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Highlights

• The number of regulating variables limits species coexistence

• Methods to determine the smallest number of regulating variables are presented

• This can be done by analyzing the dimension of a population’s regulation map

• Population regulation consists of impact and sensitivity maps

• We analyze these both separately and together, highlighting their interaction
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Abstract

The number of regulating variables n in a given system is an upper bound to the num-
ber of coexisting species at equilibrium according to the competitive exclusion principle.
However, it may be possible to formulate the model with a lower number of regulating
variables, the smallest number of which is the dimension of the environmental feedback.
Here we investigate how that dimension can be determined by analysing the two parts
of environmental feedback: The impact map describes how the extant species affect the
regulating variables, and the sensitivity map describes how population growth depends
on the regulating variables. For the equilibrium condition it is enough to know the sign
of each population growth rate, and therefore as the sensitivity map, different measures
of population growth can be chosen, such as the basic reproduction number. The dimen-
sion of the environmental feedback must not depend on that choice. Different sensitivity
maps can have different global dimensions, on which the definition thus cannot be based.
Here we show that the local sensitivity dimension is independent of the choice, so that
the concept is well-defined. The impact dimension is lower than n when the feasible set
of environments is of lower dimension than n, and sensitivity dimension is lower than n
when not all environmental variables affect the sign of population growth independently.
Their combined effect can result in even lower environmental dimension. We illustrate
such situations with examples. In conclusion, the dimension of environmental feedback
gives valuable information about the potential coexistence of species.

Keywords: Population regulation; impact; sensitivity; competitive exclusion; fitness proxy

1 Introduction

Coexistence is a fundamental topic in population ecology. Darwin (1859, p. 322) wrote: “We2

need not marvel at extinction; if we must marvel, let it be at our presumption in imagining
for a moment that we understand the many complex contingencies, on which the existence of4

each species depends.” The competitive exclusion principle states that complete competitors
cannot coexist (Hardin, 1960). Furthermore, the number of coexisting species at equilibrium6

is less than or equal to the number of resources in the system (Levin, 1970; Roughgarden,
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1976). This principle is based on the fact that at equilibrium, the population growth rate of8

each coexisting species has to be 0, and a system of equations can in general be satisfied only
if there are at least as many unknowns as equations.10

The observed diversity of plankton in aquatic ecosystems, despite the seemingly small
number of limiting resources, has been called as the “paradox of the plankton” (Hutchinson,12

1961). Since the competitive exclusion principle in its traditional form only applies in a
population-dynamical equilibrium, non-equilibrium population dynamics (cycles and chaos)14

may provide an explanation for the paradox (Huisman and Weissing, 1999), see also Lundberg
et al. (2000). However, in such complex situations it is not so clear how one should define16

regulating variables.
Fitness (Metz et al., 1992) is the long-term exponential growth rate of a rare invader in18

some given stationary environment. A coexistence condition, which holds in general, not just
in the equilibrium case, is that the fitness of each species is equal to 0. Mechanistic population20

models can be written in a form where the long-term growth rate of each population depends
only on its demographic traits and the regulating variables through a so-called sensitivity map.22

These regulating variables are, again, determined by the present populations and their traits
through the impact map. The environmental feedback loop (Metz and Diekmann, 1986; Metz24

et al., 1988; Metz and de Roos, 1992) can thus be decomposed into the impact and sensitivity
maps (Meszéna et al., 2006), see also Fig. 1.26

One should note that the formulation of impact and sensitivity maps is not unique: there
are many different sets of variables that can be chosen as regulating variables, and the num-28

ber of such variables may be different. Consider, for example, a consumer species using three
resources. The average population densities of each resource in a community-dynamical at-30

tractor could be natural choices for the regulating variables. However, the resources could
have equal energy contents and be equally preferable, so that the sum of these three vari-32

ables would suffice to determine long-term population growth. The number of the regulating
variables in a specific model formulation is therefore not necessarily minimal.34

In this article we address two questions: How can one tell whether a given decomposition
contains a minimal representation of the regulating variables (Heino et al., 1997)? Further-36

more, what is the smallest possible number of regulating variables in a decomposition? The
answer lies in analyzing the dimensions of the impact, sensitivity, and composite maps.38

This article is structured as follows: in section 2 we explain how the population-regulation
map can be decomposed into the impact and sensitivity maps, and sections 3 and 4 concentrate40

on each component. In section 5 we explain how the dimension of a map is determined, and
apply this method to the impact map, the sensitivity map, and the composite map. In section42

6 we provide an example with two fitness proxies that have different global dimensions. In
section 7 we analyze a resource-consumer model. In section 8 we consider extensions to44

non-equilibrium dynamics, structured populations, and more complex environments.
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2 Decomposing the regulation map46

We want to investigate how population regulation can be decomposed into the impact and
sensitivity maps. In order to keep notations simple and to avoid confounding our main expo-48

sition with technical subtleties, we assume that populations are unstructured, all attractors
of the studied community’s population dynamics are equilibria, and that the community’s50

environment is characterized by the population densities of the focal species. Relaxations of
these assumptions are investigated in section 8.52

Under the aforementioned assumptions, population models can typically be formulated
either in continuous time or in discrete time, so that54

d

dt
Ni(t) = h(N1(t), . . . , Nk(t)) or Ni(t+ 1) = H(N1(t), . . . , Nk(t)), (2.1)

where Ni is the population density (a scalar) of species i. This formulation includes how
populations affect growth rates and how populations are affected by the growth rates. Note56

that the way (2.1) is formulated does not give any information about regulating variables;
thus any number of different species could coexist in the model, in principle. For this reason,58

it is helpful to disentangle (2.1) into two parts, as first done in the context of physiologically
structured populations (Metz and Diekmann, 1986; Metz et al., 1988; Metz and de Roos,60

1992),

d

dt
Ni(t) = f(si, E(t))Ni(t) or Ni(t+ 1) = F (si, E(t))Ni(t) (2.2)

and62

E(t) = I(s1, . . . , sk, N1(t), . . . , Nk(t)). (2.3)

One should note that (2.2) and (2.3) is not just a technical decomposition, but one typi-
cally arrives in such a formulation directly, when constructing a model from individual-based64

mechanisms. The function f (or F ) describes how sensitive population growth is to the vector
of regulating variables E ∈ E ∈ Rn. That vector in turn depends on the present population66

density vectors through the impact mapping I. Different species are have different individual
behaviour characterized by their strategy s ∈ S.68

The population-regulation map is a composite map of the impact map and the sensitivity
map (Fig 1). Although there are usually only a few ways one would write a decomposition, in70

principle there are an infinite number of ways that it can be done. The dimension of composite
map is the dimension of environmental feedback. It can be characterized as the smallest72

possible dimension of the variable E in a decomposition (Heino et al., 1997). Presenting a
decomposition with E ∈ Rn shows that the environmental dimensionality may maximally74

be n, but the dimension is lower than n (dimension reduction) if either the impact map or
the sensitivity map is effectively of lower dimension than n. Impact dimension reduction76

occurs when the feasible set of environments is of lower dimension than n, and sensitivity
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Figure 1: Environmental feedback. The impact map describes how the present species affect
the environment, and the sensitivity map describes how population growth depends on the
environment.

dimension reduction occurs when not all environmental variables affect population growth78

independently.

3 The sensitivity map80

In this section we establish a formal link between the sensitivity map and the concept of
fitness.82

3.1 Fitness

Long-term coexistence of species requires the existence of a community-dynamical attractor84

in which all these species are present. In case of unstructured populations at an equilibrium,
the instantaneous growth rates of all species are 0, f(si, E) = 0 (or F (si, E) = 1) for all i. For86

non-equilibrium attractors, such as cyclic orbits, the instantaneous growth rates are not 0. For
structured populations, we do not have just one rate per each state (describing reproduction88

within that state and death), but also rates corresponding to transitions (and reproduction)
between states. At equilibrium, these rates need not to be 0, but their total effect must90

be 0. Since we want to discuss extensions to non-equilibrium dynamics (Section 8.1) and
also to structured populations (Section 8.2), we formulate the coexistence condition using92

more general terms. In a community-dynamical attractor none of the coexisting species can
increase or decrease in density in the long run, and their long-term growth rates are 0. These94

long-term growth rates are familiar from evolutionary theory, and in particular the theory of
adaptive dynamics (Metz et al., 1992), where they are called fitness: Let N(s, t, N0|E) denote96

the solution of

d

dt
N(t) = f(s, E(t))N(t) or N(t+ 1) = F (s, E(t))N(t) (3.1)

with the initial condition N(0) = N0, where instead of (2.3), the environment E is given as98

an argument. Provided that the limit exists, fitness
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r(s, E) = lim
T→∞

1

T
ln
‖N(s, T,N0|E)‖

‖N0‖
(3.2)

is the long-term exponential growth rate of a species with strategy s in the environment E.100

Especially, when E is set by the community-dynamical attractor of the coexisting species, the
long-term growth rate of each species present in the community is zero. In general, a necessary102

condition for coexistence is that r(si, E) = 0 for all i in the environment E = {E(t), t > 0}
set by all the coexisting species characterized by si together. Since we assume equilibrium104

dynamics, the environment E does not depend on time. From now on we in addition assume
that E ∈ Rn.106

The sensitivity map describes how population growth depends on the regulating variables.
Therefore, the sensitivity map can be defined as fitness (3.2) applied to species s1, . . . , sk.108

Next we discuss so-called fitness proxies in order to obtain a more general definition.

3.2 Fitness proxies110

Fitness measures population growth in real time, but also other measures are widely used. For
example, the basic reproduction ratio or lifetime reproductive success is the expected number112

of offspring that an individual will on average get during its lifetime, and thus measures growth
between generations. The same concept is used in the context of infectious diseases, where114

it is the average number of new infections caused by one infectious individual (Diekmann
et al., 1990; Heesterbeek, 1992; Diekmann and Heesterbeek, 2000), often denoted by R0. The116

population will grow, or the infection will spread, if and only if the basic reproduction ratio
is greater than 1. In structured metapopulation models, the metapopulation reproduction118

ratio Rm (Metz and Gyllenberg, 2001; Gyllenberg and Metz, 2001; Parvinen, 2006) measures
analogously growth between dispersal generations instead of actual generations. When the120

investigated model has more than one birth state, the reproduction ratio typically is the
dominant eigenvalue of the next-generation matrix M. According to Metz and Leimar (2011),122

− det(I −M) can often be used as a local fitness proxy.
For simple models it is typically easy to calculate fitness and different fitness proxies.124

However, in many other models, calculating fitness is very difficult, but calculating a specific
fitness proxy is relatively easy. To enable our analysis to the vast literature on fitness proxies,126

we now clarify how to define sensitivity maps based on fitness proxies. This raises the impor-
tant question how to define the dimension of those maps in a way that does not depend on a128

particular choice of a fitness proxy.
For the invasion potential and coexistence, it is enough to know the sign of fitness. From130

this perspective, we define any function r̂(s, E) that is both continuous with respect to s and
E and satisfies the condition132

there exists a constant c so that r̂(s, E) S c⇔ r(s, E) S 0 for all s and E, (3.3)
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as a fitness proxy for the fitness function r(s, E). Fitness can often be expected to be con-
tinuous and smooth with respect to s and E, and therefore we expect the same from fitness134

proxies. This is the case for mechanistic models, in which small changes in traits have small
effects in behaviour and growth, and thus small effects in fitness. The constant c is the neu-136

tral value of the fitness proxy r̂(s, E). There are many naturally arising fitness proxies with a
neutral value that is not 0, such as the basic reproduction ratio R for which c = 1. It would138

be easy to make an order-preserving transformation, like lnR, producing a function that is
sign-equivalent with fitness. The definition above, however, allows us to call R a fitness proxy,140

as well as lnR. Since any fitness proxy can be used to determine whether the population den-
sity of a species in a given environment will grow or not, we can define that any fitness proxy142

applied to species s1, . . . , sk is a sensitivity map.

4 The impact map144

In general, the impact map is a mapping from the community state space C to the environment
space.146

I : C =
∞⋃

k=1

Sk × Pk → E ⊂ Rn, (4.1)

where S is the strategy space and P is the population state space (for unstructured models,
P = R). In other words, one needs to know the strategies and population states (sizes) of all148

extant species to be able to determine the present state of the environmental variables. As
stated in section 2, we concentrate on equilibria, and assume E ⊂ Rn. Because the numbering150

of present species is arbitrary, some symmetry properties naturally arise. Furthermore, a
species with population size (vector) 0 does not affect the environment, and the effect of two152

equal species is the same as one species with a combined population. These principles result
in relations of the following type,154

I(s1, s2, s3;N1, N2, N3) =I(s2, s1, s3;N2, N1, N3),

I(s1, s2, s3;N1, N2, 0) =I(s1, s2;N1, N2),

I(s, s;N1, N2) =I(s;N1 +N2).

(4.2)

The image of the impact map Ẽ = I(C) will be called the feasible set of environments.
Note that the feasible set of environments Ẽ is not necessarily the whole environment space156

(see Fig. 1).
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5 Dimension of the population regulation158

5.1 Dimension of a function

A function f : A→ B is a mapping from the domain A to the codomain B. For each a ∈ A,160

f(a) ∈ B. The set f(A) = {f(a)|a ∈ A} is called the image of the function f . The dimension
of the image is the dimension of the function (Durinx et al., 2008, Appendix E). The image162

is a subset of the codomain, f(A) ⊂ B, but is not necessarily equal to the whole codomain.
A function for which f(A) = B is called a surjection. The impact and sensitivity maps are164

typically not surjections.
The Jacobian matrix of a map is defined as166

Jf (â) =




∂
∂a1
f(a1, . . . , an)

∂
∂a2
f(a1, . . . , an)

...
∂

∂an
f(a1, . . . , an)




T

(a1,...,an)=â

. (5.1)

When a ≈ â, the linearization f(a) ≈ f(â) + Jf (â)(a− â) is a good approximation of the
function f , and furthermore, the rank of the matrix Jf (â) gives the local dimension of the168

image, and thus also the local dimension of the function f (assuming that f is at least twice
boundedly differentiable). This is less than or equal to the dimension of the domain A. We170

find it useful to investigate the maximal local dimension of the image, and will call that the
dimension of the map172

dim f = max
â∈A

rank Jf (â). (5.2)

See Appendix B for various methods for determining the rank of a matrix.
Since the population-regulation map is a composite map of the impact map and the174

sensitivity map, it is often helpful to investigate both parts in order to find its dimension.

5.2 Impact dimension176

The impact map I : C→ E describes how the present community determines the environment.
However, it may be that not all points in the environment space E can be realized, and thus178

the image Ẽ = I(C) is not necessarily the same as E. Together with the dimension of the
sensitivity map (fitness proxy), the impact dimension needs to be taken into account when180

determining the dimension of the population-regulation map.
Here we only consider unstructured models, so that the community state consists of the182

present k strategies together with their population sizes Ni ∈ R. The impact vectors are
defined as184

Ii =
∂

∂Ni

I(s1, . . . , sk;N1, . . . , Nk). (5.3)
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The dimension of the impact map is the maximal rank of its Jacobian matrix (5.2) over
C. The dimension of the regulation map is at most the dimension of the impact map.186

5.3 Sensitivity dimension

To determine the coexistence condition, as well as the potential of a mutant strategy to invade,188

it is enough to know the sign of fitness. Therefore, one can investigate any fitness proxy. We
define the sensitivity function as a fitness proxy function applied to k species,190

r(s1, . . . , sk;E) = (r(s1, E), . . . , r(sk, E)) . (5.4)

The environment E ∈ E in (3.2) contains all the necessary information for the fitness
calculation, but it may not be expressed in the most compact form. For chaotic dynamics,192

or for cyclic dynamics of continuous-time models, the environment space E would typically
be infinite-dimensional. Here we assume that E ⊂ Rn, which is typical for equilibria, and194

for discrete-time models with cycles of length L (which can be interpreted as equilibria of an
L-iterated map).196

It may now be possible to write the fitness (proxy) in the form

r(s, E) = r̂(s, g(E)) for all s, where g : Rn → Rm,m < n, (5.5)

which means that a lower-dimensional environmental variable suffices. In order to determine198

the sensitivity dimension, first note that the sensitivity vector (environmental gradient) of
the fitness function for the species characterized by s is200

S(s, E) = ∇Er(s, E) =

(
∂

∂E1

, . . . ,
∂

∂En

)
r(s, E). (5.6)

By collecting k sensitivity vectors into a matrix, we obtain the Jacobian matrix of (5.4), which
is also called the sensitivity matrix,202

S(k,E) = (S(s1, E), S(s2, E), . . . , S(sk, E))T. (5.7)

The global dimension (5.2) of the sensitivity map (5.4) is the maximal rank of the sensi-
tivity matrix over all species combinations and environments,204

dim r = max
E∈E,k∈N,si∈S,i=1,...,k

rank S(k,E) (5.8)

The latter rank is the same as the maximal number of linearly independent sensitivity vectors.
This number is naturally less than or equal to n, which is the dimension of the environment206

vector E. It is therefore enough to check the rank of S(k,E) for k 6 n. If n sensitivity vectors
are in general linearly dependent, and thus det S(n,E) = 0, the environment is of lower208

dimension than n. It depends on the model how easy or difficult it is to write the fitness
function using a lower-dimensional environmental variable. An example of such a procedure210

is presented in Parvinen and Dieckmann (2013). We thus have the following result

9
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• In case E ⊂ Rn, the environmental dimension is lower than n, if and only if the rank of212

a fitness proxy function r(s1, . . . , sn;E) = (r(s1, E), . . . , r(sn, E)) is lower than n for all
E ∈ E ⊂ Rn and si ∈ S, i = 1, . . . , n.214

It would be tempting to claim that the global rank of any fitness proxy function would directly
give the effective dimension of the environment. However, different fitness proxies can have216

different global ranks (J.A.J. Metz, personal communication). To demonstrate this fact, in
section 6 we present a model for which the global rank of the fitness function r is 2, but the218

rank of a fitness proxy, the basic reproduction ratio R, is 1.
In the example above, the analysis of the rank of the fitness function r does not seem to220

indicate that the environment is effectively of a lower dimension. However, one should note
that it is only the sign of the fitness function that matters, which brings us to the following222

conclusions for this subsection:

• The effective dimension (Metz et al., 2008) of the sensitivity map for given strategies224

s1, . . . , sk is the lowest possible global rank of a fitness proxy function r̂(s1, . . . , sk;E),
E ∈ E.226

• Another method to determine the effective dimension is to restrict attention to the set
E0 = {E | r(s1, E) = r(s2, E) = · · · = r(sn, E) = 0} and determine the rank of one,228

freely chosen fitness proxy function r̂(s1, E), r̂(s2, E), . . . , r̂(sn, E), E ∈ E0.

• This rank is given by the number of linearly independent sensitivity vectors. This230

number is independent of the choice of fitness proxy, because sensitivity vectors at r = 0
are perpendicular to the tangent plane of the zero-contour surface, and the zero-contour232

surface is by definition independent of the choice of fitness proxy.

• The dimension of the regulation map is at most the dimension of the sensitivity map.234

A procedure for checking whether the effective dimension of the feedback loop is one dimen-
sional, directly related to the above considerations, can be found in Appendix A of Dieckmann236

and Metz (2006).

5.4 Regulation dimension238

So far we have investigated the impact map and the sensitivity map (for fitness proxies). The
impact map is a map from the community state space C to the environmental space E, and it240

captures how the present populations affect the environmental variables. For a given strategy,
the fitness (proxy) is a map from the environmental space E to the set of real numbers R, and242

it describes how a rare population with this strategy grows in the present environment. The
population-regulation map is the composite map of the impact and sensitivity maps (Fig. 1).244

More precisely, for a given set of strategies, (s1, . . . , sk),

f : Rk → Rk, fi(N1, . . . , Nk) = r(si, I(s1, . . . , sk;N1, . . . , Nk)). (5.9)
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Robust coexistence of given k strategies is only possible if the dimension of f is k. Because246

f is a composite map, its dimension is at most the dimension of the impact map, and at most
the dimension of the sensitivity map. For each, the dimension is at most n, the dimension of248

environmental space E, and thus it is only meaningful to study values k 6 n. In general, the
effective regulation dimension is lower than n (dimension reduction) if either not all items in250

the environmental space can be realized, or not all components of the environment variable
affect fitness independently.252

The function f : Rk → Rk is k-dimensional if and only if det(Ak) 6= 0, where the matrix

Ak =




a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · akk


 , aij = Si · Ij (5.10)

is the product of two matrices consisting of impact vectors (5.3) and sensitivity vectors (5.6).254

In vector form this is

Ak = STI =
(
S1, S2, . . . , Sk

)T (
I1, I2, . . . , Ik

)
. (5.11)

The vectors Ij and Si have dimension n, and there are k each of them. Therefore, the matrices256

I and S are not necessarily square matrices.
For k = n, the matrices I and S are square matrices, and the function f : Rn → Rn is258

n-dimensional if and only if

det(An) = det(STI) = det(S) det(I) 6= 0, (5.12)

which means that both the impact map and the sensitivity map have dimension n. For k < n,260

such a result holds only in one direction. The dimension of the composite map may be the
same as the lower of the dimensions of the impact and the sensitivity maps, but it is also262

possible that the dimension is further reduced. This occurs if the image of the impact map
has higher-than-zero-dimensional intersection with the nullspace of the fitness function. Next,264

we will investigate such situations for n = 3.

5.5 Example of dimension reduction266

Consider a situation in which E is three-dimensional, but both the impact map and the
sensitivity map are (at most) two-dimensional. This means that one of the components of the268

impact vector is a linear combination of the others, say I1(s) = cI2(s) + dI3(s) for all s. The
same holds for the sensitivity vectors for some other component, say S3(s) = aS1(s) + bS2(s).270

Both det(S3) = det (I3) = 0, so that det(A3) = 0, and the dimension of the composite map
is obviously less than 3. But is it 1 or 2? For answering this question, we consider272

det(A2) = (bc− a− d)

∣∣∣∣
I2(s1) I3(s1)
I2(s2) I3(s2)

∣∣∣∣
∣∣∣∣
S1(s1) S2(s1)
S1(s2) S2(s2)

∣∣∣∣ . (5.13)
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The det(A2) = 0 if either of the determinants on the right-hand side are equal to 0, but this
means that either the impact map or the sensitivity map is only one-dimensional. However,274

it is also true that det(A2) = 0 if bc − a − d = 0. In that case, the regulation dimension is
1, although both impact and sensitivity maps are two-dimensional. If the parameters a, b,276

c, and d could be chosen freely and independently, the probability of choosing values such
that bc− a− d = 0 is 0. However, these values depend on the properties of the model under278

investigation, and it may very well be that in some models bc− a− d = 0 generally holds. A
trivial example is a = b = c = d = 0, which means that one component of the environmental280

variable, E1, is such that it is not affected by the populations, but it affects the growth of
populations (such as average annual rainfall), and another component, E3, is affected by282

the populations, but it does not affect the growth of the populations (such as water quality
downstream from the habitat of the populations), and thus E2 completely suffices to describe284

the environment.
Next consider the case in which it is the third component that is a linear combination of286

the others for both impact and sensitivity: I3(s) = cI1(s)+dI2(s) and S3(s) = aS1(s)+bS2(s).
In this case,288

det(A2) = (1 + ac+ bd)

∣∣∣∣
I1(s1) I2(s1)
I1(s2) I2(s2)

∣∣∣∣
∣∣∣∣
S1(s1) S2(s1)
S1(s2) S2(s2)

∣∣∣∣ . (5.14)

Again, det(A2) = 0 if either of the determinants on the right-hand side is 0, so that either
the impact map or the sensitivity map is one-dimensional. For two-dimensional impact and290

sensitivity maps, a further dimension reduction happens if 1 + ac+ bd = 0. A simple example
of such a case is r(s, E) = z(E1)+E2−E3, so that a = 0 and b = −1, but actually E2 = E3, so292

that c = 0 and d = 1. Investigating the impact and sensitivity maps separately, they appear
two-dimensional, but with the knowledge E2 = E3, we observe that fitness depends only on294

E1, so regulation is one-dimensional. This example may seem trivial, but in complex models
this kind of phenomena may be difficult to detect without proper analysis.296

6 Example of fitness proxies with different global ranks

Consider a species which harvests a resource with density Z1. The strategy s of an individual298

determines the effective harvesting rate f(s). Assume that the per capita birth rate of an
individual with a harvesting strategy s is f(s)β(Z1), where β is an increasing function of Z1.300

Harvesting exposes the species to predation so that the per capita death rate of an individual
with a harvesting strategy s is g(s)µ(Z2), where µ is an increasing function of the predator302

population density Z2. We assume that the functions f and g are not linearly dependent.
The density of individuals with strategy si changes according to304

d

dt
Ni = (f(si)β(Z1)− g(si)µ(Z2))Ni. (6.1)

Furthermore, assume that the resource population grows according to
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d

dt
Z1 = α1 −

(
δ1 +

k∑

i=1

f(si)Ni

)
Z1, (6.2)

so that new resource is added to the system with rate α1, and the natural decay rate of the306

resource is δ1. The predator population density is assumed to grow according to

d

dt
Z2 =

(
α2 +

k∑

i=1

g(si)Ni

)
Z2

(
1− Z2

K

)
− δ2Z2. (6.3)

Predators also have resources other than the focal species, so that their birth rate is308

positive even in the absence of it. Predator birth is only possible into empty sites, which
are found with the probability (1− Z2/K). Finally, predator death rate is δ2. Assume also310

that resource and predator dynamics occur on a fast timescale, so that they are always at
equilibrium, denoted by E1 and E2. Therefore we obtain the impact map (assuming α2 > δ2)312

I(s1, . . . , sk, N1, . . . , Nk)

=




α1

δ1 +
∑k

i=1 f(si)Ni︸ ︷︷ ︸
E1

, K

(
1− δ2

α2 +
∑k

i=1 g(si)Ni

)

︸ ︷︷ ︸
E2



.

(6.4)

6.1 Fitness has global dimension 2

According to (6.1), the fitness of a rare invader with strategy s is314

r(s, E) = f(s)β(E1)− g(s)µ(E2). (6.5)

The sensitivity vectors (5.6) are

Si = ∇Er(si, E) = (f(si)β
′(E1),−g(si)µ

′(E2)) . (6.6)

The determinant of the sensitivity matrix for two species is316

det(S2) =

∣∣∣∣
f(s1)β

′(E1) −g(s1)µ
′(E2)

f(s2)β
′(E1) −g(s2)µ

′(E2)

∣∣∣∣
= [f(s2)g(s1)− f(s1)g(s2)] β

′(E1)µ
′(E2),

(6.7)

which is generally non-zero, unless the functions f and g are linearly dependent. The global
rank of the sensitivity map (based on fitness) is thus 2.318
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6.2 Basic reproduction ratio has global dimension 1

The basic reproduction ratio is the expected number of offspring per individual during its320

lifetime. In a constant environment, an individual with strategy s has death rate g(s)µ(E2),
and thus its expected lifetime is 1/[g(s)µ(E2)]. During its lifetime the individual will produce322

offspring with the rate f(s)β(E1), and thus we get

R(s, E) =
f(s)

g(s)
· β(E1)

µ(E2)
. (6.8)

Obviously, R(s, E) > 1 if and only if r(s, E) > 0, and therefore R(s, E) is a fitness proxy.324

The expression β(E1)/µ(E2) clearly acts as a one-dimensional environment. The sensitivity
vectors are326

Si = ∇Er(si, E) =
f(s)

g(s)µ(E2)
·
(
β′(E1),−

β(E1)

µ(E2)
µ′(E2)

)
. (6.9)

For different strategies s these vectors are the same except for the multiplier f(s)/[g(s)µ(E2)]
in front, which means that they are linearly dependent. This also shows that the global rank328

of R is 1.

6.3 Sensitivity dimension330

Instead of investigating the determinant (6.7) for all E, we should concentrate on the E,
for which r(si, E) = 0. This results in g(si) = f(si)β(E1)/µ(E2), so that (6.7) becomes332

det(S2) = 0. Furthermore, the sensitivity vectors (6.6) become

Si = ∇Er(si, E) = f(si)

(
β′(E1), −

β(E1)

µ(E2)
µ′(E2)

)
, (6.10)

and they are all linearly dependent, which also shows that the rank of the function r is 1 in334

the subset of the environmental space satisfying the equilibrium condition. Note also that the
vectors in equations (6.9) and (6.10) have the same direction.336

6.4 Impact dimension

When strategies s1, . . . , sk with population densities N1, . . ., Nk are present, the impact vector338

of the population with strategy si is

Ii =


− α1(

δ1 +
∑k

j=1 f(sj)Nj

)2f(si), K
δ2(

α2 +
∑k

j=1 g(sj)Nj

)2 g(si)


 . (6.11)

The impact determinant with two strategies is340
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det(I2) = − α1(
δ1 +

∑k
j=1 f(sj)Nj

)2K
δ2(

α2 +
∑k

j=1 g(sj)Nj

)2
∣∣∣∣
f(s1) g(s1)
f(s2) g(s2)

∣∣∣∣ 6= 0, (6.12)

unless the functions f and g are linearly dependent, which is assumed not to be the case. The
impact dimension thus equals two.342

6.5 Regulation dimension

Although the impact dimension is 2, the regulation dimension cannot be higher than the344

sensitivity dimension, 1. In conclusion, one strategy at most can be present in a population-
dynamical equilibrium, and it is the strategy with largest f(s)/g(s) that wins the competition.346

7 Example of a consumer-resource model

Now consider a model with multiple resources Zj, which grow according to the differential348

equation dZj/dt = fj(Zj) in the absence of consumers. Consumers deplete resources with a
linear functional response, so that in the presence of consumers, the resources grow according350

to

d

dt
Zj = fj(Zj)− Zj

∑

i

βj(si)Ni. (7.1)

Resource dynamics is assumed to occur on a fast timescale, so that they are always at equi-352

librium, denoted by Ej, satisfying

fj(Ej)− Ej

∑

i

βj(si)Ni = 0. (7.2)

Consumed resources are turned into consumer biomass with an efficiency that may depend354

on the consumer strategy (some consumption may be wasteful, see (Leimar et al., 2013)). In
addition, the death rate µ may depend on the strategy. Therefore, consumer populations356

grow according to

d

dt
Ni = γNi

∑

j

αj(si)Ej − µ(si)Ni. (7.3)

The consumers affect each other only via the resources. Note that in standard resource-358

consumer models one would typically have αj(s) = βj(s).
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7.1 Fitness, sensitivity, and impact360

Based on (7.3), the fitness of a rare invader with strategy s is

r(s, E) = γ
∑

j

αj(s)Ej − µ(s), (7.4)

provided that the resident system is at an equilibrium. The sensitivity vectors (5.6) are362

obtained by differentiation,

Si = ∇Er(si, E) = γ (α1(si), . . . , αn(si)) . (7.5)

At an equilibrium, we have dEj/dt = 0. By applying the implicit function theorem on364

(7.2) we obtain the impact vector

Ii =

( −β1(si)E1

f ′1(E1)−
∑

i β1(si)N1

, . . . ,
−βn(si)En

f ′n(En)−∑i βn(si)Nn

)

= (−β1(si)z1, . . . ,−βn(si)zn) ,

(7.6)

where zj = −Ej/
[
f ′j(Ej)−

∑
i βj(si)Ni

]
= −Ej/

[
f ′j(Ej)− fj(Ej)/Ej

]
. The latter equality366

follows from the equilibrium condition. In a stable positive equilibrium we have zj > 0.
This means that the impact vectors are linearly independent if and only if the vectors368

(β1(si), . . . , βn(si)) are. Extinct resources (Ej = 0) obviously do not contribute to the di-
mension of the environment. Next we use the resource-consumer model to illustrate the370

dimensions of the impact and the sensitivity map, and their effect on the dimension of pop-
ulation regulation in the case of three resources with growth functions fj(Ej) = j − Ej,372

j = 1, 2, 3.

7.2 Three-dimensional impact and sensitivity resulting in three-374

dimensional regulation

A choice of functions that easily results in coexistence of three strategies is376

αi(s) = exp

(
−(s− ai)2

σa

)
, βi(s) = exp

(
−(s− ai)2

σb

)
, µ(s) = µ, (7.7)

provided that the strategies resulting in maximal resource use (a1, a2, and a3) are sufficiently
different, and the parameters σa and σb are small enough. By choosing si = ai we would even378

obtain evolutionarily uninvadable coexistence of three strategies.

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7.3 Two-dimensional impact and/or sensitivity resulting in two-380

dimensional regulation

The impact map will have a dimension lower than 3, if the functions βi are assumed to be382

linearly dependent. This occurs, for example, if we assume (7.7) to hold except for β2(s) =
(β1(s) + β3(s))/2 . Now the determinant of the impact matrix for three strategies is384

det(I3) = −z1z2z3

∣∣∣∣∣∣

β1(s1)
1
2
(β1(s1) + β3(s1)) β3(s1)

β1(s2)
1
2
(β1(s2) + β3(s2)) β3(s2)

β1(s3)
1
2
(β1(s3) + β3(s3)) β3(s3)

∣∣∣∣∣∣
= 0, (7.8)

so that the impact dimension is indeed less than 3. Two impact vectors, (−β1(s1)z1, −(1
2
(β1(s1)+

β3(s1))z2, −β3(s1)z3) and (−β1(s2)z1, −(1
2
(β1(s2) + β3(s2))z2, −β3(s2)z3), are linearly inde-386

pendent, if ∣∣∣∣
β1(s1) β3(s1)
β1(s2) β3(s2)

∣∣∣∣ 6= 0, (7.9)

which is guaranteed by (7.7) when s1 6= s2. Therefore the impact dimension is equal to two.388

As in the previous subsection, (7.7) holds for αi, and the sensitivity map is three-dimensional.
Overall, the population-regulation map is two-dimensional.390

Analogously, the sensitivity map will have a dimension lower than 3, if the functions αi

are assumed to be linearly dependent. We can, for example, assume that (7.7) holds except392

for α2(s) = (α1(s) + α3(s))/2, so that

det(S3) =

∣∣∣∣∣∣

α1(s1)
1
2
(α1(s1) + α3(s1)) α3(s1)

α1(s2)
1
2
(α1(s2) + α3(s2)) α3(s2)

α1(s3)
1
2
(α1(s31) + α3(s13)) α3(s3)

∣∣∣∣∣∣
= 0. (7.10)

Two sensitivity vectors, (α1(s1),
1
2
(α1(s1)+α3(s1)), α3(s1)) and (α1(s2),

1
2
(α1(s2)+α3(s2)), α3(s2)),394

are linearly independent, provided that
∣∣∣∣
α1(s1) α3(s1)
α1(s2) α3(s2)

∣∣∣∣ 6= 0, (7.11)

which under the current assumptions holds for s1 6= s2. The impact map with (7.7) remains396

three-dimensional. Also in this case the dimension of population regulation is two, and at
most two strategies can coexist.398

Let us next assume that (7.7) holds except for β2(s) = (β1(s) + β3(s))/2 and α2(s) =
(α1(s) + α3(s))/2, so that both (7.8) and (7.10) hold. As we have already concluded, both400

impact and sensitivity maps are then two-dimensional. Now

det(A2) = −1

4
(z2z3 + z1z2 + 4z1z3)

∣∣∣∣
α1(s1) α3(s1)
α1(s2) α3(s2)

∣∣∣∣
∣∣∣∣
β1(s1) β3(s1)
β1(s2) β3(s2)

∣∣∣∣ 6= 0, (7.12)

unless at least two resources are extinct. Note that both determinants in (7.12) are non-zero402

for s1 6= s2, and thus the population regulation is two-dimensional.
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7.4 Two-dimensional impact and sensitivity resulting in one-dimensional404

regulation

The two-dimensional impact map together with a two-dimensional sensitivity map does not406

always result in two-dimensional population regulation. Further dimension reduction occurs if
the image of the impact map has higher-than-zero-dimensional intersection with the nullspace408

of the fitness function. Consider a special case, in which

α1(s) = 0.1, β1(s) = 0,

α2(s) = β2(s) = exp

(
−(s− a2)2

2σa

)
,

α3(s) = 0, β3(s) = 0.3.

(7.13)

This means that the environmental variable E1 is not affected by the consumers, but it does410

affect the growth of consumers (like annual rainfall). The environmental variable E3 is affected
by the consumers, but does not affect the growth of the consumers. Since both matrices I3 and412

S3 contain a column of zeros, their determinants are 0, and the impact and sensitivity maps
are of dimension lower than three. For s1 6= s2, the impact vectors (0,−β2(s1)z2,−0.3z3)414

and (0,−β2(s2)z2,−0.3z3) are linearly independent (z2 > 0,z3 > 0), so the impact map is
two-dimensional. Analogously, the sensitivity vectors (0.1, α2(s1), 0) and (0.1, α2(s2), 0) are416

linearly independent for s1 6= s2, and thus the sensitivity map is two-dimensional. Since

A2 =

(
−β2(s1)z2α2(s1) −β2(s1)z2α2(s2)
−β2(s2)z2α2(s1) −β2(s2)z2α2(s2)

)
and det(A2) = 0, (7.14)

population regulation is one-dimensional, and only one strategy may persist at a time.418

8 Extensions

In section 2 we assumed that all population-dynamical attractors are equilibria, populations420

are unstructured, and that there is no explicit dynamics of resources or other species on the
same time-scale as the dynamics of the focal species. Next we discuss the relaxing of each of422

these assumptions in turn.

8.1 Non-equilibrium attractors424

When analyzing the potential for species coexistence in a specific model, one typically first
tries to find population-dynamical equilibria and study their population-dynamical stability.426

Non-equilibrium attractors are more difficult to find and analyze, but are nevertheless common
in models. Next we study which parts of the theory investigated in this article can be extended428

to non-equilibrium attractors.

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fitness (3.2) is the long-term exponential growth rate r(s, E) of a rare invader with strat-430

egy s in the environment E (Metz et al., 1992). In (3.2), N(s, T,N0|E) is the population
state of a species with strategy s at time T under the assumption that its population state432

at time 0 was N0. In order to determine N(s, T,N0|E), one needs to know the instantaneous
environment E(t) from time 0 to T . In order to determine the limit (3.2), one needs to know434

the instantaneous environment E(t) for all t > 0. Such an infinite-dimensional object does
not provide a useful upper bound for species coexistence, except in the following special cases,436

in which we assume that each E(t) ∈ Rn:

• As already discussed before, if the community-dynamical attractor of the resident is an438

equilibrium, E(t) does not depend on time t, so that the environment is n-dimensional.

• If the model is defined in discrete time, and the community-dynamical attractor is a440

cycle of finite length T , (3.2) becomes

r(s, E) =
1

T
ln
‖N(T,N0|E)‖
‖N0‖

. (8.1)

The environment E consists of vectors E(0), E(1), . . . , E(T −1), where each E(t) ∈ Rn.442

Altogether n · T variables are needed, and thus the environment is finite-dimensional.
These variables naturally form a matrix, and with a suitable indexing, they can be444

formulated as a vector Ê ∈ RnT . Using such a vector formulation, sensitivity dimension
of (8.1) can be analyzed using methods presented in section 5.3. Analyzing impact446

dimension is also straightforward.

• Even for a complex community-dynamical attractor, the environment can in some cases448

be expressed with a finite variable. For example, this may be the case, if fitness is a
function of average resource densities, or some other time-averages over the community-450

dynamical attractor. For an example of such a model, see Parvinen and Dieckmann
(2013). Analyzing sensitivity dimension becomes then straightforward. It may, however,452

be difficult to define the impact map for such models.

8.2 Structured populations454

In section 2, the population dynamics (2.1) and (2.2) was defined for unstructured populations,
so thatNi is the population density (a scalar) of species i. For structured population models, in456

which individuals differ in their developmental stage, or for metapopulation models describing
populations in different habitat patches, a single density does not suffice to fully describe the458

state of a population. In complex models, the population state can be a complicated object.
Consider a structured model, for which (2.1) and (2.2) apply, and the population state for460

species i is a finite-dimensional real vector Ni ∈ Ru. For such models, f(si, E) is a u-
dimensional square matrix. At equilibrium, f(si, E)Ni = 0, so that the dominant eigenvalue462

of the matrix f(si, E) must be 0 for each i. For discrete-time models, F (si, E)Ni = Ni, so
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that the dominant eigenvalue of the matrix F (si, E) must be one for each i. The dominant464

eigenvalue is the fitness, when the population-dynamical attractor is an equilibrium, so that
the dimension of the sensitivity map can be determined using methods presented in section466

5.3.
The impact map for structured models is more complicated than for unstructured models.468

It is not enough just to know the total population size of each species. The population’s
structural composition necessarily affects the environmental variable E, but since each Ni470

is an eigenvector corresponding to the dominant eigenvalue of f(si, E) (or F (si, E)), the
environmental variable E affects the population’s structural composition. Therefore analyzing472

the impact dimension is more complicated than for unstructured models, and is an interesting
topic for future research.474

8.3 Complex environments

Real ecosystems form complex food-webs. For simplicity, one often restricts attention to a476

small set of species, the focal species. Population dynamics of other species can be assumed
to be so slow that their population densities remain constant, or so fast that their population478

densities are always at equilibrium set by the focal species. There is thus time-scale separa-
tion between the population dynamics of focal species and other species, and the population480

densities of the focal species fully determine the environment, so that population dynamics
of the focal species can be formulated as in (2.1) and (2.2). These formulations do not apply,482

when there are other species present with dynamics in the same time-scale as the focal species.
If such species are present, population models defined in continuous time can be of type484

d

dt
Ni(t) = hi(N1(t), . . . , Nk(t), Z1(t), . . . , Zp(t)),

d

dt
Zj(t) = ĥj(N1(t), . . . , Nk(t), Z1(t), . . . , Zp(t)).

(8.2a)

An analogous formulation in discrete time is

Ni(t+ 1) = Hi(N1(t), . . . , Nk(t), Z1(t), . . . , Zp(t)),

Zj(t+ 1) = Ĥj(N1(t), . . . , Nk(t), Z1(t), . . . , Zp(t)),
(8.2b)

where, for unstructured populations, Ni is the population density (a scalar) of focal species486

i, and the scalars Zj are population densities of other species or resources.
For finding equilibria when p > 0, it is not enough that just the population densities488

Ni of the focal species are constant. In addition, the densities Zj need to remain constant.
Assuming that Ni are constant, we can often solve for the equilibria of Z from (8.2). If490

for each population state (N1, . . . , Nk) a unique (stable) equilibrium (Z1, . . . , Zp) exists, the
equilibrium condition can be formulated as f(si, E) = 0 (or F (si, E) = 1) for all i = 1, . . . , k492

together with E = I(s1, . . . , sk, N1, . . . , Nk), where the impact map is now defined such that
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the densities Zj are assumed to be at the equilibrium. The same formulation applies, if instead494

of one equilibrium, there are several (finitely many) equilibria, as long as we separately specify
in which branch of solutions of the equilibrium Z resides. Impact dimension and sensitivity496

dimension can then be analyzed as described in sections 5.2 and 5.3

9 Discussion498

In this article, we have investigated the dimension of population regulation in order to bet-
ter understand the potential for species coexistence. The decomposition of the population-500

regulation map into the impact and sensitivity maps is essential in our analysis (Metz and
Diekmann, 1986; Metz et al., 1988; Metz and de Roos, 1992; Meszéna et al., 2006). The former502

describes how a community affects its environment (regulating variables), and the latter how
population growth depends on the regulating variables. In such a formulation, the number of504

regulating variables gives an upper bound for the number of coexisting species.
We have also investigated methods for analyzing the dimensions of the impact map, the506

sensitivity map, and their composite map, i.e., the regulation map. Because the sensitivity
map is obtained by applying any fitness proxy to a given number of species, the sensitivity508

dimension must not depend on the choice of the proxy. We have demonstrated that the global
ranks of two different fitness proxies (for the same model) can be different. It is therefore510

critical to restrict attention to the neutral contour, which is a subset of the environmental
space in which fitness is 0. The local rank of any fitness proxy on the neutral contour512

is independent of the choice of the fitness proxy, and this is the proper way to define the
sensitivity dimension. Furthermore, we have demonstrated how the regulation dimension514

is reduced either because of dimension reduction in the impact map (not all parts of the
environmental space can be realized), or in the sensitivity map (the sign of fitness does not516

depend on all subspaces of the environmental space), or from their combined effect (the
image of the impact map has higher-than-zero-dimensional intersection with the nullspace of518

the fitness function).
Our work is related to the vast literature on the competitive exclusion principle (e.g.,520

Hardin, 1960; Levin, 1970; Roughgarden, 1976), and the environmental feedback loop (Metz
and Diekmann, 1986; Metz et al., 1988; Metz and de Roos, 1992). Meszéna et al. (2006)522

also found it useful to decompose the regulation map into impact and sensitivity maps, and
their work is especially relevant here. See also Barabás and Meszéna (2009) and Barabás524

et al. (2014). Their main focus was on robustness – a measure describing the potential
for coexistence when the regulation dimension is known. Our emphasis here has been on526

determining the regulation dimension.
We have concentrated on analyzing the dimension of population regulation in order to de-528

termine the potential for coexistence. As already mentioned, that dimension gives an upper
bound for the number of coexisting species. However, the following requirements may addi-530

tionally hinder the coexistence of species. First, the dimension of the population-regulation
cycle does not guarantee the existence of an equilibrium with as many strategies with posi-532
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tive population densities (feasibility). Second, for long-term coexistence, it is necessary that
the equilibrium is stable in the population-dynamical sense (stability). Third, the domain534

of attraction of the coexistence equilibrium in the population state space may be small (at-
tainability). Fourth, the ecological equilibrium may not be stable against mutant invasions,536

so that the number of species in an evolutionarily stable strategy coalition is lower than the
dimension of the population-regulation cycle (evolutionary stability).538

In this article, we have concentrated on models of unstructured populations, and mainly
investigated equilibrium dynamics. For discrete-time models with finite cycles of population540

dynamics, the methods used here can be applied to the iterated map. For chaotic dynam-
ics and cyclic population-dynamical attractors in continuous-time models, the environmental542

space needed to determine the sign of fitness may easily be infinite-dimensional. In some cases
(e.g., Parvinen and Dieckmann, 2013) a finite-dimensional object (or even a one-dimensional544

one, resulting in optimizing selection) may suffice, despite complex population dynamics. An-
alyzing the impact dimension may be complicated, but methods for analyzing the sensitivity546

dimension can nevertheless be applied in such cases. For models of structured populations
(Durinx et al., 2008; Szilágyi and Meszéna, 2009), the same consideration applies. When the548

sign of fitness – which can be given, e.g., by the dominant eigenvalue of a matrix (such as
the next-generation matrix in the notation of Durinx et al. (2008)) – depends on a finite-550

dimensional environmental variable, the sensitivity dimension can be analyzed as before. For
the impact map, however, it is not enough just to know the total population size of each552

species; we also need to understand the population’s structural composition, so analyzing the
impact dimension is more complicated. Furthering understanding of the impact dimension in554

both cases mentioned above is an interesting challenge for future research.
To conclude, we have investigated the dimension of the impact map, the sensitivity map,556

and the regulation map in order to understand the potential for species coexistence. Although
we have concentrated on models of unstructured populations at equilibrium, many of the558

methods are applicable more widely, for more complex population-dynamical attractors and
for models of structured populations. We hope these methods will help other researchers in560

understanding biodiversity.
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A Appendix: Proxy transformations

To demonstrate the richness of potential fitness proxies, we introduce the concept of a proxy628

transformation.
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A.1 Definition of a proxy transformation630

For any specific model, there are typically only a few ways that one would normally derive
fitness proxies such as the basic reproduction number. One should note, however, that for any632

model, there is an infinite number of fitness proxy functions. Once one fitness proxy r̂1(s, E)
with neutral value c1 is known, we can use a proxy transformation to obtain others. A general634

transformation is

r̂2(s, E) = a(s, E) (r̂1(s, E)− c1) + c2, (A.1)

where a(s, E) is a positive function that is continuous with respect to E, at least when636

r̂1(s, E) 6= c1. Specifically, if we have two different fitness proxies r̂1(s, E) and r̂2(s, E) with
neutral values c1 and c2, respectively, the function a(s, E) in the proxy transformation (A.1)638

is defined by

a(s, E) =
r̂2(s, E)− c2
r̂1(s, E)− c1

, when r̂1(s, E)− c1 6= 0. (A.2)

Since the numerator and denominator are sign-equivalent, the function a(s, E) gets positive640

values when it is defined, and it is continuous with respect to E, because the fitness proxies
are. When the denominator is 0, we can, in principle, define the value of a(s, E) to be any642

finite (preferably positive) number, and (A.1) still holds. When the denominator is 0, so is the
numerator, and thus the limit limÊ→E a(s, Ê) may be calculated using the rule of l’Hospital.644

We conclude that the limit exists if the fitness proxies are continuously differentiable with
respect to E (for a counterexample, see r4 and a4 in Fig. 2), but the limit can also be 0 (as646

for a2 in Fig. 2b) or ∞ (as for a3 in Fig. 2b).

A.2 Examples of proxy transformations648

Consider the model dNi(t)/dt = sE(t)Ni(t), for which the fitness at an ecological equilibrium
is r(s, E) = sE. For example, the following functions are sign-equivalent with r(s, E), so650

that they are fitness proxies with a neutral value of 0,

r2(s, E) =sE3,

r3(s, E) =s sign(E) |E|1/2 ,

r4(s, E) =

{
s 2E, E > 0
sE/2, E < 0

.

(A.3)

The function r4, however, is not continuously differentiable at E = 0. These functions and652

the corresponding proxy transformations are illustrated in Figure 2.
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Figure 2: Proxy transformations. (a) Illustration of fitness and fitness proxies, and (b) the
function a(s, E) in the proxy transformation (A.1) corresponding to equation (A.3), in which
case E is one-dimensional. Panel a illustrates that the fitness proxies (with a neutral value of
0) are sign-equivalent with fitness (dashed line). Panel b illustrates that the function a(s, E)
in the proxy transformation (A.1) is positive, when r̂1(s, E)− c1 6= 0, but the limit does not
need to exist, and when it does, it may also be 0 or infinite. The situation is illustrated for
the strategy s = 1.
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B Matrix rank654

For the benefit of the reader, here we list some textbook facts about the rank of a matrix.
There are various equivalent ways to determine the rank of a m× n matrix M, including the656

following:

1. The number of linearly independent row vectors of M.658

2. The number of linearly independent column vectors of M.

3. The dimension of the image of the linear mapping f : Rn → Rm, f(x) = Mx.660

4. The number of columns n minus the dimension of the kernel of f (rank–nullity theorem).

5. The number of non-zero singular values in a singular value decomposition, which is also662

the same as the number of non-zero eigenvalues of the matrix MM∗ and M∗M, where
the star stands for the conjugate transpose.664

For square matrices one can consider the relation of its rank and eigenvalues. If M is a square
matrix of dimension n, and has n distinct eigenvalues, the number of non-zero eigenvalues666

(which must be either n or n− 1) equals the rank of the matrix. This property does not hold
in general, and the existence of eigenvalue 0 only tells us that the matrix does not have a full668

rank. For example the matrix

A =




0 1 0
0 0 1
0 0 0


 (B.1)

has two linearly independent row (and column) vectors, so it has rank 2. Since it is an670

upper triangular matrix, the diagonal elements are eigenvalues, and they are all 0, so that no
non-zero eigenvalues exist. For the matrix A given by (B.1), the matrix672

AA∗ = A∗A =




1 0 0
0 1 0
0 0 0


 (B.2)

is a diagonal matrix with two nonzero eigenvalues on the diagonal, corresponding to the rank
of the matrix A. We hope this example helps in avoiding the pitfall of confusing the rank of674

the matrix with the number of non-zero eigenvalues of the matrix itself.
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