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Abstract

Motivation: Co-localization of trait associated SNPs for specific transcription-factor binding sites or

regulatory regions in the genome can yield profound insight into underlying causal mechanisms.

Analysis is complicated because the truly causal SNPs are generally unknown and can be either

SNPs reported in GWAS studies or other proxy SNPs in their linkage disequilibrium. Hence, a com-

prehensive pipeline for SNP co-localization analysis that utilizes all relevant information about both

the genotyped SNPs and their proxies is needed.

Results: We developed an R package snpEnrichR for SNP co-localization analysis. The software inte-

grates different tools for random SNP generation and genome co-localization analysis to automatize

and help users to create custom SNP co-localization analysis. We show via an example that including

proxy SNPs in SNP co-localization analysis enhances the sensitivity of co-localization detection.

Availability and implementation: The software is available at https://github.com/kartiek/snpEnrichR.

Contact: kjnousia@gmail.com or kartiek.kanduri@gmail.com

1 Introduction

Assessing co-localization of SNPs on given genomic regions requires

an empirical hypothesis test. For a given population, SNPs have sev-

eral quantifiable properties, such as allele frequency, the number of

SNPs in linkage disequilibrium (LD), distance to nearest gene and

gene density, which can be used to draw random sets of SNPs that

have similar characteristics as the original SNP set. Such an empiric-

al randomization approach provides a calibrated null distribution

for co-localization analysis.

Genome-wide association studies have successfully linked SNPs

to various traits. So-called tag-SNPs are generally consireded as

proxies for causal SNPs. Because it is difficult to pinpoint the actual

causal SNPs to a phenotype, taking other SNPs in their LD into ac-

count may enhance the sensitivity of the co-localization analysis.

2 Materials and methods

R package snpEnrichR facilitates SNP co-localization analysis by

computing required statistics and integrates to several existing tools

to enable efficient and automated data management for the analysis.

The package consists of five main functions: (i) getSNPs retrieves

trait associated SNPs directly from the NHGRI-EBI GWAS Catalog

(MacArthur et al., 2017). Alternatively, user can manually provide

custom SNP lists. (ii) clumpSNPs detects linked SNPs in a list,
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removes the correlated SNPs, and returns a list of (decorrelated) tag-

SNPs. Removing correlated SNPs from a SNP list is needed to avoid

biases in random SNP set generation. (iii) submitSNPsnap con-

nects to SNPsnap server (Pers et al., 2015) and sends a retrieval re-

quest to generate a specified number of randomly sampled SNP sets.

Each set consists of randomly sampled SNPs that have similar prop-

erties as the list of (decorrelated) tag-SNPs. (iv) findProxies

expands a list of SNPs with all linked SNPs within a genomic dis-

tance d and above a correlation level r2 that are set by the user. (v)

analyzeEnrichment computes the overlap between the genomic

regions and each of the randomly sampled SNP sets that are

extended to contain all SNPs that are in LD. These overlap scores

form an empirical null distribution for the hypothesis test, and the

empirical P-value is computed the standard way by counting the

number of times randomly sampled SNP sets have at least as many

overlaps with the genomic regions as the original input SNP set

(which is also extended with LD SNPs). Empirical P-values are com-

puted for all input SNP lists (e.g. different diseases) separately and

the obtained P-values are corrected for multiple testing by the

Benjamini–Hochberg method providing false discovery rate (FDR)

values.

The functions can be easily used as the basis of SNP co-

localization analysis pipeline. External tools are required only to lift-

over different genomic builds to correspond to each other, such as,

e.g. GWAS catalog uses build GRCh38 whereas SNPsnap relies on

GRCh37. Due to the dependency of an external server and the

resulting time lag in random SNP set generation, we suggest that

pipeline should be run in two phases. snpEnrichR requires R pack-

ages RSelenium, readr, dplyr, httr, utils, parallel, rtracklayer and

GenomicFeatures, and external software PLINK version 1.9 (Chang

et al., 2015).

2.1 Input files
snpEnrichR requires three user-specified data sources: (i) a list of

genomic regions, (ii) a list of trait associated SNPs, (iii) a processed

version of 1000 Genomes Project phase 3 SNP data for the studied

population in a format supported by PLINK, i.e. a sample informa-

tion file (.bed), a binary biallelic genotype table (.bim) and an

extended set variant information file (.fam) (The 1000 Genomes

Project Consortium, 2015). In our analyses, 1000 genomes data is

annotated based on the genome coordinates, long indels and dupli-

cate variants have been removed, and the data is filtered with the

same quality control criteria used by SNPsnap, i.e. minimum minor

allele frequency is 0.01, Hardy–Weinberg equilibrium test’s P-value

is 10–6 and maximum missing genotype rate is 0.1. Note that in

snpEnrichR the SNP files can be directly accessed from NHGRI-

EBI GWAS Catalog database and 1000 genomes data is prepro-

cessed into PLINK compatible format for convenience. All data is

mapped into human genome assembly hg19 and represented in one-

based coordinate system.

3 Example use case

To illustrate the utility and features of the tool, we applied it for

studying SNP co-localization in transcription factor STAT6 binding

sites in human CD4þ T cells during early Th2 cell differentiation

(Elo et al., 2010). We downloaded STAT6 binding sites from Gene

Transcription Regulation Database (GTRD) which hosts transcrip-

tion factor binding sites identified by ChIP-seq experiments

(Yevshin et al., 2017). The data consisted of STAT6 binding sites

from five samples (EXP000514,. . ., EXP000518) of one biological

replicate. After merging overlapping bindings sites, there are 15340

binding sites. The median length of the binding sites is 421.

We fetched tag-SNPs of 11 immune-related and three non-immune

related diseases/traits in European ancestry from NHGRI-EBI

Catalog, and we removed tag-SNPs from HLA region and converted

the coordinates into hg19 assembly. We used the snpEnrichR ana-

lysis pipeline with LD block parameters (d¼100 kb and r2 ¼ 0.8)

and used 1000 randomly generated SNPs sets when computing em-

pirical P-values.

We used the tool to implement two analyses. The first pipeline

computes the standard co-localizations using only the tag-SNPs

whereas the second considers the proxy SNPs as well. Figure 1 shows

that including proxy SNPs enhances the sensitivity of co-localization

analysis. When considering the tag-SNPs only, two of the immune-

related trait specific SNP co-localizations were detected. Whereas, five

additional traits were identified as significantly enriched at STAT6

binding sites when proxy SNPs were taken into account. In addition,

the inclusion of the proxy SNPs did not cause artificial co-localization

signal for non-immune related traits where the tag-SNPs did not co-

localize with STAT6 binding sites.

4 Discussion and conclusion

We have implemented R package snpEnrichR to facilitate auto-

mated SNP co-localization analysis. The tool provides all major

functionalities needed in co-localization analysis: an interface to

fetch trait specific SNPs, detection and filtering tool for clumped

SNPs, access to a web server that uses the best practises in generat-

ing random SNP sets that maintain characteristics of a given input

SNP set, and the computation of proxy SNPs as well as co-

localization tests. snpEnrichR; R package also enables flexible and

easy integration to related analyses a user may have. Additional

examples of this approach were recently reported (Tripathi et al.,

2017; Ullah et al., 2018).
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