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SUMMARY
Glioblastoma (GBM) is a malignant brain tumor with few therapeutic options. The disease presents with a
complex spectrum of genomic aberrations, but the pharmacological consequences of these aberrations
are partly unknown. Here, we report an integrated pharmacogenomic analysis of 100 patient-derived GBM
cell cultures from the human glioma cell culture (HGCC) cohort. Exploring 1,544 drugs, we find that GBM
has two main pharmacological subgroups, marked by differential response to proteasome inhibitors and
mutually exclusive aberrations in TP53 and CDKN2A/B. We confirm this trend in cell and in xenotransplanta-
tion models, and identify both Bcl-2 family inhibitors and p53 activators as potentiators of proteasome inhib-
itors in GBM cells. We can further predict the responses of individual cell cultures to several existing drug
classes, presenting opportunities for drug repurposing and design of stratified trials. Our functionally profiled
biobank provides a valuable resource for the discovery of new treatments for GBM.
INTRODUCTION

The pharmacological treatment of glioblastoma (GBM) remains

one of the hardest challenges in cancer precision therapy. An

increasing volume of genetic data has clarified that GBM tumors

present with multiple and diverse genetic aberrations in receptor

tyrosine kinase (RTK), p53, and other pathways (Brennan et al.,

2013; Taylor et al., 2019). Despite these advances, current ther-

apy is based on a combination of surgery, radiation, and temozo-

lomide, resulting in a median survival of 14.6 months, of which a

mere 2.5 months are attributed to the chemotherapy (Stupp

et al., 2005). Targeted intervention against key recurrent onco-

genes in the RTK pathways, EGFR and PDGFRA, does not

improve overall survival in unselected cohorts (Lee et al., 2015;

Reardon et al., 2015; Brown et al., 2008). The impact of tumor di-

versity on GBM pharmacology thus remains to be elucidated.

To address this challenge, collections of patient-derived GBM

cell cultures provide us with a powerful tool to explore and define

possible pharmacological responses in GBM (Pollard et al.,

2009; Xie et al., 2015). The analysis of drug response across a

panel of GBM cell cultures can provide a relatively unbiased es-
This is an open access article und
timate of how drug responses vary, and their correlation (if any)

with patient-specific factors, such as age, sex (Yang et al.,

2019), frequent mutations, or transcriptional subtype (Verhaak

et al., 2010; Wang et al., 2017). In a recent work, Lee et al.

(2018) demonstrated that patient-derived GBM cells treated

with drugs approved for oncology indications—predominantly

kinase inhibitors—respond in a manner that can be predicted

based on their somatic mutations. Traditional GBM cell lines,

such as U87MG (Allen et al., 2016), have also been included in

comparative pharmaco-genomic screens of tumor cell lines

from diverse tissue origins (Kutalik et al., 2008; Barretina et al.,

2012; Garnett et al., 2012; Yang et al., 2013; Basu et al., 2013;

Seashore-Ludlow et al., 2015; Iorio et al., 2016). Despite these

advances, the number of drug classes analyzed in well-charac-

terized patient-derived GBM cell cultures remains limited, and

there is scarce data to connect common drug classes to cellular

pathways in GBM.

Here, we report a systematic effort to define the known and

unknown pharmacological subclasses of GBM. Our strategy

connects pharmacological and genomic profiling of 100 pa-

tient-derived GBM cell cultures, with computational modeling,
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Figure 1. Study Overview and Genomic Characteristics of Primary GBM Cultures

(A) Study overview. Based on the integrated profiling of 100 patient-derived GBM cultures, we here develop network models of drug response, which identify p53

as a key determinant of pharmacological class.

(B) Cohort composition compared to the TCGA by age distribution, sex, survival, and transcriptional subtype.

(C) Alterations frequencies of key genes in the p53 and RTK/MAPK pathways, arranged as in Brennan et al. (2013). Note the similarity between primary GBM

cultures and TCGA surgical samples across core GBM pathways (r = 0.82). Red, amplification or mutation; blue, deletion or mutation.
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to identify (1) drugs andmechanisms of action (MOAs) with activ-

ity against primary GBMcells, (2) the key pathways associated to

drug response, and (3) combinatorial interventions based on

drug-pathway associations (Figure 1A). Previously, our labora-

tory has genetically characterized the human glioma cell culture

(HGCC) resource of 48 public primary GBM lines, which has a

broad distribution (Xie et al., 2015). The extended effort pre-

sented here aims to meet an unmet need for a large set of highly

characterized cell models, with clinical annotations, comprehen-

sivemolecular information, as well as pharmacological and func-

tional data.

From an unbiased survey of 1,544 compounds that comprise

116 MOAs, we identify a set of 248 drugs with GBM activity after

72 h of exposure. We use the variation in dose-dependent

response to these drugs to define the main pharmacological
2 Cell Reports 32, 107897, July 14, 2020
classes of GBMand construct models that connect each individ-

ual drug (and drug class) to pathways and individual markers.

The resulting map substantially extends the set of drug cate-

gories that can be predicted with accuracy in GBM, defines 51

associations between drug classes and hallmark pathways,

and nominate biomarkers for drugs with both oncology and

non-oncology indications. We find that GBM cultures exist in

two main functional classes, not captured by current subtype

systems. The classes are characterized by mutually exclusive

p53 mutation and deletion of the CDKN2A/B locus, and differen-

tial sensitivity to proteasome inhibitors, a class of drugs that

block the cellular catalysis of ubiquitinated proteins, leading to

a surge of reactive oxygen species (ROS) and apoptotic cell

death (Richardson et al., 2005; Ling et al., 2003; Lipchick et al.,

2016). Exploiting additional compounds targeting pathways
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Figure 2. Defining the Global Variation of Drug Response in Primary GBM Cells

(A) Structure of the screen. A 1,544 drug discovery screen (phase 1) was followed by secondary and tertiary screens across, using focused libraries of drugs with

GBM activity (phases 2 and 3). Drugs in our phase-2 library had 363 known targets, 75 of which were over-represented (empirical p value < 0.05) compared to the

phase-1 library, e.g., EGFR, PDGFRA/B (indicated by bars).

(B) Drug target annotation of our GBM library, in comparison to recent studies of cancer cell panels. Mechanism of action (MOA), disease indication, and target

from the Drug Repurposing Hub database.

(legend continued on next page)
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linked to p53 and proteins encoded by the CDKN2A/B locus, we

find that the resistance to proteasome inhibitors can be over-

come by combinatorial targeting.

Our results demonstrate that an integrated study of primary

GBM cells profiled at multiple levels can reveal unexpected as-

sociations between pathways and drug response, and underline

the importance of the p53 and cyclin-dependent kinase (CDK)

pathways in GBM precision therapy. The functionally character-

ized HGCC cell collection provides a resource for drug develop-

ment, which we expect will enhance and expedite the develop-

ment of new interventions against GBM.

RESULTS

Patient-Derived Cell Cultures Recapitulate the Known
Molecular Heterogeneity of GBM
As our model for GBM drug response, we used 100 cultures

from our HGCC collection at Uppsala University Hospital in

Northern Europe, which underwent systematic genomic and

pharmacological profiling (Figure 1A; Table S1). For these cul-

tures to be a model of GBM diversity, they should recapitulate

several layers of GBM heterogeneity, including molecular sub-

type, core pathway mutations, and chromosomal aberrations.

We therefore established genomic background data for our

cell cultures on several genomic platforms, which were

compared to the corresponding molecular data from surgical

GBM samples in The Cancer Genome Atlas (TCGA; Brennan

et al., 2013). Our primary cultures corresponded well to

TCGA in terms of patient age, survival times, patient sex,

and molecular subtype (classical/proneural/mesenchymal

system; Verhaak et al., 2010; Figure 1B). Our cultures also

shared the spectrum of driver genes observed in TCGA at

similar frequencies (Figure 1C, R = 0.82) and each culture re-

tained genetic similarity to its source tumor (median of 27 mu-

tations in common; 90% CI = 18.5–31.75; Figures S1A and

S1B). We noted a slight reduction in the gene copy number

of EGFR locus amplification (Figures S1C and S1D), which

we interpret as loss of extrachromosomal EGFR-amplified ge-

netic material unevenly distributed in mitosis as double mi-

nutes (Nikolaev et al., 2014). Still, the overall correlation of

DNA copy number aberrations between our cell cultures and

TCGA, however, was very high (r2 = 0.93; Figures S1E and

S1F). From this analysis, we conclude that our extended

HGCC panel of primary cultures is genetically representative

of GBM diversity as observed across patient tumors. Accord-

ingly, pharmacological profiling of a large sample of diverse

primary cells should reveal informative associations to drug

response.

Sensitivity to Proteasome Inhibitors Defines Two
Subclasses of GBM Cells
To explore the drug sensitivity of primary GBM cultures, we

first implemented a discovery screen to select drugs for sub-
(C) Two-way clustering of primary GBM cultures (rows) and drugs (columns) based

robustly grouped into two clusters that did not correlate with transcriptional subt

enriched for drugs with a shared target (selected targets discussed in the text).

(D) The AUC of the six proteasome inhibitors in our library was bimodal (dashed
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sequent analysis across all 100 cultures. The discovery screen

(Figure 2A, Phase 1) was carried out using a library of 1,544

annotated drugs, relevant for both oncology and other disease

areas. Applying the library to nine GBM cultures of different

subtypes, we identified the drugs that reduced viability in at

least 3/9 cultures. These hits were compiled into a 248-drug

library for profiling the GBM cultures in our collection. We car-

ried out drug profiling in two phases, with 52 cell cultures each

(Figure 2A, Phases 2 and 3). Drugs retained for phase 3 were

the ones with the highest variability in viability response be-

tween cases. As determined by drug target databases (Drug

Repurposing Hub and STITCH5), the library used had broad

representation, covering 430 known drug targets, 118 MOA,

and 21 disease areas (Figures 2A and 2B; Table S2). Among

the 30 most active compounds, nine were previously unre-

ported as candidates for GBM therapy (Table S2).

In each GBM culture, the effect of a drug was summarized as

an area under the dose-response curve (AUC) score. Arranging

these scores as a matrix of patient-derived cells (rows) and

drugs (columns), we used hierarchical clustering to detect

groups of cell cultures and drugs with strongly correlated

behavior (Figure 2C). Notably, the best-fitted clustering

robustly separated the cell cultures into two clusters, defined

by sensitivity or resistance to a single class of drugs; protea-

some inhibitors targeting PSMB5 and other proteasome units

(Figure 2C). Graphing the dose-response curves for the six pro-

teasome inhibitors in the data highlights the bimodal response

to this category of drugs (Figure 2D). In our clustering of com-

pounds, several drug targets other than the top hit PSMB5

(p = 2.99 3 10–9) were non-randomly distributed across clus-

ters, such as the dopamine receptor (DRD2, p = 5.71 3 10–3),

the muscarinic receptor (CHRM1, p = 5.973 10–4), spindle poi-

sons (TUBB, p < 1 3 10–10), and BMP2 (p = 2.52 3 10–6; all p

values corrected by Benjamini-Hochberg’s (BH) method).

Drugs targeting kinases EGFR and PDGFRA, which were

strongly enriched as active against GBM cultures in the first

screen (p < 1 3 10–5, BH-corrected, Figure 2A), did not exhibit

such a significance, indicating that these are not the most

promising candidates for therapy directed against specific

GBM subgroups. Of note, we did not find a significant overlap

between clusters of cell cultures and existing transcriptional

subtypes. Also, unlike a recent report on sex differences in

drug response (Yang et al., 2019), our data did not support

that the drug sensitivities measured in our cohort were depen-

dent on patient sex.

This analysis established that patient-derived GBM cells are

primarily grouped by their sensitivity to proteasome inhibitors,

and secondarily grouped by response to other classes of

drugs. Since we found no evidence of an association between

this grouping and obvious covariates such as GBM subtype or

patient sex, we went on to investigate the data using an unbi-

ased machine learning approach to identify associations be-

tween molecular data and drug response.
on area under the dose-response curve (AUC) scores. The GBM cultures were

ype. The drugs were grouped into more than 10 clusters, many of which were

box), and consistent across the inhibitors.
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Figure 3. Network Analysis Links Proteasome Inhibitors to the p53 Pathway

(A) Drug response in primary GBM cultures correlates, in a drug-mechanism-dependent manner, with the transcriptional activity of specific pathways. The

network describes statistically supported (p < 0.05) associations between drug MOA (green circles) and hallmark pathways in the molecular signature database

(gray boxes). Nodes sizes are proportional to the number of involved drugs and genes, respectively, and line thickness is proportional to –log10 (p value) of the

association. The MOA nodes are color-coded (dark green to yellow) based on their average predictive power (CV-R; c.f. Table S3).

(legend continued on next page)

Cell Reports 32, 107897, July 14, 2020 5

Resource
ll

OPEN ACCESS



Resource
ll

OPEN ACCESS
Network Analysis Links Proteasome Inhibitors to the
p53 Pathway
Integrating the collected data, we constructed statistical

network models of drug responses in the GBM cells, with two

specific goals in mind. First, we aimed to understand how activa-

tion of cellular pathways relates to drug response. Second, we

aimed to define how well different classes of compounds can

be predicted. To address the first problem, we computed the as-

sociation between responses to individual drugs and 50 hallmark

pathways, usingGene Set Enrichment Analysis (GSEA), retaining

drug-pathway associations with q value < 0.1. We subsequently

used information in the Drug Repurposing Hub database (Cor-

sello et al., 2017) to group our compounds based on MOAs

and used a Fisher test to find strong associations between path-

ways and MOAs. We summarized the result as a network in

which links are pathway-to-MOA links with p value < 0.05 (Fig-

ure 3A). The network linked proteasome inhibitors to the expres-

sion of p53 hallmark genes, which was the most enriched hall-

mark pathway in this regard (p = 0.0043, Fisher’s exact test

with false discovery rate [FDR] correction). In total, 51 links

were detected, containing both known relationships (e.g., be-

tween kinase inhibitors and cell cycle checkpoints) and inter-

esting predictions (e.g., between sigma receptor inhibitors and

lipid metabolism, Figure 3A).

Accurate Prediction of Drug Responses in Primary GBM
Cells
In extended network analyses, we asked if additional layers of

genomic data (e.g.,mutations or DNAmethylations) were associ-

ated with drug response and if the effect of different drugs could

be predicted with accuracy, based on specific biomarkers. For

this, we used amachine learningmethod, inwhich drug response

(AUC) was the predicted variable, and other data were used as

covariates. For an unbiased search, we let twowell-defined algo-

rithms (random forest and elastic net) select variables from RNA,

copy number aberrations (CNA), and other data types to predict

each individual drug.Weused the leave-one-out cross-validation

correlation (CV-R) as a metric of predictive power, which esti-

mates the ability of the collected data to predict prospectively

the variation in response in unseen cases on a scale from 0 (no

predictive power) to 1.0 (perfect predictions). Other versions of

cross validation, like leave-10-out, gave highly correlated results

(Method Details). Previous versions of this approach have been

successfully evaluated for cell cultures of mixed lineage origins

(Kutalik et al., 2008; Barretina et al., 2012; Garnett et al., 2012;

Yang et al., 2013; Basu et al., 2013; Seashore-Ludlow et al.,

2015; Iorio et al., 2016). However, there is, so far, limited experi-

ence of the performance of machine learning in a well-character-

ized cohort of primary GBM lines.

In primary GBM cultures, a majority of drugs (262) could be

predicted at a CV-R greater than 0.33, with remarkably high

CV-R for particular drugs, such as clomipramine (CV-R = 0.76).
(B) Machine learning detects biomarkers of proteasome inhibitor response in GB

mutations, CNAs, DNA methylation events, and transcripts as predictive. Selecte

(C) The machine learner predicted proteasome inhibitor response in GBM cells fr

from a different hospital (Queen Mary, London). Cell cultures predicted to be se

response experiment (ANOVA p value = 0.0001, two cell cultures in four replicat

6 Cell Reports 32, 107897, July 14, 2020
Prediction power depended on the drug category. For instance,

proteasome inhibitors had a higher average predictive power

(CV-R = 0.44) than inhibitors of the tyrosine kinases EGFR,

VEGFR, and PDGFR (CV-R 0.37 to 0.41; Table S3). The machine

learning algorithm identified an association between several

members of the p53 hallmark pathway (CDKN1A, SESN1) and

the six different proteasome inhibitors (bortezomib, oprozomib,

carfilzomib, MG-132, delanzomib, and ixazomib; Figure 3B).

Consistent with the GSEA result, the number of network connec-

tions between proteasome inhibitors and p53 pathway genes

was higher than expected by random, taking into account the

size of the p53 pathway (Fisher’s exact test, FDR-corrected p

value = 0.0206). This suggests that a handful of markers in the

p53 pathway can guide precision targeting using proteasome in-

hibitors. To further corroborate our cross-validation approach,

we predicted the drug response in 10 cell cultures that were un-

seen by the algorithm, collected in a different hospital and pro-

filed in a different center, and confirmed a differential response

to bortezomib, measured by AUC (Figure 3C).

These analyses establish that drug responses of primary GBM

cells can be associated to hallmark pathways and predicted with

accuracy. The CV-R score of individual drugs (Table S2; Discus-

sion) is an indication of that drug’s potential for use in specific

GBM subpopulations, and several drugs with high CV-R remain

to be investigated as GBM therapies (Discussion). The best drug

response predictions for primary GBM cells were often based on

multiple markers, often from two or more types of genomic data

(Figures S3A–S3C). Machine learning-based predictions were

more accurate (higher CV-R on average) than corresponding

predictions based on transcriptional subtype, clinical data, or

mutation/expression of the drug target (Figures S3D and S3E).

An Axis of Mutually Exclusive TP53 and CDKN2A/B

Mutations in GBM
The association between drug response class and the p53

pathway motivated further analysis of genetic lesions in this

pathway in our cell cultures. Gliomas are known to have different

lesions affecting the p53 core pathway, ranging from mutations

affecting p53 itself to indirect de-regulation via amplification of

MDM2, or deletion of the CDKN2A/B locus (Figure 1C). The pri-

mary mechanism by which CDKN2A/B deletion affects p53 is

through the loss of the CDKN2A gene product p14(ARF), a pro-

tein that blocks MDM2. Other gene products encoded by the

CDKN2A/B locus are p16/INK4A and p15/INK4b, both of which

block CDKs (Tao and Levine, 1999).

To visualize genetic variation in the p53 pathway we applied a

principal component analysis. Sorting ourHGCC lines (Figure 4A)

and TCGA (Figure 4B) along the first component of variation

placed each case along an axis, defined by gradual changes in

p53 pathway gene expression and mutual exclusivity between

p53 mutation and CDKN2A/B deletion (Fisher’s test p = 0.0169

and p = 6.4401e-05; Figures 4A and 4B). The analysis thus
M. The algorithm (bootstrap elastic net regression) detected a combination of

d transcripts were members of the p53 hallmark pathway.

om unseen patients. Bar chart, the predicted viability in 20 primary GBM lines

nsitive (GBM54) and resistant (GBM19) were confirmed in a separate dose-

es each).



A B C

Figure 4. Aberrations of p53 and CDKN2A/B in Cell Cultures and Patient Samples

(A) HGCC cultures ordered according to the first principal component of the p53 pathway (Method Details). Note the mutual exclusion of p53 and CDKN2A/B

aberrations.

(B) TCGA surgical samples ordered according to the corresponding first principal component.

(C) Differential expression of RNA (y axis) and protein (x axis) for 192 genes/proteins, comparing two sensitive versus two resistant lines.
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clarified that transcripts selected by our network algorithm (Fig-

ure 3) are mostly expressed in CDKN2A/B-deleted cells with

wild-type p53, and underlined that both cell cultures and surgical

samples from gliomas can be categorized along a genetic and

transcriptional axis, defined by mutually exclusive p53 and

CDKN2A/B aberrations.

To explore if this distinction was also observed at the protein

level, we measured a 192-protein profile in two p53 mutated

and two CDKN2A/B-deleted cell cultures, by multiplexed prox-

imity extension assays. We found a significant correlation be-

tween RNA and protein expression differences (p < 10–7) and

noted p53 itself and the direct p53 target CDKN1A (p21) as the

main differentially expressed gene products (Figure 4C). Consis-

tent with a loss of p15 and p16, the CDKN2A/B deleted cultures

expressed higher levels of two cyclin proteins, indicating that

these cell cultures also have a large population of cells with acti-

vated cyclin-CDK complexes committed to cell-cycle entry or

mitosis (Figure 4C).

TheTP53-CDKN2A/BAxisOrchestrates the Proteasome
Inhibitor Response
Next, we asked how the observed variation in TP53 and

CDKN2A/B status correlates with the response to proteasome

inhibitors in GBM cells. Based on the above analysis (Figure 4)

we selected a set of 10 HGCC cultures, with representative vari-

ation in the p53 pathway signature, and with different mutation

statuses of TP53 and CDKN2A/B (Figure 5A). Among the 10,

four were identified as TP53 mutated by whole-exome and

Sanger sequencing (Table S4), and three (U3054MG,
U3173MG, and U3180MG) were unable to induce p21 protein,

confirming the loss of p53 function (Figure S4B).

To get a global overview of how cellular pathways are

impacted by proteasome inhibition, we first compared the tran-

scriptional response following bortezomib treatment (10 nM, 6 h)

in one sensitive (U3013MG) and one resistant (U3180MG) cell

culture (Figure 5B). In both of the cell cultures, proteasome inhi-

bition induced unfolded protein response (UPR), ROS, and p53

hallmark pathways in both lines and suppressed cell-cycle-pro-

moting genes, but the resistant line showed a statistically stron-

ger induction of genes involved in DNA damage response (DNA

repair and ROS response) and in G2/M checkpoint regulators

(Figure 5B). This suggested that resistant lines might differ in

their ability to buffer ROS following proteasome inhibition, and

in the activity of DNA repair pathways.

To explore these differences, we measured to what extent

bortezomib induced the level of ROS in each of the cell cultures,

as determined by the CM-H2DCFDA fluorometric assay as an in-

dicator for ROS. Notably, the level of ROS induction was

inversely proportional to the p53 signature (Figure 5C). The in-

duction of ROS was also concomitant with elevated oxidized

glutathione ratios (GSH/GSSG, Figure 5D), a tendency toward

higher levels of Caspase-dependent apoptosis (Figure 5E), and

accumulation of ubiquitinated protein in the sensitive lines (Fig-

ure S4C), suggesting ROS-mediated apoptosis as a key effector

mechanism (c.f. Ling et al., 2003; Strauss et al., 2007). Consis-

tent with this hypothesis, blocking ROS by anti-oxidants pro-

tected cells against bortezomib, and elevating ROS by proteo-

toxic stress using heat shock aggravated the response
Cell Reports 32, 107897, July 14, 2020 7
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Figure 5. Cellular Effects of Bortezomib Treatment in a Panel of GBM Cells
(A) Sample of 10 GBM cell cultures for in-depth functional analysis. The p53 status gradient indicates the first principal component of the p53 signature. The gray

boxes indicate the presence of p53 mutations, CDKN2A/B deletion, and p21 protein expression (see Figure S4A).

(B) RNA profiling comparison of one sensitive and one resistant line, measuring the log fold change of transcripts after 10-nM bortezomib for 6 h. Enrichment

analysis of commonly affected (average fold change in both lines) pathways and differentially affected (fold-change difference) pathways. Fisher’s test with FDR

correction.

(C) p53 signature predicts ROS response. x axis, p53 signature principal component score as in Figure 4A; y axis, relative increase (a.u.) of ROS asmeasured by a

fluorometric assay (linear regression, R2 = 0.58, p = 0.0105).

(D and E) Redox balance (D, GSH/GSSG ratio) and (E) apoptosis in bortezomib-resistant versus -sensitive patient-derived GBM cultures (n = 5 in each group,

Wilcoxon rank sum test, bars are interquartile ranges).

(F) Comparison of induction of 53BP1 NHEJ DNA double-strand break processing and repair in four lines by bortezomib.

(G) Quantification of 53BP1 foci illustrated in (F). Student’s t test; bars indicate standard deviation.
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(Figure S4D). A number of p53-dependent ROS-suppressive

genes were induced selectively in the resistant cells, as deter-

mined by quantitative PCR, including SESN1 (Budanov, 2011),

NFE2L2 (Ahmad et al., 2016), and TIGAR (Bensaad et al.,

2006), potentially explaining the effect (Figure S4A).
8 Cell Reports 32, 107897, July 14, 2020
To assess differences in DNA repair, we stained two p53

mutant and two CDKN2A/B-deleted cultures for 53BP1 protein

following bortezomib treatment (Figure 5F). We noted a signifi-

cantly higher number of 53BP1 foci in resistant cell cultures,

both at basal levels and following 30-min bortezomib
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Figure 6. The TP53/CDKNA2/B Axis Deter-

mines In VivoResponses and Predicts Tumor

Growth

(A) The chorioallantoic membrane (CAM) in vivo

assay was used to measure the response to bor-

tezomib in nine patient-derived cell cultures.

(B) Correlation of CAM result and in vitro AUC

viability score. x axis, average proteasome inhibitor

AUC from the drug screen; y axis, negative values

indicate a stronger response to bortezomib treat-

ment.

(C) Correlation of CAM result (y axis) and p53

signature score (x axis, defined as in Figure 4A).

(D) Tumor growth rate of flank-xenografted-sensi-

tive (U3013MG, CDKN2A wild-type [WT], p53

mutant [mut]) versus -resistant (U3008MG,

CDKN2A del, p53 WT) GBM cells in immune-defi-

cient mice, showing a selective bortezomib effect in

tumors from sensitive cells. Bars are SEM and p

values were obtained by a linear model comparing

growth rates in bortezomib-treated versus mock

(DMSO)-treated mice (seven mice per treatment).
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treatment, indicating higher activity of the non-homologous end

joining (NHEJ) DNA repair pathway (unpaired two-tailed t tests,

p < 0.0001 both at basal level and after treatment; Figures 5F

and 5G). Despite the induction of p21 protein in several of the

cell cultures (Figure S4B), there were no signs of p21-induced

G1 arrest. Rather, both the sensitive and resistant GBM lines

respond to bortezomib treatment by G2/M arrest (Figure S5).

The sensitive lines, however, reduced their S-phase population

2.9- to 3.1-fold following 10-nM bortezomib treatment

compared to 1.3- to 1.8-fold in the resistant lines (Figure S5)

alongside an increased proportion of cells in apoptosis

(Figure 5E).

We conclude that in both p53 mutant and CDKN2A/B-deleted

GBMcells, proteasome inhibition leads to G2/M arrest and ROS-

dependent apoptosis. However, the quantitative balance be-

tween these outcomes is different; the more resistant cell cul-

tures are less prone to apoptosis, and show signs of lower

ROS induction and higher DNA repair activity.
The TP53-CDKNA2/B Axis
Determines In Vivo Bortezomib
Response
Next, we asked if the variation in p53 and

CDKN2A/B aberrations would also inform

the in vivo response to proteasome inhibi-

tion. To answer this, we evaluated nine of

the above cell cultures in a transplanta-

tion-based model of drug response, the

chicken chorioallantoic membrane (CAM)

assay (DeBord et al., 2018). Using GFP-

luciferase-tagged derivatives of each cell

culture, we measured bioluminescence

three days and five days post-inoculation

onto the CAM (Figure 6A). When grown

on the CAM, treatment by the proteasome

inhibitor bortezomib reduced the growth

of some, but not all the primary GBM cul-
tures, at concentrations that were tolerated by the chick embryo

(5–10 g/kg). The change in bioluminescence following protea-

some inhibitor treatments agreed with the original drug-screen

results for the nine cell cultures (r = 0.73, p = 0.0189; Figure 6B)

and with the p53 gene signature score of the transplanted cell

cultures (r = 0.65, p = 0.0419; Figure 6C). To explore these results

in an independent model, we compared mice injected into the

flank with a sensitive (U3013MG) and a resistant (U3008MG)

cell culture. Significant reduction of tumor growth rate was

seen only for the former (p = 4.03 3 107, Figure 6D). These two

experiments established that the variation observed in the initial

drug screen was replicated in vivo.

Potentiating the Proteasome Inhibitor Responses in
Glioma Cells
Our observation that a subset of cell cultures was less sensitive

to proteasome inhibition motivated us to search for additional

drugs that can be used to overcome proteasome inhibitor
Cell Reports 32, 107897, July 14, 2020 9
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resistance. Pharmacologically, such drugs should meet the

criteria of synergismwhen combinedwith a proteasome inhibitor

in GBM cells. To explore this possibility, we selected a set of 25

drugs in different categories (Figure 7A) including: (1) activators

of p53, (2) apoptosis modulators, (3) kinase inhibitors against

RTK and CDK pathways, (4) compounds that were statistically

selected based on their anti-correlation with bortezomib, (5)

compounds that target redox regulation, and (6) compounds

that target genes that are selectively upregulated in resistant

tumors.

We evaluated each of the 25 drugs using the combination in-

dex (CI), estimated from a response surface over a 6x6 matrix

of doses, replicated in 4 to 10 cell cultures (Figure 7B). Next,

we evaluated if the average CI was less than 1.0 across all cell

cultures, thereby indicating that the compound consistently po-

tentiates (i.e., is synergistic with) bortezomib (Figure 7C). As a

second endpoint, we performed a regression test to evaluate if

CI depends on the p53 signature (example in Figure 7D).

Thirteen of the tested compounds potentiated bortezomib in

multiple cell cultures (Figure 7E). Strong overall synergism was

obtained with two p53 activators, the peptide-based MDM2

blocker PM2 (Spiegelberg et al., 2018) and the small molecule

MDM2 blocker AMG232. By contrast, the mutant p53 selective

reactivator PRIMA-1 showed selective single-agent activity in

p53 mutant cells but did not potentiate bortezomib (Figure 7E,

right column). Notably, all three apoptosis modulators potenti-

ated bortezomib, as did the CDK2 inhibitor milciclib. This indi-

cated that higher levels of wild-type p53 protein or a lowered

apoptotic threshold both suffice to potentiate bortezomib in pri-

mary GBM cells. For seven of the 13 potentiating compounds, a

wild-type p53 signature was associated with a lower CI value,

indicating stronger synergism (Figure 7E). This shows that borte-

zomib can be potentiated especially in the more resistant type of

cells with wild-type p53 and CDKN2A/B deletion. One exception

to this trend wasmTOR inhibitor torin-2, which selectively poten-

tiated bortezomib in p53 mutant cells, which may indicate a dif-

ferential dependency on this pathway as indicated by our RNA

profiling results (c.f. Figure 5B).

Interestingly, the three compounds selected in a purely data-

driven fashion, by virtue of anti-correlation to bortezomib in

Phase-2 and -3 screening data (the calcium channel blocker cil-

nidipine, the microtubule depolymerizing drug nocodazole, and

the antibiotic spectinomycin), were all synergistic (Figure 7E,

group iv). More studies would be required to elucidate themech-

anism, but we speculate that a common denominator among all

three might be the induction of unfolded protein stress. As an in-

dependent test of the synergies, we evaluated two of the

selected combinations in a 3D sphere culture system (Figure 7F)

and noted significantly lower viability in spheres treated by bor-

tezomib and navitoclax or milciclib (Figure 7G).

In contrast to the consistent synergism for these drug classes,

we found limited evidence that co-targeting redox pathways

would potentiate bortezomib, e.g., the NRF2-targeted agent

costunolide (Ahmad et al., 2016; not shown).

We conclude that both Bcl-2 family inhibitors and p53 activa-

tors show promise as potentiators of proteasome inhibitors in

GBM cells. Because the potentiating effect is stronger in

CDKN2A/B deleted (often more bortezomib resistant) cell cul-
10 Cell Reports 32, 107897, July 14, 2020
tures, the results suggest a strategy to also target these cells.

We also find signs that automatically nominated compounds,

selected by virtue of their anti-correlation in the screening

data, make good combination partners.

DISCUSSION

The goal of our study was to identify new opportunities for GBM

precision medicine, by an integrated study of patient-derived

GBM cells. Previously, an initial set of 48 glioma cell cultures

has been distributed as the HGCC resource (Xie et al., 2015).

By extending this collection to 100 cell cultures, and by charac-

terizing the cells at multiple genomic and functional levels, we

detected associations between hallmark pathways and multiple

drug classes, thus providing a starting point for research inves-

tigating drug repurposing and precision therapy.

As a validation of our resource, we investigate the detected as-

sociation between the p53 pathway and the sensitivity to several

proteasome inhibitors. The impact of mutations in the tumor sup-

pressor p53 and CDKN2A/B loci on the efficacy of proteasome

inhibitors remains to be fully understood. On the one hand, p53

is identified as one major mechanism underlying the effect of

proteasome inhibitors because proteasome inhibition can

induce apoptosis through stabilization of p53 protein (Xue

et al., 2019). On the other hand, proteasome inhibitors can also

be highly effective against p53 mutant cell lines of various tissue

origins, such as glioma (Seol, 2011), epithelial carcinomas (Dabiri

et al., 2017; Adams et al., 1999; Yerlikaya et al., 2015; Qiang

et al., 2017), and blood malignancies (Strauss et al., 2007; Hide-

shima et al., 2001). Suggested mechanisms for this include p53-

independent induction of p73 (Dabiri et al., 2017), and induction

of apoptosis-regulating proteins such as DR5 (TRAILR2; Qiang

et al., 2017; Yerlikaya et al., 2015). Of the 10 cell cultures that

we investigated in detail, seven had signs of functional p53, indi-

cated by their ability to induce p21 after genotoxic stress. Less is

known about howCDKN2A/B deletion affects proteasome inhib-

itor response, but since it is established that proteins encoded by

the locus (e.g., p16/INK4A) are modulated by the proteasome

pathway, such effects are plausible. Taking these factors into ac-

count, the model we propose for the relative resistance to pro-

teasome inhibitors in some GBM cell cultures is that the level

of p53 activation stays under a threshold, insufficient to induce

apoptosis. This could be dependent on the increased synthesis

of anti-oxidants, e.g., glutathione (Figure 5D), which scavenge

ROS and more active DNA-damage-repair mechanisms in the

proteasome inhibitor-resistant cell cultures (Figures 5F and

5G). Consistent with the proposed model, MDM2 inhibitors

PM2 and AMG232 potentiated the bortezomib response and

synergistically killed GBM cells, and all three agents that modu-

late the apoptotic threshold, such as navitoclax, potentiated bor-

tezomib. Our results are thus consistent with a role for p53 in the

response to proteasome inhibitors, in line with Yoo et al. (2017),

Asklund et al. (2012), and Forte et al. (2019), but imply substantial

quantitative and phenotypic differences in the response to pro-

teasome inhibition. Further work, including quantitative mathe-

matical modeling, will be needed to elucidate these differences

and to chart the relative contributions of aberrations in p53 and

CDKN2A/B, respectively.
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Figure 7. Modulation of Proteasome Inhibitor Response of Glioma Cells

(A) Based on our integrated data, we tested 25 compounds in combination with a proteasome inhibitor.

(B) Each compound was evaluated across a 6x6 dose-dose-response surface, replicated in multiple cell cultures with different p53 signature scores.

(C) Combination index (CI) statistics for 25 compounds, measured in 4 to 10 cell cultures per compound. x axis, compounds; y axis, CI values. Points are individual

patient-derived cell cultures, boxes are 90% confidence intervals.

(D) Test for CI (y axis) dependency on p53 signature (x axis), for GBM cell cultures treated with navitoclax-bortezomib (squares) and LCL-161-bortezomib (circles)

(E) Summary; results for endpoint 1 (average CI < 1.0) and endpoint 2 (CI depends on p53 signature) are shaded based on p value. Arrows indicate a positive (up)

or a negative (down, as in C) dependency on the p53 signature. The p values were obtained using Student’s t tests (endpoint 1) and linear regression (endpoint 2),

based on 4 to 10 cell cultures per combination.

(F) Sphere model to evaluate bortezomib in combination with navitoclax in one bortezomib-sensitive (U3013MG) and one resistant line (U3008MG). Bars, 800 m.

(G andH) Sphere size is significantly affected by bortezomib (G) and navitoclax (H) treatment. Red bar, observed sphere size after combination treatment. Dashed

bar, expected sphere size after combination treatment, based on the Bliss model. Bars indicate 90% bootstrap confidence intervals of the mean (two biological

replicates, each with seven technical replicates).
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The clinical potential of the reported gene signature and com-

binations remains to be assessed. Among the publicly disclosed

proteasome inhibitors, salinosporamide A (marizomib) shows

promise for CNS tumors, as it penetrates the blood-brain barrier

in rodent models (Di et al., 2016) and is under phase-3 investiga-

tion in humans (NCT03345095). Our proposed classification of

glioma cells based on p53 and CDKN2A/B status has potential

applications in the prospective design and post hoc interpreta-

tion of proteasome inhibitor clinical trials in GBM. Notably, germ-

line mutation of both p53 (Li-Fraumeni syndrome) and CDKN2A
(melanoma-astrocytoma syndrome) are associated with sub-

stantial risk increase for brain tumors. We speculate that the

small group of patients with a GBM associated with Li Fraumeni

syndrome might be a particularly interesting group for protea-

some inhibitor treatment. The identified combinations provide

a framework to study the potentiation of proteasome inhibitors.

While many of the detected effects are robust across cells

from multiple patients (particularly for Bcl-2 family inhibitors),

more analysis is warranted to assess the efficacy and safety of

such combinations.
Cell Reports 32, 107897, July 14, 2020 11
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In addition to the specific observations related to proteasome

inhibitors, our analysis gives interesting general insights

regarding GBM precision therapy. First, we note that the estab-

lished subtypes (proneural, classical, and mesenchymal) are

relatively weak predictors of drug response, compared to the

optimally selected transcriptional or genetic markers. Also, the

best performing biomarkers are not necessarily somatic point

mutations, motivating the use of multiple data layers as a strat-

egy to identify biomarkers for drug response in GBM cells (Fig-

ure S3). Second, the range of drugs whose response can be pre-

dicted with accuracy in primary GBM cells is broader than

frequently investigated kinase inhibitors (c.f. Table S3). Drugs

with high predictive performance (high CV-R) and strong effect

(low AUC) in a subset of cell cultures are of particular interest

for drug repurposing. Key examples of such drugs in our atlas

include calcium modulators (digoxin, calcimycin [A23187], and

niguldipine), three likely anti-metabolites (lycorine, thioguano-

sine, and perhexiline), an anti-malarial (quinacrine), modulators

of dopaminergic transmission (sertindole and 5-nonloxytrypta-

min), antiseptics (hexetidine, chlorhexidine, and ciclopirox),

and a cyclical peptide (thiostreptone), all with high ranking CV-

R scores (Table S2). Accordingly, we propose that the proteins

and pathways targeted by these drugs may warrant further

investigation as candidates for stratified therapy of GBM. For

instance, quinacrine (CV-R 0.54) is a known inhibitor of phospho-

lipase A2 (PLA2), an enzyme that hydrolyzes phospholipids into

second messengers that regulate cell proliferation, cell migra-

tion, and cell survival through binding of G-protein-coupled re-

ceptors (Moolenaar et al., 2004). High expression of PLA2 has

been associated with poor prognosis and therapy resistance in

glioma patients (Wu et al., 2019; Yang and Zhang, 2018). As a

second example, the activity of digoxin and digitoxigenin may

imply Na+-K+ ATPase (ATP1A1) as a possible target in GBM,

or other targets affected by digoxin drugs in GBM cells, such

as HIF1alpha and HIF2alpha (Joseph et al., 2015). Last, we

note that more than 80% of the GBM cultures are sensitive to

omacetaxine mepesuccinate (homoharringtonine, CV 0.46), a

blocker of the large 60S ribosomal subunit peptidyltransferase

center (Garreau de Loubresse et al., 2014), with RPL3 as the

possible target (Fresno et al., 1977; Tujebajeva et al., 1989), as

well as the ribosomal inhibitor anisomycin (CV-R 0.45) further

underlining ribosomal function or biogenesis as a possible target

in a subset of GBM. Altogether, further experimental validation of

compounds with high CV-R scores, in suitable cell-based and

animal models, will be necessary to evaluate their potential for

GBM precision therapy.

The presented extension of the HGCC biobank presents a

valuable resource for GBM precision medicine, distributed as

an open-access GBM cell culture library (hgcc.se) with associ-

ated databases (portal.hgcc.se) and networks of biomarker-

drug associations, which can be analyzed in Cytoscape (Shan-

non et al., 2003) or compatible programs. Users are invited to

explore the data and retrieve individual primary GBM cell cul-

tures with known genomic parameters or drug sensitivity, for

functional studies, or for data-driven modeling. Building on early

successes with heterogeneous traditional cell lines (Kutalik et al.,

2008; Barretina et al., 2012; Garnett et al., 2012; Yang et al.,

2013; Basu et al., 2013; Seashore-Ludlow et al., 2015; Iorio
12 Cell Reports 32, 107897, July 14, 2020
et al., 2016), we expect that an increasing number of well-char-

acterized and diagnosis-specific datasets will gradually increase

both the predictive power, interpretability, and clinical relevance

of cell culture panels.
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Antibodies

Ubiquitin (P4D1) Mouse monoclonal antibody Cell Signaling Technology Cat#3936s; RRID:AB_2315523

Beta-Actin (C4) mouse monoclonal antibody Santa Cruz Cat#sc-47778, RRID:AB_626632

53BP1 Polyclonal Antibody Invitrogen Cat#PA554565; RRID:AB_2637496

P21-antibody rabbit antibody (12D1) Cell signaling Technology Cat#2947; RRID:AB_823586

Cyclophilin rabbit polyclonal antibody Abcam Cat# Ab16045; RRID:AB_443295

Anti-NuMA antibody Abcam Cat#97585; RRID:AB_10680001

Alexa Flour 488 Phalloidin Thermofisher Scientific Cat#A12379; RRID:AB_2315147

Alexa Flour 555 Goat anti mouse IgG Invitrogen Cat#A21422; RRID:AB_2535844

Alexa Flour 488 Goat anti rabbit IgG Invitrogen Cat#A11008; RRID:AB_143165

Alexa Flour 555 Donkey anti rabbit IgG Invitrogen Cat#31572-A; RRID: AB_162543

FITC Goat anti rabbit IgG Jackson Immunoresearch Cat#111-095-144; RRID:AB_2337978

Goat anti rabbit IgG antibody, HRP conjugate Millipore Cat#AP307P; RRID:AB_92641

Goat anti mouse IgG antibody, HRP conjugate Millipore Cat#AP308P; RRID: AB_11215796

Chemicals, Peptides, and Recombinant Proteins

Screen-Well� kinase inhibitor library

(80 compounds)

BIOMOL International/Enzo

Life Sciences

Cat#BML-2832-0100

NCI DTP repository (101 compounds) National Cancer Institute (NCI)/

Division of Cancer Treatment and

Diagnosis (DCTD)/Developmental

Therapeutics Program (DTP)

https://dtp.cancer.gov;

RRID:SCR_003057

NIH clinical collection (727 compounds) NIH Molecular Libraries and

Imaging program

https://www.nihclinicalcollection.com/

Prestwick Chemical Library� (1200 compounds) Prestwick Library https://www.prestwickchemical.com/

prestwick-chemical-library.html

Bortezomib Selleck Chemicals Cat#S1013; CAS:179324-69-7

Marizomib Sigma Aldrich Cat#SML1916; CAS:4337742-34-2

Navitoclax Selleck Chemicals Cat#S1001; CAS: 923564-51-6

Milciclib (PHA-848125) Selleck Chemicals Cat#S2751 CAS:802539-81-7

Costunolide Selleck Chemicals Cat#S1319; CAS: 553-21-9

PM2 David P. Lane Lab (A*Star, Singapore) N/A

VIP-116 David P. Lane Lab (A*Star, Singapore) N/A

Carfilzomib Selleck Chemicals Cat#S2853; CAS:868540-17-4

Oprozomib Selleck Chemicals Cat#S704901; CAS:935888-69-0

Ixazomib Selleck Chemicals Cat#S2181; CAS:1201902-80-8

Delanzomib Selleck Chemicals Cat#S1157; CAS:847499-27-8

MG-132 Selleck Chemicals Cat#2619; CAS:133407-82-6

Torin 2 Selleck Chemicals Cat#S2817; CAS:1223001-51-1

Myricetin Selleck Chemicals Cat#S2326; CAS:529-44-2

Spectinomycin 2HCl Selleck Chemicals Cat#S2510; CAS:21736-83-4

Cilnidipine Selleck Chemicals Cat#S1293; CAS:132203-70-4

Etoposide Selleck Chemicals Cat#S1225; CAS: 33419-42-0

N-acetyl-L-cysteine Sigma Aldrich Cat#A9165; CAS:616-91-1

7-AAD BD Biosciences Cat#559925

BD Perm/WashTM buffer BD Biosciences Cat#554723

(Continued on next page)
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Neurobasal Medium GIBCO Cat#21103049

Neurobasal medium (without phenol red) GIBCO Cat#12348017

DMEM/F-12 GlutaMAX Supplement GIBCO Cat#31331028

DMEM/F-12 GlutMAX Supplement without phenol red GIBCO Cat#21041025

B-27 Supplement (50X), minus vitamin A GIBCO Cat#12587010

B-27 Supplement (50X), minus antioxidants GIBCO Cat#10889038

HBSS calcium, magnesium no phenol red GIBCO Cat#14025050

N-2 Supplement (100X) GIBCO Cat#17502001

StemPro Accutase Cell Dissociation Reagent GIBCO Cat#A1110501

Laminin from Engelbreth-Holm-Swarm murine

sarcoma basement membrane

Sigma-Aldrich Cat#L2020-1MG;

CAS: 114956-81-9

Animal-Free Recombinant Human EGF PeproTech Cat#AF-10015

Animal-Free Recombinant Human FGF-basic (154 a.a) PeproTech Cat#AF-10018-B

Penicillin-Streptomycin Sigma-Aldrich Cat#P0781

DMEM, without methionine Thermo Fisher Scientific Cat#21013-024

Poly-L-ornithine (0.01% sterile filtered) solution Sigma-Aldrich Cat#P4957

RIPA Lysis and Extraction Buffer Thermo Fisher Scientific Cat#89900

Triton X-100 Sigma-Aldrich Cat#X100

Tween 20 Sigma-Aldrich Cat# P1379

Bovine serum albumin fraction V Sigma-Aldrich Cat#10735099001

Paraformaldehyde 16% (w/v), in aqueous solution

methanol free

Alfa Aesar Cat#AA43368

Phosphate Buffered Saline (PBS) Ultra pure grade Amresco Cat# 0780

TBS, 20X ready -pack Ultra pure Amresco Cat# 0788-2K

HOECHST 33342 Invitrogen Cat# 62249

NuPAGE 4-12% Bis-Tris Gel Invitrogen Cat# NP0321

NuPAGE MES Running buffer (20X) Invitrogen Cat#NP0002

NuPAGE MOPS Running buffer (20X) Invitrogen Cat#NP0001

Restore western blot stripping buffer Thermo Fisher Scientific Cat#21059

iBLOT Gel transfer stacks Nitrocellulose, Mini Invitrogen Cat#IB301002

Viraductin Lentivirus Transduction Kit Cell Biolabs Cat#LTV-201

Isoba� vet (isoflurane) Baxter Cat#014083

Carprofen Orion Pharma Animal Health N/A

Luciferin Promega Cat#E1605

D-Luciferin, sodium salt (Proven and Published) Zellbio Cat# LUCNA-250

4% phosphate buffered formaldehyde Histolab Cat#02176; CAS:50-00-0

Antigen unmasking solution Vector Laboratories Cat#H-3300

DAB Quanto Thermo Fisher Scientific Cat#TA-060-QHDX

Mounting medium for light microscopy Pertex� Histolab Cat#00811

Corning� growth factor reduced Matrigel� matrix VWR Cat#734-0269

Corning Matrigel Membrane Matrix Fisher Scientific Cat#11543550

Dimethyl Sulfoxide Millipore Cat#317275

Critical Commercial Assays

CytoscanTM HD Arrays Thermo Fisher Scientific Cat#901833

Cytoscan Reagent kit Thermo Fisher Scientific Cat#901808

Titanium� DNA Amplification Kit Clontech Cat#639240

GeneChipTM HTA 2.0 Arrays Thermo Fisher Scientific Cat#902162

Infinium� MethylationEPIC BeadChip Kit Illumina Cat#WG-317-1002

(Continued on next page)
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EZ-96 DNA Methylation Kit Zymo Research Cat#D5003

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Cat#Q32851

Genomic DNA ScreenTape Agilent Cat#5067-5365

Genomic DNA Reagents Agilent Cat#5067-5366

miRNeasy Mini Kit QIAGEN Cat#217004

DNeasy Blood and Tissue Kit QIAGEN Cat#69506

Alamar blue cell viability reagent Invitrogen Cat#DAL1100

PierceTM BCA Protein Assay Kit Thermo Fisher Scientific Cat#23225

ECL Select western blotting detection reagent GE healthcare Cat#RPN2235

SuperSignal West Femto maximum sensitivity

substrate

Thermo Fisher Scientific Cat#34094

Caspase - Glo 3/7 Assay Systems Promega Cat#G8091

GSH/GSSG - Glo Assay Promega Cat#V6611

Click-iT� HPG Alexa Fluor� 488 Protein

Synthesis Assay Kit

Thermo Fisher Scientific Cat#C10428

iScript gDNA Clear cDNA synthesis kit Bio-Rad Cat#1725034

Protease Inhibitor Cocktail cOmplete mini Sigma-Aldrich Cat#000000011836153001

Olink Incubation Stabilizer Olink Proteomics Cat#84008

Olink Incubation Solution Olink Proteomics Cat#84009

Olink PEA Solution Olink Proteomics Cat#84002

Olink PEA Enzyme Olink Proteomics Cat#84003

Olink Detection Solution Olink Proteomics Cat#84015

Olink Detection Enzyme Olink Proteomics Cat#84005

Olink PCR Polymerase Olink Proteomics Cat#84004

96.96 Dynamic Array Integrated Fluidic Circuit Fluidigm Cat#BMK-M-96.96

Proteasome 20S activity kit Promega Cat#G8621

GIBCO human neural stem cell (H9) kit Invitrogen Cat#N7800200

CM-H2DCFDA (general oxidative stress indicator) Invitrogen Cat#C6827

FITC-BrdU Flow kit BD PharMingen Cat#559619

SsoAdvanced Universal SYBR Bio-Rad Cat#1725275

ProLong Diamond antifade mountant Invitrogen Cat#P36961

Deposited Data

Gene Expression Omnibus repository This paper https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE152160

Experimental Models: Cell Lines

Patient-derived glioblastoma cell cultures;

see Table S1

HGCC biobank Authenticated by STR

analysis by HGCC

Human: Immortalized astrocytes From Arne Östman Lab

(Karolinska Institutet, Sweden)

N/A

Human: Foreskin fibroblasts AG 1523 From Karin Forsberg-Nilsson Lab

(Uppsala University, Sweden)

N/A

Human: HepG2 From Bo Lundgren Lab

(Stockholm University, Sweden)

N/A

Human: H9-derived neural stem cells Life Technologies Cat#510088, Lot#1206001

Experimental Models: Organisms/Strains

Balb/cAnNRj-Foxn1nu/Foxn1nu mice, female

mice aged 7-9 weeks

Janvier Labs N/A

White Leghorn chicken eggs LSK Poultry Oy, Laitila, FL N/A

(Continued on next page)
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Oligonucleotides

qPCR primers; see Table S5 This study N/A

Recombinant DNA

pBMN(CMV-copGFP-Luc2-Puro) Jin et al., 2016 Cat#80389; RRID:Addgene_80389

Software and Algorithms

ImageJ (FIJI version 1.0) https://imagej.nih.gov/ij/ Schindelin et al., 2012 https://imagej.nih.gov/ij/

IndiGo version 2.0.5.0 Berthold Technologies https://indigo.onki.de/indigo.html

IncuCyte Zoom 2016A Live image analysis software Essen Biosciences Inc. N/A

IncuCyte � S3 Spheroid Analysis software Essen Biosciences Inc. N/A

IncuCyte �Basic Analysis Software (v2019B) Essen Biosciences Inc. N/A

Living Image 3.2.0 software PerkinElmer N/A

qBase MS Excel VBA applet Hellemans et. al., 2007 N/A

GraphPad Prism 6 or Prism 8 GraphPad software https://www.graphpad.com/

scientific-software/prism/;

RRID: SCR_002798

Bio-Rad CFX Manager Software Bio-Rad N/A

CytExpert software version 2.4 Beckman Coulter N/A

SnapGene Viewer 4.1.9 software GSL Biotech LLC N/A
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Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Sven

Nelander (sven.nelander@igp.uu.se).

Materials Availability
Individual cell cultures can be obtained following establishment of a Material Transfer Agreement. Contact the Human Glioma Cell

Culture biobank administrator at mail@hgcc.se, or the Lead Contact. GFP-tagged versions of the cell cultures used in the CAM ex-

periments are obtained using the same procedure.

Data and Code Availability
Individual genomic data types are made available at portal.hgcc.se. The accession number for the gene expression data reported in

this paper is Gene Expression Omnibus: GSE152160. Code for computational analyses are available from the Lead Contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tumor sample collection was approved by the Uppsala regional ethical review board, number 2007/353; informed consent was ob-

tained from all subjects included. The cell culture designations and key data (sex, age, survival) of each subject are listed in Table S1.

All mouse experiments were performed in compliance with an ethical permit granted by the Uppsala Animal Research Ethical Board,

number C41/14. Mice used were Balb/cAnNRj-Foxn1nu/Foxn1nu female mice from Janvier Labs, 7 weeks old at the start of the

experiment. Mice were housed in individually ventilated cages (5 mice per cage) with appropriate paper housing enrichments,

bedding material and provided with food and drinking water ad libitum with a 12/12-hour light/dark cycle.

Cell culture collection methods
Primary cultures were derived from tumor samples in defined serum-free neural stem cell (NSC) medium, supplemented with B-27,

N2, EGF, FGF, on laminin-coated Corning Primaria Cell Culture plates (Thermo Fisher Scientific, Waltham, MA) as described (Xie

et al., 2015), and GBM cells (Table S1) were subsequently grown in this medium. The cell cultures for the drug screening assay

were between passage 8 and 24 (average 16). As reference cell lines, we used human immortalized astrocytes (Arne Östman,

Karolinska Institutet), HepG2 (Bo Lundgren, Stockholm University) and human foreskin fibroblasts 1523 (Karin Forsberg Nilsson,

Uppsala University). References cells were grown as adherent cultures in DMEM culture medium (Invitrogen, Carlsbad, CA) supple-

mented with 1% L-Glutamine (Sigma-Aldrich, St. Louis, MO), 1% Penicillin/Streptomycin (Sigma-Aldrich), 1% GIBCO MEM Non-

Essential Amino Acids (Thermo Fisher Scientific) and GIBCO 10% fetal bovine serum (Thermo Fisher Scientific). H9-derived human
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neural stem cells, propagated as adherent culture in complete StemPro� NSC SFM (A1050901, Thermo Fisher Scientific) according

to manufacturer instructions were also included as a reference.

METHOD DETAILS

Genomic profiling of patient-derived GBM cultures
Genomic profiling of the GBM cell cultures (Figure 1C; Figure S1) was conducted at Science for Life Laboratory core facilities (sci-

lifelab.se) and the Uppsala Academic Hospital Array and Analysis facility. DNA was amplified from cell cultures using the DNeasy

Blood and tissue kit (QIAGEN). DNA copy number aberrations were measured using Affymetrix Cytoscan HD arrays (Thermo Fisher

Scientific) in accordance with the manufacturer’s instructions (Affymetrix� Cytoscan User Guide (P/N 703038 Rev4.). Chromosomal

segments carrying altered numbers of copies was estimated using the Patchwork R package (Mayrhofer et al., 2013), which quan-

tifies the log-relative change in DNA content for each chromosomal region. DNA whole exome sequencing of cell cultures was per-

formed using Ion Torrent sequencing as follows. 100 ng of genomic DNAwas amplified according to the Ion AmpliSeqExome Library

Preparation protocol (Thermo Fisher Scientific). Adaptors (Ion P1 Adaptor and Ion XpressBarcode Adaptor, Thermo Fisher Scientific)

were then ligated to generate sequencing libraries, which were purified using Agencourt� AMPure� XP reagent (Beckman Coulter),

eluted in amplification mix (Platinum� PCR SuperMix High Fidelity and Library Amplification Primer Mix, Thermo Fisher Scientific)

and then amplified. Size-selection and purification was conducted using Agencourt� AMPure� XP reagent (Beckman Coulter).

Emulsion PCR was performed on the Ion OneTouch2 system using the Ion PITemplate OT2 200 Kit v3 (Thermo Fisher Scientific).

Samples were loaded on Ion PIchips v2 and sequenced on the Ion ProtonSystem using Ion PISequencing 200 Kit v3 chemistry

(Thermo Fisher Scientific). Data were analyzed with the Torrent Suite Software (Thermo Fisher Scientific). Following alignment to

the hg19 reference genome using BowTie, we computed somatic variants using Torrent Suite, SomaticSniper (Larson et al.,

2012), VarScan2 (Koboldt et al., 2012) and MuTect 2 (Cibulskis et al., 2013) using default settings. We annotated the variants using

ANNOVAR (Wang et al., 2010) and dbsnp138 (https://www.ncbi.nlm.nih.gov/projects/SNP/). The calls were aggregated across the

four callers and a gene was considered mutated (1) if it met the criteria of (i) being found by at least 2 callers, (ii) was annotated as

nonsynonymous, and (iii) not present as a germline variant in the 1000 genomes project (1000 Genomes Project Consortium et al.,

2015) above 2 percent prevalence according to ANNOVAR. DNA methylomes were measured on Infinium�MethylationEPIC Bead-

Chip Infinium arrays (Illumina), in accordance with the Infinium� HD Assay Methylation protocol (Illumina). Quality control of the

generated data was performed using the methylation module of the GenomeStudio� v2011.1 data analysis software (Illumina)

and by use of the BeadArray Controls Reporter software (Illumina) to analyze the sample controls. From the primary data, probe spe-

cific b values, for 850,000 probes were computed as the probe-specific methylation fraction. RNA profiling was performed using Af-

fymetrix HTA 2.0 arrays according tomanufacturer recommendations, and normalized to gene level using the Affymetrix Power Tools

version 1.19.0 (https://www.affymetrix.com). The resulting gene expression data were normalized using the naiveReplicateRUV

method (Gagnon-Bartsch and Speed, 2012) with negative control genes defined as in Eisenberg and Levanon (2003).

Pharmacological profiling of patient-derived GBM cultures
Large-scale measurements of drug responses (Figure 2) were carried out at the Science for Life Laboratory Drug Discovery and

Development platform. Cells were seeded one day prior to treatment using aMultidrop 384 liquid dispenser (Thermo Fisher Scientific)

in laminin-coated 384-well microplates (BD Falcon Optilux #353962), at a density ranging from 2000-4000 cells per well to ensure

subconfluent growth phase (approximately 70%) at the end of the assay. For the initial screen in 9 glioblastoma cell cultures (Fig-

ure 2A) we tested 1544 unique compounds from the Screen-Well� kinase inhibitor library (BIOMOL International/Enzo Life Sciences,

80 compounds), the NCI DTP Repository (National Institute of Health, 101 compounds), the NIH clinical collection (https://

commonfund.nih.gov/molecularlibraries/tools, 727 compounds), and the Prestwick Chemical Library� (Prestwick Chemical, 1200

compounds). Redundant compounds were removed to a total of 1544 compounds. In the subsequent screen (c.f. Figure 2A) 262

compounds were tested in 11-point dose dilution series (starting at 100M in Phase 2 and 50M in Phase 3) and assayed for viability

after 3 days of treatment using a Resazurin assay diluted 1:10 in medium as previously described (Page et al., 1993), and detected by

a fluorescent plate reader (EnVision multilabel reader, PerkinElmer). Each plate was subject to quality control comparing fluores-

cence values of doxorubicin treated (11 doses, 0-100 M) cells as positive control and DMSO vehicle (0.1%) as negative control.

All data was normalized against plate DMSO vehicle wells. We scored the sensitivity of each cell culture to each compound by an

Area Under the Curve (AUC) score for the dose-response values. This metric was used since it gives an interpretable value for all

drugs and cell cultures, not only for those with well-defined IC50. For 183/262 compounds, the IC50 was within the 11 dose range

and for an additional 16 drugs, the IC75 was within the dose range used (Table S2).

Gene signature of p53 activity in GBM, and analysis of p53 status in 10 GBM cultures
For all GBM cultures with available whole-exome sequencing and RNA profiling data (n = 62) we computed the differential expression

between p53mutant and p53wild-type cell cultures, detecting p53 as themain differentially expressed pathway. The 36 transcripts in

the p53 Hallmark pathway that were differentially expressed (BH adjusted p<0.05) were arranged as amatrix, which was analyzed by
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PCA, whereby the first principal component was used as the p53 signature score of each cell culture (Figure 4A). We selected 10

representative GBM cultures based on variation in this p53 signature and proteasome inhibitor response (Figure 5A). To confirm

p53 status, we used targeted Sanger sequencing (c.f. . For each of the 10 selected cultures, we amplified DNA sequences for

p53 coding exons as described by Pfaff et al. (2010). The sequencing was performed as Light run in forward direction by GATC

Biotech using 5 l of PCR products and sequence alignment was carried out using the SnapGene Viewer 4.1.9 software (GSL Biotech

LLC) against the NC_000017.11 TP53 reference sequence. The International Agency for Research onCancer TP53 database (https://

p53.iarc.fr/) was used to determine the significance of identified sequence variants. As a complement to Sanger sequencing, p53

functional status was assessed using an etoposide treatment assay (Figure S4B), as follows. The selected 10 GBM cell cultures

were treated with 10 M etoposide for 2, 6, 16 and 24 hr, following lysis in RIPA buffer (Thermo Fisher Scientific) supplemented

with cOmpleteULTRA protease inhibitor cocktail (Roche) and phosphatase inhibitors PhosSTOP (Roche). 25 mg of lysate was

resolved by 4%–12% Bis-Tris gradient gel (Invitrogen) in MOPS buffer, transferred onto nitrocellulose membranes (Invitrogen)

and blocked in buffer (5% (wt/vol) BSA or 5% (wt/vol) nonfat milk (Bio-Rad), TBST (TBS, pH 7.4, 0.1% Tween-20) for 1 hr at room

temperature. Primary antibodies used were p21 rabbit antibody (12D1, Cell Signaling Technology) (1:1000 in 5% BSA, TBST),

beta-actin mouse monoclonal antibody (C4, Santa Cruz) (1:1000 in 5% milk, TBST) and cyclophilin rabbit polyclonal antibody

(ab16045, Abcam) (1:2000 in 5% milk/TBST). Following overnight incubation of membranes with primary antibody at 4C; HRP-

linked secondary antibodies were diluted in blocking buffer; donkey anti-rabbit (GE Healthcare, Chicago, IL) (1:5000 in 5% BSA),

goat anti-mouse (GE Healthcare) (1:5000 in 5% milk), and incubated for 1 hour at room temperature. Blots were developed by

AmershamTMECL SelectTM western blotting detection reagent (GE Healthcare), and visualized using ImageQuant LAS 4000

(GE Healthcare) biomolecular imager.

RNA profiling and GSEA
For Figure 5B, we used RNA sequencing using the method in Almstedt et al. (2020) to profile U3013MG and U3180MG cells after 6 hr

treatment by bortezomib, marizomib and delanzomib at 10nM (n = 3 technical replicates for each treatment). Vehicle treated cells

were used as replicates (n = 3 technical replicates). We used Fisher’s test with FDR p value correction to test for overlap between

Hallmark pathways and genes that were either upregulated in both cell cultures (average fold change in both) or selectively up in

U3180MG versus U3013MG (fold change in U3180MG cells minus the fold change in U3013MG cells).

Responses to proteasome inhibition in 10 GBM cultures with different p53 status
To measure the effects of proteasome inhibition, we used qPCR, western blot and proximity extension assays as follows. For Fig-

ure S4A, we selected a panel of genes for qPCR validation. Selection was based on whether (i) they were a marker in our network

analysis, (ii) they were a known p53 target or (iii) involved in other key pathways. A panel of 10GBMcultures with different proteasome

inhibitor sensitivity were treated with 10nM bortezomib (PS-341, #S1013, Selleck Chemicals) or vehicle (0.1% DMSO) for 6 hr and

24 hr in triplicates. Total RNA was isolated using the phenol/chloroform method with TRIzol LS Reagent (#10296010, Thermo Fisher

Scientific) and 500 ng of total RNA was then transcribed using iScriptTM gDNA Clear cDNA Synthesis Kit (Bio-Rad). Quantitative PCR

was carried out on a CFX384 TouchTM Real Time PCR Detection System (Bio-Rad), using SsoAdvancedTM Universal SYBRGreen

Supermix (#1725275, Bio-Rad) in duplicates in a total reaction volume of 10 l, using primers in Table S5. Gene expression was

normalized using 3 reference genes (RPS18, GAPDH, RLP13A) and calculated with qBase MSExcel VBA applet (Hellemans et al.,

2007). To analyze protein turnover in treated versus untreated resistant and non-resistant cells (Figure S4C), we analyzed detergent

soluble and insoluble fractions, for enrichment of aggregated protein (Miyahara et al., 2016; Moriya et al., 2015) after 24 hours of bor-

tezomib treatment, by western blot detection of ubiquitin (P4D1, Cell Signaling Technology, Inc. 1:1000 in blocking buffer) with b-

actin (C4, Santa Cruz, 1:10000 in blocking buffer) as a loading control. Blots were developed and visualized as described above.

Details of proximity extension assay analysis
Proteome alterations (Figure 4C; Figure S4E) were measured on proximity extension assay (PEA) arrays (Olink Proteomics), as fol-

lows. Cell cultures U3013MG, U3054MG, U3008MG, and U3213MG were seeded at 15,000 cells per well in two replicate 96-well

plates [Greiner Bio One cat#655986]. Twenty-four hr later, bortezomib was added at a final concentration of 1 nM, 6 nM, 10 nM

or 0.2% DMSO as vehicle control. At 24 hr post-drug exposure, the replicate plates were gently washed 1X with PBS (37�C). Sub-
sequently, the cells in one 96-well plate were fixed at room temperature for 10 min with a mixture of 2% PFA, 0.1% Triton X-100 and

10 g/ml Hoechst stain. The fixed cells were to enumerate the number of cells per well per corresponding treatment regimen. The cells

in the second plate were lysed with 25l ice-cold lysis buffer/well (1% NP-40, 0.1% Triton X-100, 0.1% sulfobetaine, 150 mM NaCl,

Protease Inhibitor Cocktail cOmpletemini (Roche), TE pH 8). Following the addition of the lysis buffer, the plate was briefly vortexed,

centrifuged for 1 min, 4�C at 1000 rpm, and then stored at�80�C until use. The cell lysates were analyzed for relative protein expres-

sion using two non-commercial, exploratory multiplex proximity extension assay (PEA) panels (Olink Proteomics). The two panels

target proteins involved in cancer-related pathways and cellular processes (e.g., cell cycle) respectively. Each PEA panel includes

92 assays targeting proteins and four spike-in controls consisting of two recombinant non-human proteins as incubation controls,

an extension control (ExtCtl) and a PCR/detection control. Briefly, 2l cell lysate was mixed with 3l multiplex PEA probe mix. The
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mix contained 0.3l of each the PEA A- and B-oligonucleotide conjugated antibody probes (final antibody-conjugate concentration of

100 pM), 0.2l Incubation Stabilizer (Olink Proteomics), and 2.1l Incubation Solution (Olink Proteomics). Each analysis plate included 8

replicate lysis buffer-only negative controls. The plates were briefly centrifuged, sealed, and incubated overnight at 4�C. Following

overnight incubation, plates were briefly spun down, and 96 mL of a PEA probe extension mix was added to each well. The mix con-

tained 0.2l PCR Polymerase, 0.5l PEA Enzyme, and 10l PEA Solution (all Olink Proteomics) and 85.3l molecular grade water. Plates

were sealed, gently vortexed, spun down, and then placed in a thermal cycler for the extension reaction (50�C, 20min) and pre-ampli-

fication of extended PEA probes via universal primers (95�C, 5 min; 95�C, 30 s; 54�C, 1 min; and 60�C, 1 min) for 17 cycles. The pre-

amplified DNA molecules from the multiplex detection reaction were decoded and quantified using a Fluidigm 96.96 Dynamic Array

Integrated Fluidic Circuit on a Biomark HD system. 2.8l of each sample was mixed with 5l Detection Solution, 0.071l Detection

Enzyme, and 0.028l PCR Polymerase (all Olink Proteomics) and 2.1l molecular grade water. 5l of each sample plus detection mix

was loaded into a primed 96.96 Dynamic Array IFC (right inlets). 5l of each of the 96 primer pairs (Olink Proteomics), designed to

amplify individual target-specific DNA reporter sequences generated in the PEA reactions, was also loaded in the Dynamic Array

(left inlets). The chip was placed in Fluidigm’s IFC HX according to themanufacturer’s instructions and then run in Fluidigm’s Biomark

with the following settings (Gene Expression application, ROX passive reference, single-probe assay with FAM-MGBprobe) and pro-

tocol: thermalmix (50�C, 120 s; 70�C, 1,800 s; 25�C, 600 s), hot start (95�C, 300 s), and PCR cycling for 40 cycles (95�C, 15 s; 60�C, 60
s). BioMark generated PEA output files were processed to flag data points where the ExtCtl was smaller or greater than two standard

deviations from the ExtCtl sample mean. The remaining Ct values were normalized as follows: for each sample, the Ct value of the

ExtCtl was subtracted from the Ct value of the protein analyte yielding dCt values. Then, for each assay, the dCt values were sub-

tracted from a negative control background value computed as the mean - 3*SD of the lysis buffer only negative control values. This

ensures that observed signals for each assay in the presence of a cell are at least 3 standard deviations away from any signals

observed in the absence of any antigen. All resulting values below zero were set to zero, and the signal was deemed undetected.

We analyzed the data using a linear model for each protein (MATLAB fitlme) to estimate effects corresponding to the (log2) differential

protein expression between resistant and sensitive cells (shown in Figure 4C) and the effect of bortezomib (shown in Figure S4E).

p53 targets and ROS levels in proteasome inhibitor-treated GBM cultures
To measure the level of reactive oxygen species before and after treatment (Figure 5C), we seeded GBM cells to Corning 96-well

black wall plates at the concentration of 10.000 cells per well in NSC medium where B27 supplement was replaced with B27 Sup-

plement, minus antioxidants (10889-038, Thermo Fisher Scientific). After overnight incubation, cells were treated with etoposide (10,

30 and 50 M) and bortezomib (10 nM) for 30 hr. For assessment of general reactive oxygen species, cell-permeant fluorescent probe

CM-H2DCFDA (#C6827, Thermo Fisher Scientific) was used at 2.5 M final concentration, and cells were imaged by an IncuCyte� S3

live-cell imaging system (Sartorius). Acquired images were analyzed with the IncuCyte� inbuilt software to determine average green

mean object intensity (GCU). The experiment was performed in three biological replicates with four technical replicates each, for a

panel of ten GBM cell cultures.

Glutathione ratio and caspase 3/7 assays
Wemeasured bortezomib-induced cellular stress (Figure 5D) using the luminescence-based GSH/GSSG-Glo assay (Promega). Both

oxidized and total glutathione levels were obtained and used to calculate the ratio of reduced to oxidized glutathione. Cells were

seeded at 5,000 cells/well. After 24 hours, cells were treated with either the drug bortezomib at 10 nM or the vehicle for 72 hours.

Triplicate wells were used per condition. Luminescence was measured following the manufacturer’s instructions, and background

values were subtracted from all measurements. The ratios of GSH/GSSH were calculated for vehicle and control-treated cells. To

measure Caspase 3/7 activity (Figure 5E), cells were seeded overnight at 5,000 cells/well in laminin-coated 96-well Primaria plates

in standard NSCmedium. Cells were then incubated for 48 hours with bortezomib (10 nM), the corresponding DMSO concentration,

or left untreated. Triplicate wells were used per condition. Viability assay was performed using the alamarBlue� cell viability reagent.

Measurement of caspase 3 and 7 levels was performed using the Caspase-Glo� 3/7 Assay detection assay kit (Promega) following

manufacturer recommendations. As above, cells were seeded overnight in a white-walled 96-well plate at 5.000 cells/well following

incubation for 48 hr in triplicate with bortezomib (10 nM), vehicle or left untreated. An equal volume of reconstituted Caspase-Glo

Reagent was added to each well and luminescence was measured after 30 min incubation. Background luminescence was sub-

tracted. The amount of Caspase 3/7 was then calculated relative to cell viability for each cell culture.

Chicken chorioallantoic membrane assay
For Figures 6A–6C, fertilizedWhite Leghorn chicken eggs were obtained within a week after laying (LSK Poultry Oy). The highest non-

toxic dose of bortezomib was established to be approximately 10 g/kg. On EDD 7, 1x106 glioblastoma cells were transplanted onto

the CAM in 20 l of 50%MatrigelTM (#11543550, Fisher Scientific) and PBS suspension. On EDD 10, we recorded bioluminescent (BLI)

signal using an IVIS Spectrum camera (PerkinElmer) and applied vehicle (0.01% DMSO) or bortezomib (5 or 10 g/kg) topically on the

CAM. On EDD 12, IVIS imaging was repeated and embryos were euthanized. BLI signal was analyzed using Living Image 3.2.0 (Per-

kinElmer) software and we used linear regression to estimate the log fold IVIS signal per g/kg unit of treatment, with data from n = 322

eggs in total.
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Mouse xenotransplantation and bortezomib treatment
All mouse experiments were performed in compliance with an ethical permit granted by the Uppsala Animal Research Ethical Board,

number C41/14. All animals were housed in individually ventilated cages (5 mice per cage) with appropriate paper housing enrich-

ments, bedding material and provided with food and drinking water ad libitum with 12/12-hour light/dark cycle. 7 week-old Balb/

cAnNRj-Foxn1nu/Foxn1nu female mice (Janvier Labs) were injected with U3013MG cells cultured adherently, U3013MG cultured

as spheres and U3008MG cultured as spheres. When tumor volume exceeded 0.1 cm3, mice were randomized into groups treated

with bortezomib (0.5 mg/kg) or vehicle (DMSO). We used 7 mice per treatment and cell line. After tumor induction with PI-sensitive

and PI-resistant glioblastoma cell cultures, mice were monitored at least twice per week. Weights were taken once per week initially

and three times weekly once tumors developed. Tumors were measured three times weekly by caliper and tumor volume was calcu-

lated according to (length x width2)/2. Treatments were administered twice a week by intraperitoneal injection. All animals were

euthanized once the tumor volume reached 1000 mm3 or after a maximum of 4 weeks of treatment. In the analysis, mice injected

with adherently and sphere grown U3013MG were pooled and data was analyzed using a linear model implemented using MATLAB

fitlme (Wilkinson notation volume �+ time + time:bortezomib, reported p value in Figure 6D corresponding to the time:bortezomib

interaction term).

Modulation of proteasome inhibitor responses by heat, antioxidants and potentiating drugs
To measure whether antioxidants or heat-induced accumulation of ROS could have a protecting or potentiating effect in bortezomib

treated GBM cells, we analyzed their viability in drug pair combination assays. Primary GBM cultures were treated by vehicle, bor-

tezomib (10nM), or combination of bortezomib (10 nM) with N-acetylcysteine (1 mM, Sigma-Aldrich) or myricetin (200 M, Selleck

Chemicals). The effect of heat on bortezomib treated GBM cells was assessed by inducing 42C heat shock during 4 hours concom-

itantly with bortezomib (10 nM) addition (Figure S4D). For each cell culture, cells were seeded in separate plates for control (37�C) and
heat treatment (42�C). Primaria 96-well plates (VWR) were coatedwith laminin and incubated for 30min at 37�C, before 5000 cells per
well were seeded and incubated overnight at 37�C before treatment. For each cell culture, bortezomib (22 nM) and corresponding

control DMSO were added to all plates, and the heating plates were incubated at 42�C for 4-, 24- and 48 hours, while their individual

control plates were incubated at 37�C. Viability readwas performed using theWallac Victor 1420multilabel counter (Perkin Elmer). To

assess potential synergism between bortezomib and other compounds (Figures 7A–7E), 10 GBM cultures were seeded in 96 well

plates 5.000 cells/well and allowed to attach overnight. The next day, two proteasome inhibitors, bortezomib were added in 6x6 pair-

wise combinations with 25 drugs identified in our integrative data analysis (drugs and dose ranges in Table S6). The highest concen-

tration of each drug was set to around twofold the IC50 value identified in the literature. Cells in the control wells were treated with

DMSO (0.1 %, corresponding to 10 M drug; or highest concentration of the drug dilutions, but not exceeding 0.3 %). After 72h in-

cubation alamarBlue� cell viability reagent (Thermo Fisher Scientific) was added and fluorescent readout made by Wallac 1420

Victor2 (Perkin Elmer). The resulting viability data was used to compute Combination Index scores as previously described (Schmidt

et al., 2016). For further validation in a 3D tumor model over an extended time period, combinations of bortezomib with navitoclax or

milciclib were selected for treatment of one bortezomib sensitive and one bortezomib resistant cell culture over 10 days.

Sphere growth combination treatments
For Figures 7F–7H, a total of 2000 cells fromGBM cultures U3013MG and U3008MGwere seeded in PrimeSurface 96U S-BIO plates

(MoBiTech) in NSC medium with 2.5% matrigel basement membrane matrix (Corning). Following a short centrifugation step (30 s at

1000 rpm), cells were incubated for two days to allow sphere formation before adding treatments consisting of vehicle control, single

drugs or combinations of bortezomib with navitoclax or milciclib diluted in DMSO. An initial dose-response screen with the single

drugs and combinations in three-fold dilutions spanning a dose range from 1-100 nM (bortezomib), 0.11-1 mM (navitoclax) and

0.22-2 mM (milciclib) with two replicates per well was performed to select the most efficient combinations for a second phase exper-

iment with seven replicate per treatment condition. In the second phase, two concentrations of bortezomib (3 and 10 nM) were com-

bined with three different concentrations of navitoclax (1 mM, 0.33 mM and 0.11 mM) or milciclib (2 mM, 0.66 mM, 0.22 mM). Images

were acquired with the Phase and Brightfield channels every 6 hours for an additional 10 days on the IncuCyte S3 instrument (Sarto-

rius) using the spheroid scan module with the 4x objective. Brightfield channel images were segmented using the IncuCyte 2019B

Rev2 software and the largest sphere area in each image was measured. Expected combination effects (white bar in Figures 7G

and 7H) were computed using the Bliss model (below).

BrdU cell cycle flow cytometric analysis of bortezomib treated GBM cultures
For Figure S5, immunofluorescent staining of incorporated bromodeoxyuridine (BrdU) was performed using BrdU-FITC specific an-

tibodies according to the manufacturerâVs instructions (BD PharMingen, 559619) coupled with 7-amino-actinomycin (7-AAD) stain-

ing to permit cell cycle position analysis of cells with actively synthesizing DNA. Two proteasome inhibitor sensitive and two protea-

some inhibitor-resistant GBM cultures were treated with DMSO vehicle, 10 or 50 nM bortezomib for 24 hours. During the final 1 hour

of cultures, the cells were pulsed with 10 mM of BrdU before processing according to the BrdU Flow Kit protocol. Cell-associated

BrdU levels and DNA content wasmeasured on a CytoFLEX platform (Beckman Coulter) equipped with a 488-nm laser and analyzed

using the CytExpert software version 2.4.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Algorithms for glioblastoma subtype assignment
Four methods for subtype assignment were combined by a weighted majority vote to designate one subtype for each primary GBM

culture. Using the Verhaak (Verhaak et al., 2010) gene signature, NTP (Hoshida, 2010), ssGSEA (Barbie et al., 2009), k-NN (Xie et al.,

2015), and nearest centroid were run using 1000 bootstrap runs resampling cell cultures. A majority vote over the 1000 runs gave the

subtype vote for each classifier.

Drug target annotation
We annotated our drug library by Chemical Abstract Service (CAS) identifier, International Chemical Identifier (InChI) and STITCH

database (CIDs/CIDm) identifiers. As a secondary source, we linked our library to the Drug Repurposing Hub. Target assignments

were derived from the Drug Repurposing hub and STITCH. In the latter case, target assignments are gradual, and we used all targets

with a score of at least 700/1000.

Algorithms for drug activity similarity and cluster analysis
From the 1544 compounds in Phase 1, 212were selected based on their activity. Using drug targets annotated as described above, a

randomization test (randomizing the drug-target annotations 10000 times) was run to derive an empirical p value for the frequency of

targets selected among the 212 drugs. This resulted in 75 targets with an empirical p value of less than 0.05. Themost highly enriched

targets are shown in Figure 2A. Clustering of cell cultures and drugs was performed by compiling a matrix of mean viability across

doses for each drug in each cell culture (cell cultures x compounds). To define subgroups of cell cultures, consensus clustering (Wil-

kerson and Hayes, 2010) using hierarchical clustering and Pearson distance metric was implemented using the ConsensusCluster-

Plus package in R Bioconductor. When clustering cell cultures, only the 80 compounds in the intersect between Phase 2 and Phase 3

was used. The optimal number of clusters was selected based on the diagnostic plots generated in the consensus clustering pro-

cedure (Figure S2A). To cluster drugs, a hierarchical clustering with Pearson distancemetric and average linkage was used. The pair-

wise distances were computed omitting missing values. The final clusters were obtained using the cutreeDynamicTree function from

the dynamicTreeCut package in R with the option deepSplit set to TRUE (Langfelder et al., 2008) and the minimummodule size set to

5. For the heatmap in Figure 2, missing values were imputed using the impute-knnmethod in R, but the imputed values were not used

in the clustering. A standard PCA solver (MATLAB) was used for PCA calculations (Figures 4A and 4B). In cases where more than one

data type was used, all data were Z-transformed and stacked into a single matrix, before PCA.

Algorithms for construction of biomarker-drug network: drug response prediction based on multi-omic data
Prediction of drug response (quantified as the AUC score for each cell culture and drug) was performed using Random Forest (RF)

(Breiman, 2001) and Elastic-Net (Zou and Hastie, 2005) methods implemented in R (randomForest, glmnet). Predictions were run for

each drug separately (predicting one drug at a time), and using each datatype (mRNA expression, CNA, methylation, mutation) indi-

vidually and in all unique combinations (e.g., CNA-methylation, methylation-mutation, methylation-mutation-CNA). For methylation

data, the set of probes was reduced by removing probesmethylated above an average value of 0.4 in reference brain using data from

GEO series GSE41826 (Guintivano et al., 2013). Methylation was then summarized at the gene level by averaging the values of

methylation probes in CpG islands within 1500 bases of the gene transcription start site. Gene level mutation data were filtered to

include only genes with at least two mutated cases. Leave-one-out (LOO) cross-validation was used to assess the prediction per-

formance by computing the Pearson correlation between the predicted and true values. Within each LOO-fold, internal cross-vali-

dation was used to select method parameters (e.g., lambda value for Elastic-Net). For each LOO-fold the variable importance

was recorded (variable importancemeasure for RF and the absolute value of the Elastic-Net coefficient for Elastic-Net) and averaged

over all LOO-folds for a particular drug. To construct the drug-variable network a variable was linked to a drug if the drug response

was predicted with a Pearson correlation value above 0.2 and if that variable was among the top 50 most important variables for at

least one prediction instance. The rather low threshold is used to encourage common predictors between drugs, and to allow for

subsequent filtering of the network. To evaluate the impact of cross-validation method we compared 10-fold and leave-one-out

CV using elastic net and expression data as the predictor. The 10-fold CV was averaged over 1000 runs. The prediction performance

(CV-R) between the CV showed a Pearson correlation of 0.87. For each drug, a GSEA analysis (Subramanian et al., 2005) using the

javaGSEA Jar file v 3.0 and MSigDB Hallmark gene sets (Liberzon et al., 2015), was performed using the gene expression data

(filtered to the 10000 genes with highest standard deviation across cell cultures) with the drug response as a contious phenotype

(1000 permutations of the phenotype with Pearson correlation metric). A drug is linked to an MSigDB pathway if the FDR q-value

is less than 0.25. The links between drugs andMSigDB pathways were then added to the total network. For evaluating the difference

between the cell cultures in Figure 3C, an anova p value was calculated comparing dose response curves of the two cell cultures

using the package drc in R with a four-parameter Hill model.

Algorithms for scoring drug synergism
The effect on viability of each drug dose was calculated as a viability ratio W = (Ytreated-Yblank)/(Ycontrol-Yblank), where Ytreated

represents the fluorescence signal in treated wells, Ycontrol the signal in vehicle-treated (DMSO) wells, and Yblank is the technical
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background measured as the signal in cell-free (medium only) wells. Since drug pairs were analyzed across 6x6 pairwise combina-

tions, we used a summary statistic defined as the minimum among the 6x6 epsilon values. Applied to the same data, we used the

combination index, CI, defined as CIðWÞ= ðdaðWÞ =DaðWÞÞ+ ðdbðWÞ =DbðWÞÞ, where DaðWÞ and DbðWÞ are the single-agent dose of

drugs a and b needed to reduce viability to level W, and daðWÞ, dbðWÞ are the doses of a and b needed to reduce viability to level W,

when used as a combination. For the single dose data in the sphere experiments (Figures 7G and 7H), the simpler Bliss method was

used, whereby the combination phenotype Wab is compared to its naive expectation, defined by the product WaWb.
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