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ABSTRACT 24 

Hydroxysteroid (17-beta) dehydrogenase type 1 (HSD17B1) converts low active estrogen estrone to 25 

highly active estradiol. Estradiol is necessary for normal postpubertal mammary gland 26 

development; however, elevated estradiol levels increase mammary tumorigenesis. To investigate 27 

the significance of the human HSD17B1 enzyme in the mammary gland, transgenic mice 28 

universally overexpressing human HSD17B1 were used (HSD17B1TG mice). Mammary glands 29 

obtained from HSD17B1TG females at different ages were investigated for morphology and 30 

histology, and HSD17B1 activity and estrogen receptor activation in mammary gland tissue were 31 

assessed. To study the significance of HSD17B1 enzyme expression locally in mammary gland 32 

tissue, HSD17B1-expressing mammary epithelium was transplanted into cleared mammary fat pads 33 

of wild-type females, and the effects on mammary gland estradiol production, epithelial cells and 34 

the myoepithelium were investigated. HSD17B1TG females showed increased estrone to estradiol 35 

conversion and estrogen-response element-driven estrogen receptor signaling in mammary gland 36 

tissue, and they showed extensive lobuloalveolar development that was further enhanced by age 37 

along with an increase in serum prolactin concentrations. At old age, HSD17B1TG females 38 

developed mammary cancers. Mammary-restricted HSD17B1 expression induced lesions at the 39 

sites of ducts and alveoli, accompanied by peri- and intraductal inflammation and disruption of the 40 

myoepithelial cell layer. The lesions were shown to be estrogen dependent, as treatment with an 41 

antiestrogen, ICI 182,780, starting when lesions were already established reversed the phenotype. 42 

These data elucidate the ability of human HSD17B1 to enhance estrogen action in the mammary 43 

gland in vivo and indicate that HSD17B1 is a factor inducing phenotypic alterations associated with 44 

mammary tumorigenesis. 45 

  46 
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INTRODUCTION 47 

Postpubertal mammary gland development is extensively hormonally regulated, and 17-beta-48 

estradiol (E2) is a hormone essential for normal postpubertal mammary gland development. In 49 

hormone-deprived mice, additive and sequential administration of E2 in concert with progesterone 50 

and prolactin in combination with cortisol and growth hormone can recapitulate mammary gland 51 

development (Nandi 1958, Brisken & O’Malley 2010). Estrogen receptor alpha (ESR1) is expressed 52 

in both stromal and epithelial compartments of the mammary gland. E2 exerts its mammotropic 53 

effect mainly through epithelial ESR1, as demonstrated by mammary gland transplantation 54 

experiments. There was a complete lack of postpubertal ductal development in the ESR1-deficient 55 

mammary epithelium transplanted into mammary fat pads of wild-type (WT) female mice, whereas 56 

normal mammary gland development was observed for WT epithelium transplanted into mammary 57 

fat pads devoid of ESR1 (Mallepell et al. 2006). 58 

 59 

The importance of estrogens in the etiology of human breast cancer is widely recognized. Prolonged 60 

lifetime estrogen exposure due to early menarche, late menopause, nulliparity, prolonged oral 61 

contraceptive use and hormone replacement therapy increases the risk of breast cancer, whereas 62 

pregnancy at younger age and breastfeeding are protective against breast cancer (Dall & Britt 63 

2017). Furthermore, an increased free E2 concentration in the plasma of postmenopausal women is 64 

associated with increased breast cancer risk (Yue et al. 2013), demonstrating a direct association 65 

between circulating estrogen levels and breast cancer risk. In experimental settings, E2 enhances 66 

mammary cancer development by triggering the neoplastic transformation of breast epithelial cells 67 

(Russo & Russo 2006) and by inducing the proliferation and survival of ESR1-positive breast 68 

cancer cells (Frasor et al. 2003). 69 

 70 

Hydroxysteroid (17-beta) dehydrogenase type 1 (HSD17B1) is an enzyme catalyzing the last steps 71 
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of E2 biosynthesis together with CYP19A1 (Cytochrome P450 family 19 subfamily A member 1). 72 

CYP19A1, also known as aromatase, converts androstenedione and testosterone to estrone (E1) and 73 

E2, respectively, and HSD17B1 efficiently catalyzes the conversion of biologically low-active E1 to 74 

highly active E2 (Poutanen et al. 1993, Miettinen et al. 1996, Puranen et al. 1997, Day et al. 2008). 75 

Human HSD17B1 is mainly expressed in estrogen-producing tissues, the ovary (Tremblay et al. 76 

1989, Ghersevich et al. 1994) and placenta (Fournet-Dulguerov et al. 1987) but is also expressed at 77 

lower levels in peripheral estrogen target tissues, such as the breast (Poutanen et al. 1992, Miettinen 78 

et al. 1999) and endometrium (Mäentausta et al. 1991, Dassen et al. 2007). In women, increased 79 

HSD17B1 expression has been reported in breast premalignant lesions, ductal carcinoma in situ, 80 

and breast cancer (Poutanen et al. 1992, Sasano et al. 1996, Ariga et al. 2000, Oduwole et al. 2004, 81 

Sasaki et al. 2010). HSD17B2 is a counteracting enzyme for HSD17B1 that has been shown to 82 

convert highly potent E2 to less potent E1 and its expression is often lost in breast cancer cells 83 

(Luu-The et al. 1995, Miettinen et al. 1996). In epidemiological studies, increased HSD17B1 84 

expression is linked to increased breast cancer risk. In women with ESR-positive breast cancer, high 85 

HSD17B1 expression is associated with late recurrence (Gunnarsson et al. 2001, 2005), and 86 

amplification of HSD17B1 decreases survival rates (Gunnarsson et al. 2003, 2008). Furthermore, 87 

patients with HSD17B1 expressing tumors have significantly shorter overall and disease-free 88 

survival (Oduwole et al. 2004, Salhab et al. 2006). In addition to HSD17B1 expression alone, 89 

alterations in the HSD17B1 to HSD17B2 ratio modify breast cancer risk. In women with ESR-90 

positive breast cancer, high HSD17B1 to HSD17B2 ratios are associated with worse prognosis and 91 

increases the risk for recurrence (Gunnarsson et al. 2001, 2005). Respectively, high intratumoral 92 

HSD17B2 or high HSD17B2 to HSD17B1 expression ratios are linked to improved prognosis and 93 

reduced risk of recurrence (Gunnarsson et al. 2001, 2005). 94 

 95 

In healthy breast tissue of post- and premenopausal women, the serum E2 concentration is the major 96 
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determinant of the intratissue E2 concentration (Depypere et al. 2015). Interestingly, in breast 97 

cancer patients, higher intratumoral E2 concentrations than those in the plasma are often reported 98 

(Geisler 2003, Stanczyk et al. 2015). The higher intratumoral E2 concentration is considered to be 99 

due to local intratumoral estrogen synthesis from circulating androgen precursors (Sasano et al. 100 

2008). Together with aromatase and a few other reductive HSD17B enzymes, HSD17B1 is 101 

suggested to contribute to the maintenance of high intratumoral E2 levels (Miyoshi et al. 2001). In 102 

xenograft tumors derived from human ESR-positive breast cancer cells, HSD17B1 expression 103 

increases intratumoral E2 synthesis, and thus, increases the potency of E1 to stimulate tumor growth 104 

(Day et al. 2008, Husen et al. 2006). Similarly, increased HSD17B1 expression in tumor tissue is 105 

linked to increased intratumoral E2 levels in postmenopausal women (Sasano et al. 2006, Miki et 106 

al. 2009). These findings suggest that increased HSD17B1 expression may contribute to the 107 

development of breast lesions and estrogen-responsive breast cancer. 108 

 109 

In this study, we investigated the impact of HSD17B1 expression on mammary gland tissue by 110 

using transgenic mice with universal overexpression of human HSD17B1 (HSD17B1TG mice) 111 

(Saloniemi et al. 2007). We previously reported that HSD17B1TG mice have increased in vivo 112 

production of E2 from E1 (Saloniemi et al. 2010, Järvensivu et al. 2015) and that HSD17B1TG 113 

female mice develop a classical estrogen-induced endometrial hyperplasia phenotype, indicating 114 

enhanced estrogen action in estrogen target tissues. In the present study, we report HSD17B1-115 

induced effects on the mammary gland both in HSD17B1TG female mice and in wild-type (WT) 116 

mice with local human HSD17B1 overexpression in the mammary gland induced by transplanting 117 

human HSD17B1-expressing mammary epithelium in to WT mammary gland. Our findings 118 

elucidate the role of increased HSD17B1 expression in the process of mammary gland 119 

tumorigenesis. 120 

  121 
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ANIMALS, MATERIALS AND METHODS 122 

 123 

Experimental animals and timeline of studies 124 

Animal care and use were conducted in accordance with the Finnish Act on Animal 125 

Experimentation and with EU laws, guidelines, and recommendations. The studies were approved 126 

by the National Animal Experiment Board OF Finland (2007-01367, 2010-04888, 127 

257/04.10.07/2013, 10605/04.10.07/2016). 128 

The mice were housed under a 12h light/dark cycle at 21 ± 1°C and they had free access to soy-free 129 

RM3 chow (Special Diet Service, Whitman Essex, UK) and tap water. The generation and 130 

maintenance of FVB/N mice expressing human HSD17B1 under the chicken beta-actin promoter 131 

(HSD17B1TG mice) have been previously described (Saloniemi et al. 2010, Järvensivu et al. 132 

2015). Briefly, HSD17B1TG males from line 013 and WT females were bred together, and 133 

heterozygous HSD17B1TG female offspring were used in the studies. In addition, bi-transgenic 134 

ERELuc-HSD17B1TG mice carrying an estrogen-response element (ERE)-driven luciferase 135 

reporter gene (Lemmen et al. 2004) in the HSD17B1 genetic background were used for mammary 136 

gland estrogen activity assays ex vivo. The maintenance and genotyping of these mice have been 137 

previously described (Järvensivu et al. 2015). A summary timeline diagram of the mouse 138 

experiments and analyses performed is presented in Supplementary Fig. 1. 139 

 140 

Histological and morphological analyses of mammary gland tissues 141 

For histological analysis, tissues were fixed in 10% (v/v) formalin at room temperature for at least 142 

24 h. The tissues were dehydrated, embedded in paraffin, cut into 4-µm thick sections and stained 143 

with hematoxylin and eosin. Slides were then scanned with a Pannoramic 250 Flash II digital slide 144 

scanner (3DHISTECH, Budapest, Hungary). For morphological analysis, the fourth inguinal 145 

mammary gland was removed, spread on a glass slide, and fixed in Carnoy’s fixative (acetic acid-146 
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ethanol) at +4°C. These mammary gland whole-mount slides were rinsed with ethanol and tap water 147 

and were stained with carmine-alum for 3-4 days. The stained slides were then dehydrated in a 148 

series of ethanol washes (70-100% ethanol), cleared in xylene, and finally mounted onto glass slides 149 

in Pertex (Histolab Products AB, Gothenburg, Sweden). 150 

 151 

Serum prolactin measurements  152 

At sacrifice, blood was collected by heart puncture under tribromoethanol (Avertin, Sigma-Aldrich, 153 

St. Louis, MO, USA or Alfa Aesar, Karlsruhe, Germany) terminal anesthesia (600-1000 µl of 2.5% 154 

(v/v) solution i.p.) for serum measurements. Blood samples, stored at +4°C for 24h, were separated 155 

for serum collection by centrifugation and further stored at -20°C. The serum prolactin 156 

concentration was measured by radio-immuno assay as previously described (Rulli et al. 2002). 157 

 158 

Determination of HSD17B1 activity in mammary gland in vivo 159 

HSD17B1 activity in vivo was determined in 4-month-old HSD17B1TG and WT females. 160 

Radioactive [3H]-E1 (Perkin Elmer) dissolved in ethanol:saline (20:80 by vol.) was slowly injected 161 

i.v. (2.5 µl/g, 1.6 Mbq/mouse). Mice were terminally anesthetized with tribromoethanol (Avertin, 162 

600-1000 µl of 2.5% (v/v) solution i.p., Sigma-Aldrich, St. Louis, MO or Alfa Aesar, Karlsruhe, 163 

Germany), and 15 minutes after [3H]-E1 substrate injection, blood was withdrawn from the heart. 164 

After cervical dislocation of the mice, the mammary glands were dissected, snap-frozen in liquid 165 

nitrogen and stored at −80°C. The frozen tissues were homogenized by Ultra-Turrax in ice-cold 50 166 

mM Tris-HCl buffer (pH 7.4) and were extracted twice with isopropyl ether. The ether was then 167 

evaporated to dryness at +37°C under nitrogen flow. Then, the extracted steroids were redissolved 168 

in acetonitrile-water (48:52 by vol.) and separated with an HPLC apparatus (Waters™ 2695, Waters 169 

Corporation, Milford, MA) equipped with a Nova-Pak C18 column (3.9 x 150 mm; Waters Co.) and 170 

Nova-Pak C18 guard column (Waters Co.) with acetonitrile (Rathburn, Walkerburn, Scotland) – 171 
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water (48/52 v/v) as a mobile phase using a flow rate of 1.2 ml/min. The eluent was mixed on-line 172 

with scintillant (Ecoscint A, National Diagnostics, Atlanta, GA), and the beta emission of separated 173 

steroids was counted on-line with a scintillation analyzer (Packard model 150TR; Perking Elmer 174 

Co.). HSD17B1 activity was based on the percentage of [3H]-E1 converted to [3H]-E2. 175 

 176 

Estrogen receptor activation in mammary gland tissue of HSD17B1TG mice  177 

Frozen tissues from ERELuc and ERELuc-HSD17B1TG mice were homogenized by Ultra Turrax 178 

in 500 µl of lysis buffer [25 mM Tris acetate (pH 7.8), 1 mM EDTA, 10% (v/v) glycerol, 1% (v/v) 179 

Triton X-100, 2 mM dithiothreitol, and Complete Mini Proteinase Inhibitor (Roche Diagnostics, 180 

Penzberg, Germany)]. The homogenate was centrifuged for 30 min at 1000g, and luciferase activity 181 

in the supernatant was determined by a Luciferase assay kit (BioThema, Handen, Sweden) 182 

according to the manufacturer’s instructions. Luminescence was measured with a Victor Multilabel 183 

Counter (PerkinElmer) and the obtained luminescence values were normalized against the samples’ 184 

protein concentrations, which were determined with a Pierce BCA Protein Assay Kit according to 185 

the manufacturer’s instructions (Thermo Scientific, Rockford, IL, USA). 186 

 187 

Mammary gland transplantations  188 

In transplantation experiments, 18-20-day-old WT female mice were used as hosts, and 18-20-day-189 

old or 4-6-month-old HSD17B1TG and WT females were used as donors. The mice were 190 

preoperatively administered 0.15 mg/kg buprenorphine i.p. (Temgesic, Shering-Plough, Kenilworth, 191 

NJ) and 5 mg/kg carprofen s.c. (Rimadyl, Pfizer, NY) was administered as a postoperative 192 

analgesic. The developing mammary parenchyma of the host was removed under isoflurane 193 

anesthesia by clearing the fat pad between nipples 4-5 and the inguino-abdominal lymph node from 194 

both right and left side mammary glands. A piece of mammary epithelium from an HSD17B1TG 195 

donor was transplanted into the right side, and WT epithelium was transplanted into the left side of 196 
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the remaining host mammary fat pads. Postoperative analgesia was continued for 3 days with daily 197 

buprenorphine (0.15 mg/kg i.p.) and carprofen (5 mg/kg, s.c.) injections. The transplanted hosts 198 

were sacrificed 4 months (n=21) or 17-18 months (n=8) later with CO2 asphyxiation. After cervical 199 

dislocation of the mice, the transplanted mammary glands were collected, divided into three parts 200 

and processed for histological and morphological analyses and RNA expression analyses as 201 

described below.  202 

 203 

HSD17B1 activity measurement in tissues ex vivo, and analysis of human HSD17B1 204 

expression 205 

HSD17B1 activity in HSD17B1TG and WT transplanted mammary glands was analyzed by 206 

measuring the conversion of [3H]-E1 to [3H]-E2. Tissues were homogenized in 10 mM KH2PO4 207 

(pH 7.5) containing 1 mM EDTA supplemented with protease inhibitor cocktail (Complete Mini, 208 

Roche Diagnostics GmbH, Mannheim, Germany), 0.01% (v/v) BSA and 10% (v/v) glycerol. 209 

Protein concentrations of the homogenates were determined by using a Pierce BCA Protein Assay 210 

Kit (Thermo Scientific) according to the manufacturer’s instructions. Five micrograms of protein 211 

was mixed with [3H]-E1 (Perkin Elmer, Waltham, MA, USA; final [3H]-E1 concentration in the 212 

reaction 6.3 nM, and 1.4 mM NADPH, and the reaction was incubated at 37°C for 40 minutes. 213 

Steroids were extracted from samples twice with diethyl ether (Merck) and redissolved into 48% 214 

(v/v) acetonitrile in water, and [3H]-E1 conversion to [3H]-E2 was analyzed with an HPLC 215 

equipped with a scintillation counter as described above. 216 

Analysis of human HSD17B1 expression in transplanted mammary glands was measured by 217 

quantitative RT-qPCR as previously described (Saloniemi et al. 2007) in triplicate reactions.  218 

 219 

Immunohistochemistry 220 
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Paraffin-embedded mammary glands were cut into 4 µm sections. The sections were deparaffinized 221 

and rehydrated in xylene and ethanol series. Antigen retrieval was performed in 10 mM citrate 222 

buffer (pH 6.0) in a pressure cooker or in 10 mM TRIS-EDTA-buffer, except that cytokeratin 19 223 

(KRT19) and calponin (CNN1) antibodies (pH 9.0) were used for antigen retrieval. The endogenous 224 

peroxidase was then blocked by incubating the sections in 3% (v/v) H2O2 for 20 min, and then, the 225 

slides were incubated overnight at +4°C with one of the following primary antibodies: 1) rat anti-226 

mouse Ki-67 (clone TEC-3, 1:500 dilution, Dako), 2) mouse anti-human ESR1 (1D5, 1:100, Dako), 227 

3) rabbit anti-human progesterone receptor (PGR, A0098, 1:100, Dako), 4) rabbit anti-human 228 

keratin 5 (KRT5, RM-2106, 1:100, Thermo Scientific), 5) mouse anti-human alpha actin (ACTB, 229 

sc-32251, 1:1000, Santa Cruz Biotechnology), 6) rabbit monoclonal anti-human cytokeratin 19 230 

(KRT19, 1 h incubation at RT, Clone EPR1579Y, 1:500, Epitomics); 7) Rabbit monoclonal anti-231 

human calponin (CNN1, Clone EP798Y, 1:2000, Epitomics), or 8) mouse anti-human-HSD17B1 (1 232 

µg/ml, developed in our group) antibody. The primary antibodies were detected by using an anti-233 

mouse or anti-rabbit Dako Envision+ system (Dako). Visualization was made with DAB+ substrate 234 

(Dako). All sections were counterstained with Mayer’s hematoxylin and scanned with a Pannoramic 235 

250 Flash II digital slide scanner (3DHISTECH, Budapest, Hungary). For Ki-67 quantitation, over 236 

200 mammary epithelial cells from different fields were counted, and the labeling index was 237 

calculated as the percentage of positive cells over the total number of cells counted. The epithelial 238 

expression of ESR1 and PGR was assessed according to the Allred scoring method (Allred et al. 239 

1998). 240 

 241 

ESR antagonist and HSD17B1 inhibitor treatment 242 

Five-month-old host female mice with contralateral mammary tissues grafted with WT or 243 

HSD17B1TG epithelium at the age of 3 weeks were treated s.c. with 17 mg/kg the ESR antagonist 244 

ICI 182,780 (Fulvestrant, Selleckhem, Houston, TX), hereafter referred to as ICI, twice a week or 245 
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with 10 mg/kg the HSD17B1 inhibitor EC-15 (compound 21 in Messinger et al. 2009 provided by 246 

Forendo Pharma Ltd., Turku, Finland) once a day for 4 consecutive weeks. The selected dose of ICI 247 

was effective in our earlier studies with estrogen-responsive mouse mammary cancer (Wärri et al., 248 

unpublished results). Then the mice were sacrificed and mammary gland tissues were collected for 249 

morphological analysis and for analysis of the mammary KRT19-positive epithelial cell Ki-67 250 

proliferation index. A subgroup of mice in the ICI treatment group were also treated with 5 mg/kg 251 

carprofen (Rimadyl, Pfizer, NY), which did not affect the lesion phenotype. Thus, for the final data 252 

analysis, data obtained from ICI and ICI + carprofen treated mice were combined.  253 

 254 

Statistical analyses  255 

All statistical analyses were performed with GraphPad Prism version 7.02 for Windows. The 256 

statistical difference between the two groups was determined by Student’s 
t-test or by Mann-257 

Whitney U test for normally and not normally distributed data, respectively. For multiple 258 

comparisons, one-way ANOVA followed by Tukey’s post hoc test or Kruskal-Wallis one-way 259 

ANOVA of ranks followed by Dunn’s multiple comparisons test was performed for normally and 260 

not normally distributed data, respectively. Differences were considered statistically significant at 261 

P<0.05. Data are expressed as the mean ± standard error of the mean (SEM).  262 
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RESULTS 263 

 264 

HSD17B1TG females show a mammary gland phenotype resembling that in pregnancy and 265 

present with increased incidence of mammary cancer  266 

The effect of life-long HSD17B1 overexpression on the adult mammary gland phenotype was 267 

initially investigated in female HSD17B1TG mice and age-matched WT mice as controls. At the 268 

age of 4 months, the HSD17B1TG mammary duct lumens were enlarged and filled with secretion, 269 

in contrast to wild-type (WT) female mice presenting ducts with small lumens devoid of secretion 270 

(Fig. 1A). At the age of 10 months, HSD17B1TG females showed enhanced alveolar development 271 

accompanied by ducts filled with a milk-like secretion and lipid-filled droplets resembling the 272 

mammary phenotype observed at mid-pregnancy (Fig. 1B). The lactating mammary phenotype was 273 

further enhanced in 18-month-old female HSD17B1TG mice (Fig. 1C). Furthermore, by the age of 274 

18 months, three of six HSD17B1TG females had developed mammary tumors, while no tumors 275 

were observed in WT mice of a similar age. Some of the tumors developed histopathological 276 

features resembling those of grade I or II human ductal carcinoma (Fig. 1C). Inflammatory cells 277 

were observed in the tumor tissues in parallel with the lactating phenotype (Fig. 1C). In 278 

HSD17B1TG mice, unlike in WT mice, serum prolactin concentrations were increased with aging, 279 

and the highest concentrations were measured in 12-month-old-mice (Fig. 1D). The HSD17B1TG 280 

mice developed pituitary adenomas (data not shown) that likely explain the increased circulating 281 

prolactin concentrations. 282 

 283 

Estrogenicity is increased in HSD17B1TG female mammary gland tissue 284 

To investigate the impact of HSD17B1 expression on HSD17B1 activity in mammary gland tissue 285 

in vivo, E1 was injected into the tail veins of HSD17B1TG and WT female mice, and the formed E2 286 

was measured in the mammary gland tissue. In HSD17B1TG female mammary tissue, a significant 287 
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proportion (57-85%) of the administered E1 was present as E2, while in WT mammary tissue, only 288 

6-11% of the E1 provided was converted to E2 (Fig. 2A). The impact of HSD17B1 expression on 289 

mammary tissue estrogenicity in vivo was further investigated in ERELuc reporter mice and in 290 

ERELuc-HSD17B1TG mice. HSD17B1 expression significantly increased the ERELuc reporter 291 

activity in mammary gland tissue (Fig. 2B), indicating increased ESR activity in the tissue in vivo. 292 

 293 

Mammary gland-restricted HSD17B1 expression induces the formation of mammary lesions, 294 

epithelial cell proliferation and intratissue estradiol production  295 

The impact of mammary-specific HSD17B1 expression on mammary gland morphology was 296 

investigated in WT female mice with contralateral inguino-abdominal mammary fat pads bearing 297 

mammary ductal epithelium transplanted from WT or HSD17B1TG donors. The analysis of whole 298 

mounts collected 4 months after mammary epithelial engraftment revealed lesions at the sites of 299 

ducts and alveoli in mammary glands originating from the HSD17B1TG mice, while no lesion 300 

formation was observed in WT-transplanted glands (Fig. 3A). Histopathological analyses of the 301 

mammary glands with lesions indicated massive intra- and periductal inflammation surrounding the 302 

ducts at the sites of lesions, while such inflammatory cell infiltration around parenchyma developed 303 

from WT epithelium was not observed (Fig. 3A). Furthermore, no lactation phenotype in WT or 304 

HSD17B1TG mammary gland was observed (Fig. 3A). As expected, marked HSD17B1 mRNA 305 

expression was measured in the mammary glands with HSD17B1TG epithelium, which resulted in 306 

a strongly increased capacity of the tissue to produce E2 from E1 ex vivo (Fig. 3B and C). However, 307 

a local increase in E2 production capacity in HSD17B1-expressing mammary gland did not alter the 308 

uterine weight compared to uterine weight of WT mice, indicating no significant change in systemic 309 

E2 levels (Fig. 3D). Along with the increased capacity for E2 production, a significantly increased 310 

proportion of cells positive for a proliferation marker, Ki-67, was observed in HSD17B1-expressing 311 

mammary epithelial cells compared to WT epithelial cells (Fig. 4A and B). However, ESR1 and 312 
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PGR expression levels were similar in the transplanted HSD17B1TG and WT mammary epithelium 313 

(Fig. 4A, C and D). Despite the increased epithelial cell proliferation, mammary gland tumors did 314 

not form after mammary gland transplantation within the 18-month follow-up period (data not 315 

shown), suggesting that HSD17B1 alone is not sufficient for tumor formation. 316 

 317 

HSD17B1-driven periductal mastitis is associated with disruption of the luminal epithelial cell 318 

layer and with the breakdown of continuous myoepithelium  319 

The structures of the HSD17B1-induced lesions were further studied with immunohistochemical 320 

analysis of epithelial and basal/myoepithelial cell markers. The expression pattern of the luminal 321 

epithelial cell marker KRT19 and basal/myoepithelial cell markers KRT5, CNN1 and ACTB 322 

revealed an association between HSD17B1-induced periductal inflammation and focal disruption of 323 

epithelial luminal and myoepithelial cell layers at the site of inflammatory cell infiltration (Fig. 5). 324 

At the sites of a broken or absent myoepithelial cell layer (Fig. 5B-D), the luminal epithelial cells 325 

were disorganized and devoid of polarity (Fig. 5A).  326 

 327 

Downregulation of ESR signaling rescues the mammary gland lesion phenotype 328 

The role of estrogen signaling in HSD17B1-induced inflammatory lesions was investigated by 329 

treating the mammary gland-transplanted mice with the anti-estrogen ICI or with the HSD17B1 330 

inhibitor EC-15 starting 4 months after transplantation, i.e., starting at the time point when 331 

mammary gland lesions were already established (Fig. 3A). Interestingly, the ICI treatment reversed 332 

the established lesions, which was observed as a significant reduction in lesion number 333 

accompanied by significant rescue of the histological phenotype, while HSD17B1 inhibitor 334 

treatment tended to rescue the phenotype, but the effect did not reach statistical significance (Fig. 335 

6A). Accordingly, the ICI treatment significantly reduced mammary epithelial cell proliferation, 336 

while epithelial cell proliferation in vehicle- and HSD17B1 inhibitor-treated mice was similar (Fig. 337 
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6B). These data indicate that HSD17B1-induced inflammation-associated mammary gland lesions 338 

are dependent on ESR signaling and thus are reversible with ESR antagonist treatment. 339 

 340 

DISCUSSION 341 

In this study, we show that HSD17B1 overexpression induces mammary cancer in transgenic mice. 342 

Furthermore, we demonstrate that in WT mice with mammary gland-specific HSD17B1 expression, 343 

there are responses that are considered relevant for breast carcinogenesis. More specifically, 344 

HSD17B1 increases epithelial cell proliferation and ESR signaling in the mammary gland in vivo, 345 

which is due to increased intratissue production of E2 from its circulating precursor E1. Similar 346 

factors, i.e., increased breast epithelial proliferation (Huh et al. 2016), altered ESR signaling 347 

(Huang et al. 2015) and increased E2 concentrations (Yue et al. 2013), are linked to increased 348 

breast cancer risk in women. We also demonstrate that in mammary gland tissue, HSD17B1 349 

expression leads to infiltration of inflammatory cells into the ductal stroma, where destruction of the 350 

myoepithelial cell layer at the sites of inflammation was observed. These types of tissue responses 351 

have not yet been described in the context of HSD17B1 and the mammary gland. However, in 352 

women, both periductal inflammation and coincident loss of myoepithelium have been described 353 

(Man & Sang 2004) and are considered carcinogenesis-promoting responses for breast 354 

tumorigenesis (Polyak & Kalluri 2010, Yeong et al. 2017). Thus, our current findings support the 355 

role of HSD17B1 as a factor contributing to mammary tumorigenesis. 356 

 357 

In healthy pre- and postmenopausal women, the serum and breast tissue estrogen profiles are 358 

similar (Depypere et al. 2015). Interestingly, in breast cancer, the tissue estrogen profile differs 359 

from the serum profile (Geisler 2003, Stanczyk et al. 2015), and the enzymes expressed locally in 360 

the cancer tissue are thought to be responsible for steroid accumulation in cancer tissue. The 361 

steroid-metabolizing enzymes aromatase, estrone sulfatase and certain HSD17Bs, such as 362 
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HSD17B1, HSD17B7 and HSD17B12, are suggested to control local estrogen production in breast 363 

cancer tissues by converting circulating androgen and estrogen precursors to active forms with high 364 

affinity to steroid receptors (Poutanen et al. 1992, Laplante et al. 2009, Shehu et al. 2011). 365 

However, the catalytic efficacy of HSD17B1 for the conversion of E1 to E2 is markedly higher 366 

(Puranen et al. 1997) than that of HSD17B7 or HSD17B12 (Törn et al. 2003, Luu-The et al. 2006), 367 

and even relatively low HSD17B1 expression levels in peripheral tissues are sufficient for E2 368 

production (Delvoux et al. 2014). In the present study, we demonstrate that E1 administered into the 369 

blood circulation of HSD17B1TG mice via i.v. injection or used as a substrate ex vivo was 370 

efficiently converted to E2 in the mammary gland tissue, supporting HSD17B1 expression as a 371 

significant determinant of the mammary gland intratissue E2 concentration. 372 

 373 

Local expression of estrogen-producing enzymes in the mammary gland tissue is also linked to 374 

mammary tumorigenesis. In a study conducted with MMTV-aromatase transgenic female mice, 375 

local aromatase expression in the mammary gland increased mammary tissue E2 concentrations and 376 

induced the development of mammary gland abnormalities, such as epithelial hyperplasia and 377 

ductal dysplasia (Tekmal et al. 1999, Diáz-Cruz et al. 2011). Importantly, in our current study, 378 

increased mammary gland -restricted HSD17B1 expression, along with increased E2 production 379 

capacity, induced the development of preneoplastic lesions in the mammary gland. The lesions were 380 

ameliorated by blocking ESR signaling with ICI, known to be an effective and full ESR antagonist 381 

in mouse mammary gland (Silberstein et al. 1994). This indicated that the lesions were dependent 382 

on ESR signaling. We previously reported that HSD17B1-induced imbalances in sex steroid 383 

hormones were linked to the formation of preneoplastic changes in other estrogen target tissues, 384 

such as the ovary and endometrium (Saloniemi et al. 2007, 2010). In HSD17B1TG females, we 385 

showed the formation of benign ovarian serous cystadenomas and endometrial hyperplasia 386 

(Saloniemi et al. 2007, 2010) that are known to predispose patients to ovarian and endometrial 387 
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cancer, respectively. However, no ovarian or endometrial cancers were detected within the 18-388 

month-long follow-up period (Saloniemi et al. 2007, 2010). Similarly, no mammary cancers were 389 

established in this study in mice with mammary gland-restricted HSD17B1 expression. These 390 

findings indicate that HSD17B1 expression and increased sex steroid exposure alone are not 391 

sufficient to induce tumorigenesis in reproductive tissues. 392 

 393 

Prolactin is an essential hormone required for alveologenesis and for the differentiation of 394 

mammary epithelial cells into milk-producing cells (Nandi 1958, Brisken & O’Malley 2010). 395 

Therefore, lactation phenotype of mammary gland is considered as a biological marker for systemic 396 

prolactin exposure in ovary-intact female mice. HSD17B1TG mice with advanced age showed 397 

increased lobuloalveolar development and lactating phenotype with a co-incident increase in 398 

circulating prolactin levels. Thus, the increased circulating prolactin is a likely explanatory factor 399 

for the lactating mammary gland phenotype. However WT female mice bearing mammary fat pads 400 

with transplanted HSD17B1TG epithelium or WT mammary epithelium showed no lactation 401 

phenotype indicating that the local or systemic prolactin levels were not affected in transplanted 402 

mice. Increased circulating prolactin levels and sustained prolactin signaling are linked to increased 403 

risk of breast cancer (Tworoger et al. 2008, Fernandez et al. 2010). Accordingly in experimental 404 

rodent models, hyperprolactinemia induced in mice either by ectopic pituitary grafts or by 405 

overexpression of human chorionic gonadotropin induce the development of cancer in mammary 406 

glands (Huseby et al. 1985, Rulli et al. 2002). Mammary tumorigenesis induced by 407 

hyperprolactinemia in combination with estrogen is considered more relevant for human breast 408 

carcinogenesis than prolactin alone (Tworoger et al. 2008). In a previous study, the importance of 409 

co-operation with prolactin and E2 in mammary tumorigenesis was demonstrated in transgenic mice 410 

with mammary-targeted prolactin expression (Arendt et al. 2009). In those mice, the exposure to E2 411 

together with endogenous prolactin decreased mammary tumor latency compared to mice exposed 412 
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to prolactin alone, indicating that E2 enhances the prolactin-induced mammary gland neoplastic 413 

process. HSD17B1TG females with an increased circulating prolactin concentration and enhanced 414 

capacity for intratissue E2 production developed mammary cancers with 50% penetrance during the 415 

18-month-long follow-up period, while no cancers were observed in WT mice. Consequently, 416 

increased prolactin and E2 production are supposed factors inducing mammary cancer in 417 

HSD17B1TG female mice. In rodents, increase in systemic E2 is known to cause pituitary 418 

adenomas and prolactiomas, shown by us (Rulli et al., 2002) and others (Elias et al. 1984). In 419 

HSD17B1TG mice, HSD17B1 is expressed in pituitary gland (Saloniemi et al. 2007) and, thus, 420 

local E2 synthesis from its precursor E1 in the pituitary gland is possible. Therefore, we cannot 421 

distinguish the difference between paracrine and endocrine effect of E2 as a causal factor for 422 

pituitary adenomas observed in HSD17B1TG female mice. Interestingly, the HSD17B1-induced 423 

mammary tumors had histological similarities to human breast cancer, unlike prolactin-induced 424 

mammary cancers in general. This finding suggests that overexpression of HSD17B1 may 425 

contribute to the development of mammary cancers with a clinically relevant histotype. 426 

 427 

In the normal mammary gland, myoepithelial cells positioned between the luminal cells and the 428 

basement membrane maintain the basement membrane, mediate luminal epithelial cell polarity and 429 

contribute to branching and differentiation processes (Man & Sang 2004, Brisken & O’Malley 430 

2010, Polyak & Kalluri 2010). At early stages of mammary tumorigenesis, myoepithelial cells 431 

provide a barrier preventing the invasion of cancerous epithelial cells into the surrounding stroma. 432 

Therefore, loss of myoepithelial cell layer integrity and the consequent loss of basal membrane are 433 

crucial events for carcinogenesis (Man & Sang 2004, Yeong et al. 2017). In clinical ductal 434 

carcinoma in situ samples, most specimens with a focally disrupted myoepithelial cell layer are 435 

reported to display increased leucocyte infiltration and increased proliferation of epithelial cells at 436 

the site of the disrupted myoepithelium (Man & Sang 2004). Interestingly, similar myoepithelium-437 
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related changes, i.e., a focally disrupted myoepithelial cell layer co-incident with leucocyte 438 

infiltration and increased luminal epithelial cell proliferation, were observed in this study in mice 439 

with mammary gland-restricted HSD17B1 expression. Normal estrus cycle is likely an important 440 

factor driving peri- and intraductal inflammation and myoepithelial breakage as that phenotype was 441 

not observed in HSD17B1TG females that are devoid of estrus cycle (Saloniemi et al. 2009). 442 

Moreover, in a previous in vitro study, HSD17B1 expression was linked to increased tumorigenic 443 

potential of the human mammary-derived premalignant epithelial cell lines (Fu et al. 2010). These 444 

data suggest that HSD17B1 expression in mammary epithelium induces phenomena that are similar 445 

to those identified to be critical at early phases of mammary carcinogenesis. Whether a comparable 446 

association between the expression of HSD17B1 and mammary tumorigenesis occurs in clinical 447 

specimens remains to be explored. 448 

 449 

In conclusion, this is the first in vivo evidence that increased human HSD17B1 expression in 450 

mammary gland epithelium 1) enhances the conversion of E1 to E2 in mammary gland tissue, 2) 451 

increases luminal epithelial cell proliferation and 3) induces the formation of mammary gland 452 

lesions. These lesions display focal disruption of the myoepithelial cell layer, a phenomenon co-453 

existent with peri- and intraductal lymphocyte infiltration. Treatment with an estrogen receptor 454 

antagonist, ICI, ameliorates the ductal phenotype, indicating an estrogen receptor-dependent 455 

mechanism for lesion development. Furthermore, ubiquitous HSD17B1 expression present in 456 

HSD17B1TG mice induces mammary cancer with a histotype also found in human breast cancer. 457 

These data enlighten the impact of HSD17B1 expression in the mammary gland and indicate its 458 

importance in phenomena related to mammary tumorigenesis in vivo.  459 
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FIGURE LEGENDS 

 

Figure 1. Morphology of mammary glands of wild-type (WT) and transgenic female mice 

expressing human HSD17B1 (HSD17B1TG). Representative whole-mount (WM) and hematoxylin-

eosin (HE) staining of WT and HSD17B1TG mammary glands at the age of A) 4 months and B) 10 

months. C) Representative whole-mount (WM) and hematoxylin-eosin (HE) staining in WT 

mammary glands and mammary and mammary cancer (MCa) histology in HSD17B1TG female 

mice at the age of 18 months. Inflammatory cells in MCa are indicated with an arrow. D) Serum 

prolactin levels of transgenic HSD17B1-expressing (HSD17B1TG) female mice. Each time point 

represents data obtained from 4-8 mice. Statistical differences between groups were determined by 

Kruskal-Wallis one-way ANOVA of ranks followed by Dunn’s multiple comparisons test. * 

P<0.05. *** P<0.001. 

 

Figure 2. HSD17B1 expression increases the estrogenicity in mammary glands of HSD17B1TG 

female mice. A) Percentages of estrone (E1) and estradiol (E2) in mammary gland in vivo in wild-

type (WT) and HSD17B1TG mice. B) Estrogen receptor reporter (ERELuc) activity in mammary 

tissue of ERELuc mice and ERELuc-HSD17B1TG mice at the age of 4 months.  

Boxplots indicate the median and the lower and upper quartiles. Whiskers indicate the maximum 

and minimum. Blots represent data from 3 to 6 mice per group. Statistical differences between the 

two groups were determined by Student’s
 
t test. ** P<0.01. *** P<0.001. Data are expressed as the 

mean±SEM. 

 

Figure 3. Local human HSD17B1 expression in mammary epithelium induces the formation of 

lymphocyte-associated lesions, increases the conversion of estrone (E1) to estradiol (E2) in the 
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mammary tissue but does not affect wild-type (WT) host uterine weight, a biomarker of 

estrogenicity. 

A) Representative whole-mount (WM), hematoxylin-eosin (HE), and HSD17B1 

immunohistochemical (IHC) staining of mammary glands transplanted with WT or HSD17B1-

expressing (HSD17B1TG) mammary epithelium. Some lesions in WM of HSD17B1TG mammary 

gland are indicated with arrows. B) Human HSD17B1 mRNA expression in mammary gland 

transplanted with WT or HSD17B1TG mammary epithelium (n=4 in both groups). C) HSD17B 

activity measured ex vivo as the conversion of E1 to E2 in mammary tissue with WT (n=5) or 

HSD17B1TG (n=6) mammary epithelium. D) The uterine weight of intact WT mice (n=5) and WT 

mice transplanted with HSD17B1TG mammary gland epithelium (n=21). All samples for analyses 

were collected 4 months after the transplantations. Boxplots indicate the median and the lower and 

upper quartiles. Whiskers indicate the maximum and minimum. Blots represent data from 4 to 6 

mice per group. Statistical differences between the two groups were determined by Student’s t test. 

**, P<0.01. Non-significant, ns. 

 

Figure 4. Local human HSD17B1 expression in mammary gland induces epithelial proliferation. 

A) Expression of Ki-67, estrogen receptor alpha (ESR1) and progesterone receptor (PGR) in 

mammary glands transplanted with wild-type (WT) or transgenic HSD17B1-expressing 

(HSD17B1TG) mammary epithelium. Samples were collected 4 months after the transplantation. B) 

Ki-67 index in mammary epithelial cells (positivity in WT-transplanted gland was set to one in each 

mouse). C) Allred score of ESR1 and D) PGR expression in mammary epithelium of WT and 

HSD17B1TG transplanted glands.  

Boxplots indicate the median and the lower and upper quartiles. Whiskers indicate the maximum 

and minimum. Blots represent data from 3 to 7 mice per group. Statistical difference between WT 

and HSD17B1TG groups was determined by Student’s t test. **, P<0.01.  
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Figure 5. Local HSD17B1 expression in mammary epithelium induces inflammation-assisted 

breakage of the myoepithelial layer. A) Keratin 19 (KRT19), B) keratin 5 (KRT5), C) calponin 

(CNN1), and D) actin (ACTB) immunohistochemistry in mammary glands transplanted with wild-

type (WT) or transgenic HSD17B1 expressing (HSD17B1TG) mammary epithelium. Samples were 

collected 4 months after mammary epithelial transplantations.  

 

Figure 6. Antiestrogen treatment reduces mammary lesion number and epithelial proliferation.  

A) Number of lesions counted from the mammary whole mounts after the treatments. B) Mammary 

epithelial cell proliferation index after the treatments. The proliferation in HSD17B1-expressing 

mammary epithelium in vehicle-treated mice was set to 1. C) Representative figures of mammary 

gland whole mounts (WM) and Ki-67 proliferation marker staining after the treatments. 

For the study, female WT host mice with one HSD17B1-expressing mammary parenchyma were 

treated with HSD17B1 inhibitor daily or with ICI 182,780 (ICI) twice a week for 4 consecutive 

weeks starting 4 months after the cleared mammary fat pads of 18-20-day-old WT female mice 

were transplanted with HSD17B1TG donor epithelium (i.e., starting at the time point when 

mammary gland lesions were already established). The bars represent data obtained from 11-18 

mice. Statistical differences between the groups were determined by one-way ANOVA followed by 

Tukey's post hoc test. *, P
 
< 0.05. **, P

 
< 0.01. Data are expressed as the mean±SEM. 
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Figure 4.
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