) Isotopic peak grouper with a m/z tolerance

of 5.0 ppm, RT tolerance of 0.05minute, maximumcharge of 2 andwith themost intense isotope set as the representative isotope; (6)

Join aligner with m/z tolerance of 0.009 or 10.0 ppm and a weight of 2, RT tolerance of 0.1 minute and a weight of 1 and with no

requirement of charge state or ID and no comparison of isotope pattern; (7) Peak list row filter with a minimum of 7 peaks in a

row (10% of the samples); (8) Gap filling using the same RT and m/z range gap filler algorithm with an m/z tolerance of 0.009 m/z

or 11.0 ppm; (9) Identification of lipids using a custom database (based on UHPLC-MS/MS data using the same lipidomics protocol,

with RT data and MS and MS/MS) search with an m/z tolerance of 0.009 m/z or 10.0 ppm and a RT tolerance of 0.2 min. In general,

lipids were identified at the total number of carbons and double bonds in the structure as there was insufficient evidence to assign the

specific acyl chains. Where the acyl chains are identified these have been confirmed with MS/MS level experiments and/or authentic

standards. (10) Normalization using internal standards (PE (17:0/17:0), SM (d18:1/17:0), Cer (d18:1/17:0), LPC (17:0), TG (17:0/17:0/

17:0) and PC (16:0/d30/18:1)) for identified lipids and closest internal standard (based on RT) for the unknown lipids, followed by

calculation of the concentrations based on lipid-class calibration curves.

Identification of lipids was done using an in-house spectral library withMS (and retention time), MS/MS information, and by search-

ing the LIPID MAPS spectral database (https://www.lipidmaps.org/). MS/MS data were acquired in both negative and positive ion

modes in order to maximize identification coverage. Additionally, some lipids were verified by injection of commercial standards.

The identification was carried out in pooled cell extracts.
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The peak area obtained for each lipid was normalized with lipid-class specific internal standards andwith total content of protein. A

(semi) quantitation was performed using lipid-class specific calibration curves. Pooled cell extracts were used for quality control, in

addition to in-house plasma. The raw variation of the peak areas of internal standards in the samples was on average 15.3% and the

RSD of retention times of identified lipids across all samples was on average 0.28%. The RSD of the concentrations of the identified

lipids in QC samples and pooled extracts was on average 17.7%.

Measurement of ceramides in Th17 and iTreg cells
Sample extraction

The frozen cell preps were defrosted on ice. The samples were extracted using a modified Folch method (Sen et al., 2020). Briefly,

120 mL of cold (4�C) extraction solvent (CHCl3: MeOH, (2:1 v/v) was added to the samples. The extraction solvent containing the

following internal standards: C17 Lactosyl(b) ceramide (D18:1/17:0, 20 ppb), C17 Glucosyl(b) ceramide (D18:1/17:0, 20 ppb), C17

ceramide (D18:1/17:0, 20 ppb), C16 ceramide-d7 (d18:1-d7/16:0, 16,57 ppb), C18 ceramide-d7 (d18:1-d7/18:0, 8.75 ppb), C24

ceramide-d7 (d18:1-d7/24:0, 20 ppb), and C24:1 ceramide-d7 (d18:1-d7/24:1(15Z), 9,96 ppb). The samples were the vortexed briefly

and left on ice for 30minutes. The samples were then centrifuged (9400 g, 5 min, 4�C) and then 60 mL of the bottom layer was transfer

to a clean mass spectrometry vial (2 mL). The samples were then stored at –80�C.
Mass spectrometry

The ceramides were quantified using a targetedmultiple reactionmonitoring (MRM)method using UHPLC as a separation technique.

The LC separation was based on the global lipidomicsmethod previously described(Sen et al., 2019). Briefly, the UHPLCwas a Exion

AD (Sciex) integrated system. The samples were held in a cool box at 15�C prior to the analysis. The needle was washed with both a

10%DCM inMeOH and ACN:MeOH: IPA: H2O (1:1:1:1 v/v/v/v) with 1%HCOOH for a total of 7.5 s each. The solvents were delivered

using a quaternary solvent and a column oven (set to 50�C). The separation was performed on an ACQUITY UHPLCBEHC18 column

(2.1 mm 3 100 mm, particle size 1.7 mm, Waters, Milford, MA, USA). The flow rate was set at 0.4 ml/min throughout the run with an

injection volume of 1 mL. The following solvents were used for the gradient elution: Solvent A was H2O with 1% NH4Ac (1M) and

HCOOH (0.1%) added. Solvent B was a mixture of ACN: IPA (1:1 v/v) with 1% NH4Ac (1M) and HCOOH (0.1%) added. The gradient

was programmed as follows: 0 to 2min 35%–80%B, 2 to 7min 80%–100%B, 7 to 14min 100%B. The columnwas equilibrated with

a 7min period of 35% B prior to the next run. The mass spectrometer was a Sciex 5500 QTRAP (Sciex) set in scheduled MRMmode.

The details of the MRM transitions can be seen in (Table S1). All lipids were identified for their fatty acid composition by MS/MS to

confirm their exact identification, there was also a linear relationship between the increasing number of carbons in the lipid chain and

its corresponding retention time. Due to the isobaric nature of sugars we were unable to differentiate Glc and Glc head groups. All

data were integrated using the quantitation tool inMultiQuant (3.0.3), all peaks weremanually checked. Any analytes whichwere over

the concentration of the standard curve were diluted (1:25) with the same extraction solvent minus the internal standards. The

quantification was performed using class-based internal standards and in the case of those ceramide species without an authentic

standard in the standard curve mix, we used the closest related structure. The standard curve mixture contained: Glucosyl (b) C12

ceramide, Lactosyl (b) C12 ceramide, C18 ceramide (D18:1/18:1), C18:1 dihydroceramide (d18:0/18:1(9Z)) and was run at the

following levels (all in ppb): 100, 80, 60, 50, 40, 30, 20, 10 for the C12 standards and 10, 8, 6, 5, 4, 3, 2,1 for all C18 standards.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
The lipidomic dataset was log2 transformed. Principal component analysis (PCA) was performed using ‘prcomp’ function included in

the ‘stats’ R package, no outliers found. Sparse Partial Least-squares Discriminant Analysis (sPLS-DA) (Lê Cao et al., 2011) of the

T cell subsets was performed using the ‘splsda’ function coded in the ‘mixOmics v6.3.20 R package. In addition, several PLS-DA

models between Th0 versus Thp, Th1 versus Th0, Th2 versus Th0, Th17 versus Th0 and iTreg versus Th0 cells were developed

and Variable Importance in Projection (VIP) scores (Farrés et al., 2015) were estimated. The PLS-DA models were cross-validated

(Westerhuis et al., 2008) by 7-fold cross-validation and model diagnostics were generated using ‘perf’ function.

The multivariate PLS-DA analysis was followed by a univariate statistic; a paired t test using the ‘t.test’ function was performed to

identify significant differences in the lipid intensities between T cell subsets and their paired control (Th0). All lipids that passed one or

more criteria for variable selection, i.e., with the sPLS-DA model with an area under the ROC curve (AUC) > = 0.85; RC (> ± 0.05), VIP

scores > 1 or paired t test; p.adj < 0.05) were listed as significant. All the initial / nominal p values were subjected to multiple hypoth-

esis testing correction, vis-à-vis False Discovery Rate (FDR) adjustment using the ‘p-adjust’ function. The ‘Heatmap.20, ‘boxplot’,
‘beanplot’, ‘gplot’, and ‘ggplot2’ libraries/packages were used for data visualization.

Standardization of gene expression data for metabolic gene identification, T cell-specific GEM reconstruction, and
RM analysis
Lineage-specific normalized gene expression profiles of the human CD4+ Thp, Th1 and Th2 (Kanduri et al., 2015), Th17 (Tuomela

et al., 2016), iTreg cells (Ubaid Ullah et al., 2018) and their paired control (Th0) were obtained from the literature and/or Gene Expres-

sion Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) (Edgar et al., 2002) with the accession numbers (Thp, Th1 & Th2, GEO:

GSE71646), (Th17,GEO: GSE52260) and (iTreg,GEO: GSE90570) respectively. Differentially-expressed genes for each T cell subset
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versus Th0 were estimated using limma R/Bioconductor package/pipeline (Ritchie et al., 2015) with eBayes and ‘treat’ methods.

Genes that were differentially-expressed (p < 0.05, adjusted for FDR) between a pair of condition were listed.

These expression datasets of the human CD4+ T cells (Thp, Th1 and Th2 (Kanduri et al., 2015), Th17 (Tuomela et al., 2016), iTreg

cells (Ubaid Ullah et al., 2018), and their paired control (Th0)) were used for the identification of MGs. Furthermore, they were used for

the contextualization of HTimmR to T cell-specific GEMs.

In order to identify MGs, genes expressed in Thp, Th1, Th2, Th17 and iTreg cells were searched in the existing human metabolic

reconstructions, i.e., HMR2 (Mardinoglu et al., 2014), Edinburgh Human Metabolic Network (ETHMN) (Ma et al., 2007), RECON2

(Thiele et al., 2013), and databases, i.e., the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000) and

the Encyclopedia of Human Genes and Metabolism (HumanCyc) (Trupp et al., 2010). We found that HMR2 had the highest coverage

of the MGs from our datasets. However, 160 MGs were missing in HMR2 and other metabolic reconstructions. Metabolic reactions

(MRs) encoded by these genes were identified from the literature. These MRs were used for the reconstruction of HTimmR (Data S1).

Genome-scale metabolic reconstruction and modeling of human CD4+ T cell subsets
Contextualization of HTimmR to CD4+ T helper-specific GEMs

Functional GEMs of Thp, Th1, Th2, Th17 and iTreg cells were developed by INIT (Agren et al., 2012) algorithm applied to HTimmR,

used as a template model. HTimmR model was contextualized for each CD4+ T cell subset using lineage-specific gene expression

data for human CD4+ Thp, Th1 and Th2 (Kanduri et al., 2015), Th17 (Tuomela et al., 2016), iTreg cells (Ubaid Ullah et al., 2018), and

their paired control (Th0). The subset-specific expression data were used to score the reactions in the HTimmR model in order to

evaluate the likelihood of a metabolic reaction being present or absent in a T cell subset model. Threshold for high and low expressed

genes was determined by (mean ± sd) of log-normal distribution of the expression data (Opdam et al., 2017; Zur et al., 2010). The

expression data weremapped to HTimmR using gene-protein-reaction association (GPR) rules, and reaction scoreswere generated.

The mapping was performed using ‘mapExpressionToReactions’ function coded in COBRA toolbox (Heirendt et al., 2017). The re-

action scores were used as input to the INIT algorithm (Agren et al., 2012).

Subsequently, draft GEMs for CD4+ T cell subsets that includes the active metabolic reactions and their associated components

(e.g., metabolic genes, enzymes, metabolites, and their interactions) was generated. A quality control/sanity check (Thiele and Pals-

son, 2010) was performed using COnstraint-Based Reconstruction and Analysis Toolbox (COBRA toolbox v3.0) (Heirendt et al.,

2017). Any blocked reactions were rectified or removed before knockout and flux analysis was performed. Mixed integer linear pro-

gramming (MILP) was performed using ‘MOSEK 8’ solver (licensed for the academic user) integrated in the RAVEN 2.0 suite (Wang

et al., 2018). Linear programming (LP) and optimization was performed using ‘ILOG-IBM CPLEX (version 128)’ solver.

A similar approach was taken to develop and contextualize cell-specific GEMs for CD4+ T cells and PBMCs from children at risk of

T1D using transcriptomic (RNASeq) datasets (European genome-phenome archive (Kallionpää et al., 2019) accession number:

EGAC00001001443) of these immune cell subsets and PBMCs. The metabolomics data of the PBMCs were retrieved from the

MetaboLights (Haug et al., 2013) (accession number: MTBLS1015).

Reporter metabolite analysis

The lineage-specific, differentially-expressedMGs identified in this study from different humanCD4+ T cell subsets was employed for

the RM predictions. RM analysis was performed using the ‘reporterMetabolites’ function of the RAVEN 2.0 suite (Wang et al., 2018).

Overrepresentation analysis (ORA) of the RMs in the metabolic subsystems/pathways of human CD4+ T cell subset was evaluated

by a global hypergeometric test. RMs that were significantly (p < 0.05, adjusted for FDR) altered between the T cell subsets versus

Th0 were subjected to ORA. All the metabolic subsystems/pathways with (q-values = p < 0.05, adjusted for FDR) were listed.

Reaction knockout and essentiality analysis

An in-silico knockout (KO) analysis of the reactions of sphingolipid pathway toward Cer biosynthesis in CD4+ Th17 cells was per-

formed. Here, we evaluated the ability of a metabolic reaction to produce Cers in a wild-type (WT) and KO models. In a WT model

(no KO), 8 different reactions were directly associated with Cer production. These reactions were maximized one-by-one (as the

objective function), and fluxes were recorded. Consequently, these fluxes were converted to (%), which depicts the relative contri-

bution of a reaction in the sphingolipid pathway toward Cer production. (%) of flux contributed by a reaction was relative to the total

‘maximized’ fluxes of all the neighboring reactions for Cer production multiplied by 100.

Next, we developed several KO models by iteratively removing a particular reaction (one at a time) of sphingolipid pathways, and

simultaneously estimating the ‘maximized’ fluxes of neighboring reactions contributing directly toward Cer production. Likewise, the

(%) of flux contributed by these reactions toward Cer production was estimated in a KOmodel. The KO analysis was performed using

‘removeReactions’ function coded in the COBRA toolbox (v3.0)(Heirendt et al., 2017). All simulations were performed in MATLAB

2017b (Mathworks, Inc., Natick, MA, USA).
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