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INTRINSIC GEOMETRY AND BOUNDARY STRUCTURE

OF PLANE DOMAINS

OONA RAINIO, TOSHIYUKI SUGAWA, AND MATTI VUORINEN

Abstract. For a non-empty compact set E in a proper subdomain Ω of the complex
plane, we denote the diameter of E and the distance from E to the boundary of Ω by d(E)
and d(E, ∂Ω), respectively. The quantity d(E)/d(E, ∂Ω) is invariant under similarities
and plays an important role in Geometric Function Theory. In the present paper, when
Ω has the hyperbolic distance hΩ(z, w), we consider the infimum κ(Ω) of the quantity
hΩ(E)/ log(1 + d(E)/d(E, ∂Ω)) over compact subsets E of Ω with at least two points,
where hΩ(E) stands for the hyperbolic diameter of the set E. We denote the upper half-
plane by H. Our main results claim that κ(Ω) is positive if and only if the boundary of Ω
is uniformly perfect and that the inequality κ(Ω) ≤ κ(H) holds for all Ω, where equality
holds precisely when Ω is convex.

1. Introduction

Let Ω be a domain in the complex plane C with the hyperbolic metric ρΩ(z)|dz| of
Gaussian curvature −1 [1]. The celebrated Uniformization Theorem [2, p. 81] guarantees
the existence of ρΩ for a domain Ω when its boundary ∂Ω contains at least three points.
Such a domain is called hyperbolic. Here and in what follows, the boundary of a domain

is taken with respect to the Riemann sphere Ĉ = C ∪ {∞}.
The function ρΩ(z) is sometimes called the hyperbolic density of Ω. For instance, for the

unit disk D = {z ∈ C : |z| < 1} and the upper half-plane H = {z ∈ C : Im z > 0}, the
hyperbolic densities are given by ρD(z) = 2/(1 − |z|2) and ρH(z) = 1/ Im z, respectively.
Let hΩ(z1, z2) denote the hyperbolic distance induced by ρΩ(z)|dz| and d(z, ∂Ω) the Eu-
clidean distance from a point z ∈ Ω to the boundary ∂Ω. Then we have the inequality
ρΩ(z) ≤ 2/d(z, ∂Ω) for each z ∈ Ω as a simple consequence of Schwarz’ Lemma [3, (2.1)].
On the other hand, the inequality ρΩ(z) ≥ 1/(2d(z, ∂Ω)) holds for a simply connected
domain Ω [3, (2.2)], [1, p. 35 Thm 8.6], [4, p.34, (3.2.1)].

The distance on Ω induced by the continuous Riemannian metric |dz|/d(z, ∂Ω) is called
the quasihyperbolic distance and denoted by kΩ(z1, z2) [5]. We now have the inequality
hΩ(z1, z2) ≤ 2kΩ(z1, z2) for a general domain Ω and hΩ(z1, z2) ≥ kΩ(z1, z2)/2 for a sim-
ply connected domain Ω. These two inequalities are very handy, because there are many
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2 O. RAINIO, T. SUGAWA, AND M. VUORINEN

estimates for quasihyperbolic distances whereas hyperbolic distances are not easy to esti-
mate because the density function ρΩ(z) depends on the local boundary structure in the
vicinity of z in a subtle manner [3], [2, p.241, Thm 14.5.2], [6]. It should be noticed that
the second estimate does not apply to general domains, because the hyperbolic distance
is not bounded from below by a constant multiple of the quasihyperbolic distance, for
instance, if the domain has isolated boundary points. To measure the similarity between
hΩ and kΩ, the domain functional [7]

(1.1) c(Ω) = inf
z∈Ω

ρΩ(z)d(z, ∂Ω) = inf
z1,z2∈Ω, z1 6=z2

hΩ(z1, z2)

kΩ(z1, z2)

is useful, where the second equality will be proven in the next section. By the above
observations, we have c(Ω) ≤ 2 for a general domain Ω and c(Ω) ≥ 1/2 for a simply
connected domain Ω. But more is known about this domain constant.

Theorem A. Let Ω be a hyperbolic domain in C. Then c(Ω) ≤ 1 with equality if and only

if Ω is convex. Furthermore, c(Ω) > 0 if and only if ∂Ω is uniformly perfect.

The general inequality c(Ω) ≤ 1 is due to Harmelin and Minda [7] and the equality
condition is due to Mej́ıa and Minda [8]. The last assertion is due to Beardon and

Pommerenke [3]. Here, a closed set E in Ĉ with card (E) ≥ 2 is said to be uniformly

perfect if there is a constant 0 < α < 1 such that the closed annulus αr ≤ |z − a| ≤ r
meets E whenever a ∈ E and 0 < r < d(E). Here and hereafter, card (E) denotes
the cardinality of the set E and d(E) is the Euclidean diameter of E. In other words,
d(E) = supz,w∈E |z − w|. We set d(E) = +∞ when ∞ ∈ E. For uniformly perfect sets,
we refer to [9], [10, pp. 343-345], [11], [12], [13] and [14]. Uniform perfectness has many
applications in potential theory, metric spaces, Kleinian groups and complex dynamics as
well as geometric function theory; see, in addition to the above references, for instance
[9], [15], [16] and [17].

In their work about the quasihyperbolic metric, Gehring and Palka [5] also introduced
the distance-ratio metric

jΩ(z1, z2) = log

(
1 +

|z1 − z2|
min{d(z1, ∂Ω), d(z2, ∂Ω)}

)

for z1, z2 ∈ Ω, see also [18, p.61]. They proved that jΩ(z1, z2) ≤ kΩ(z1, z2) holds always.
It is also known that jΩ satisfies the triangle inequality on Ω [18, p.59, Lemma 4.6]. The
opposite inequality characterises so called uniform domains: a domain Ω is uniform if and
only if there exists a constant b > 0 such that the inequality

kΩ(z1, z2) ≤ bjΩ(z1, z2)

holds, see Gehring and Osgood [19] and [18, p.84]. These domains are ubiquitous in
geometric function theory [4].

It is a natural and interesting question to ask what can be said if we replace kΩ by hΩ.
Our answer is the following result.
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Theorem 1.2. Let Ω be a hyperbolic domain in C. There is a constant c > 0 such that

cjΩ(z1, z2) ≤ hΩ(z1, z2) for all z1, z2 ∈ Ω if and only if the boundary of Ω in Ĉ is uniformly

perfect.

In conjunction with the Gehring-Osgood theorem [19, pp.59-60], we have the following
result.

Corollary 1.3. Let Ω be a hyperbolic domain in C. Then the hyperbolic metric hΩ is

comparable with the distance-ratio metric jΩ if and only if Ω is uniform and has uniformly

perfect boundary.

Indeed, if for some constants 0 < c1 ≤ c2,

c1jΩ(z1, z2) ≤ hΩ(z1, z2) ≤ c2jΩ(z1, z2), for z1, z2 ∈ Ω,

we first see that ∂Ω is uniformly perfect. Then hΩ is comparable with kΩ by Theorem
A. We now conclude that Ω is uniform by the Gehring-Osgood theorem. The converse
follows readily from Theorem 1.2 and the Gehring-Osgood theorem.

For a subset E of Ω with card (E) ≥ 2, we define the set functionals

hΩ(E) = sup
z1,z2∈E

hΩ(z1, z2) and JΩ(E) = log

(
1 +

d(E)

d(E, ∂Ω)

)
.

Here and hereafter, d(E, F ) denotes the Euclidean distance between the sets E and F.
For a singleton E = {z}, we write d({z}, F ) = d(z, F ) = d(F, z). We will use the following
monotonicity property frequently in the sequel: hΩ(E) ≤ hΩ(E

′) and JΩ(E) ≤ JΩ(E
′) for

E ⊂ E ′ ⊂ Ω. We note that hΩ(E) is the hyperbolic diameter of E in Ω and that JΩ(E)
is important in connection with capacity estimates of E (see, for instance, [20]). We now
consider the domain constant

κ(Ω) = inf
E

hΩ(E)

JΩ(E)
,

where E runs over all compact subsets of Ω with card (E) ≥ 2. As the following result
tells, the two domain constants c(Ω) and κ(Ω) are comparable.

Theorem 1.4. Let Ω be a hyperbolic domain in C. Then the double inequality

c(Ω)

2
≤ κ(Ω) ≤ c(Ω)

holds. In particular, κ(Ω) > 0 if and only if ∂Ω is uniformly perfect.

It is a little surprising that the quantity κ(Ω) behaves like c(Ω) in the following sense
(compare with Theorem A).

Theorem 1.5. Let Ω be a hyperbolic domain in C. Then, the inequality κ(Ω) ≤ κ(H)
holds, where equality holds if and only if Ω is convex.
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In view of the above theorem, we are curious about the value of κ(H). However, it
seems difficult to evaluate it in a simple form. Since c(H) = 1, the first part of Theorem
1.4 implies 1/2 ≤ κ(H) ≤ 1. We will prove later that the inequality κ(H) < 1 holds and
give a numerical approximation of the value of κ(H) in Theorem 4.18, thus answering a
problem formulated in [18, p.455, item (12)].

The existence of an extremal configuration of the set E for the functional hΩ(E)/JΩ(E)
is more subtle. We will prove the following result in the final section. We note that a
convex domain in C carries the hyperbolic metric unless it is C itself.

Theorem 1.6. Let Ω be a convex proper subdomain of C. There exists a compact subset

E in Ω satisfying κ(Ω) = hΩ(E)/JΩ(E) if and only if Ω is a half-plane.

When Ω is the upper half-plane H, there exists a three-point set E∗ of the form {i, z1, z2}
constituting a hyperbolic equilateral triangle with κ(H) = hH(E

∗)/JH(E
∗), 1 < Im zj (j =

1, 2) and z1 = −z2. Moreover, such an extremal three-point set is unique up to similarities

keeping H invariant.

In view of the application given in the final section, it is important to have a lower
bound of κ(Ω) when Ω is simply connected. We consider the number

(1.7) κ0 = inf
Ω

κ(Ω),

where Ω runs over all simply connected proper subdomains of C. By Theorem 1.4 and the
well-known estimate c(Ω) ≥ 1/2, we obtain κ0 ≥ 1/4.On the other hand, when Ω is the slit
domain Ω0 = C \ (−∞, 0], numerically we have κ(Ω0) ≤ hΩ0

(E)/JΩ0
(E) = 0.4251604 . . .

for E = {w0, w1, w2}, w0 = 1, w1 = 2.121820474 + 1.198476681i, w2 = w̄1. Note that
hΩ0

(w0, w1) = hΩ0
(w0, w2) ≈ hΩ0

(w1, w2). Thus, we have the following corollary.

Corollary 1.8. 1/4 ≤ κ0 < 0.4251605.

It is an open problem to determine the value κ0.

The organization of this paper is as follows. In Section 2, preliminary results cocerning
the domain constant κ(Ω) are given and Theorems 1.2 and 1.4 are proved. Section 3 is
devoted to the proof of Theorem 1.5. We determine extremal configurations of three-point
sets E with respect to the set functional hH(E)/JH(E) and prove Theorem 1.6 in Section
4. We also give numerical observations on the quantity κ(H). We will apply our results
to lower estimation of the capacity of a condenser in the final section.

2. Preliminaries

In this section, we prove several simple preliminary results. We begin with the proof of
the second equality in (1.1). To distinguish the both sides of (1.1), for a while, we write

c(Ω) = inf
z∈Ω

ρΩ(z)d(z, ∂Ω) and c′(Ω) = inf
z,w∈Ω

hΩ(z, w)

kΩ(z, w)
.
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We will prove that c(Ω) = c′(Ω). Since ρΩ(z) ≥ c(Ω)/d(z, ∂Ω), we easily obtain hΩ(z1, z2) ≥
c(Ω)kΩ(z1, z2). Hence, c

′(Ω) ≥ c(Ω). On the other hand, by the formula

lim
w→z

hΩ(z, w)

kΩ(z, w)
= lim

w→z

hΩ(z, w)

|z − w| · |z − w|
kΩ(z, w)

=
ρΩ(z)

1/d(z, ∂Ω)
= ρΩ(z)d(z, ∂Ω),

we have c(Ω) ≥ c′(Ω). Thus, we are done.

For the analysis of domain constants, we introduce some variants of the domain constant
κ(Ω). First, we replace hΩ with kΩ and define the domain constant

κ̂(Ω) = inf
E

kΩ(E)

log(1 + d(E)/d(E, ∂Ω))
,

where the infimum is taken over all compact subsets E of Ω with card (E) ≥ 2. Here,
kΩ(E) denotes the quasihyperbolic diameter of E. We also define the following auxiliary
domain constants for integers n ≥ 2:

κn(Ω) = inf
E⊂Ω,card (E)=n

hΩ(E)

log(1 + d(E)/d(E, ∂Ω))

and

κ̂n(Ω) = inf
E⊂Ω,card (E)=n

kΩ(E)

log(1 + d(E)/d(E, ∂Ω))
.

For E = {z1, . . . , zn}, letting zn → zn−1, we observe that

κ2(Ω) ≥ κ3(Ω) ≥ · · · ≥ κ(Ω)

and

κ̂2(Ω) ≥ κ̂3(Ω) ≥ · · · ≥ κ̂(Ω) .

For these domain constants, we have the following results. In particular, we see that
κn(Ω) = κ(Ω) and κ̂n(Ω) = κ̂(Ω) for every n ≥ 3.

Lemma 2.1. (i) κ̂2(Ω) ≥ 1 .

(ii) κ3(Ω) = κ(Ω) and κ̂3(Ω) = κ̂(Ω) .

(iii) κ2(Ω) ≤ 2κ3(Ω) and κ̂2(Ω) ≤ 2κ̂3(Ω) .

Proof. Part (i) is clear from the Gehring-Palka inequality kΩ(z1, z2) ≥ jΩ(z1, z2). Let
E be an arbitrary compact set in Ω with card (E) ≥ 2. Take z0, z1, z2 ∈ E so that
d(E) = |z1 − z2| and d(E, ∂Ω) = d(z0, ∂Ω) and let E0 = {z0, z1, z2}. (Note that one of the
points z1, z2 may be the same as z0.) Then

hΩ(E) ≥ hΩ(E0) ≥ κ3(Ω) log(1 + d(E0)/d(E0, ∂Ω))

= κ3(Ω) log(1 + |z1 − z2|/d(z0, ∂Ω))(2.2)

= κ3(Ω) log(1 + d(E)/d(E, ∂Ω)).
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Taking the infimum over compact subsets E of Ω, we obtain the inequality κ(Ω) ≥ κ3(Ω).
Since κ(Ω) ≤ κ3(Ω) as we noted above, we conclude κ(Ω) = κ3(Ω). In the same way, we
can verify κ̂(Ω) = κ̂3(Ω).

Finally, we prove part (iii). Let E ⊂ Ω with card (E) = 3 and choose z0 ∈ E so that
d(E, ∂Ω) = d(z0, ∂Ω). Also choose z1, z2 ∈ E so that d(E) = |z1 − z2|. Then

log(1 + d(E)/d(E, ∂Ω))

= log(1 + |z1 − z2|/d(z0, ∂Ω))
≤ log(1 + (|z1 − z0|+ |z2 − z0|)/d(z0, ∂Ω))
≤ log(1 + |z1 − z0|/d(z0, ∂Ω)) + log(1 + |z2 − z0|/d(z0, ∂Ω))
≤ κ2(Ω)

−1(hΩ(z1, z0) + hΩ(z2, z0))

≤ 2hΩ(E)/κ2(Ω),

which implies κ2(Ω) ≤ 2κ3(Ω). In the same way, we can prove the other inequality. �

We need also the following simple lemma.

Lemma 2.3. For a hyperbolic domain Ω in C, the inequality κ2(Ω) ≤ c(Ω) holds.

Proof. Noting the formula

lim
w→z

hΩ(z, w)

jΩ(z, w)
= ρΩ(z)d(z, ∂Ω),

we have

κ2(Ω) = inf
z 6=w

hΩ(z, w)

jΩ(z, w)
≤ inf

z 6=w
ρΩ(z)d(z, ∂Ω) = c(Ω).

�

We are now in a position to prove Theorem 1.4.

Proof of Theorem 1.4. By the above lemma and the inequality hΩ(x, y) ≥ c(Ω)kΩ(x, y),
for an arbitrary compact set E in Ω, we have

hΩ(E)

log(1 + d(E)/d(E, ∂Ω))
≥ c(Ω)kΩ(E)

log(1 + d(E)/d(E, ∂Ω))

≥ c(Ω)κ̂(Ω) ≥ c(Ω)

2
κ̂2(Ω) ≥

c(Ω)

2
.

Hence we have κ(Ω) ≥ c(Ω)/2. The other inequality follows from Lemma 2.3:

κ(Ω) ≤ κ2(Ω) ≤ c(Ω).

�

We now prove Theorem 1.2.
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Proof of Theorem 1.2. Assume that c jΩ(z1, z2) ≤ hΩ(z1, z2) for z1, z2 ∈ Ω. Then
κ2(Ω) ≥ c. By Lemma 2.1 and Theorem 1.4, we obtain

c(Ω) ≥ κ(Ω) ≥ 1

2
κ2(Ω) ≥

c

2
> 0.

Thus, ∂Ω is uniformly perfect. Conversely, if ∂Ω is uniformly perfect, similarly we obtain
κ2(Ω) ≥ κ(Ω) ≥ c(Ω)/2 > 0. Thus, c jΩ(z1, z2) ≤ hΩ(z1, z2) holds with c = κ2(Ω) > 0. �

3. Proof of Theorem 1.5

In this section, we will prove Theorem 1.5 step by step. We begin with the following
result.

Lemma 3.1. For any hyperbolic domain Ω in C, the inequality κ(Ω) ≤ κ(D) holds.

Proof. By definition, for a given ε > 0, there is a compact subset E of D such that

hD(E)

JD(E)
< κ(D) + ε.

Moreover, by rotating E if necessary, we may further assume that the nearest point of
the boundary ∂D to E is 1. Namely, d(E, ∂D) = d(E, 1).

Let Ω be an arbitrary hyperbolic domain in C. For an arbitrarily fixed point z0 ∈ Ω,
choose ζ0 ∈ ∂Ω so that d(z0, ∂Ω) = |z0 − ζ0|. Since κ(Ω) is invariant under similarities,
we may assume that z0 = 0 and ζ0 = 1. Then D ⊂ Ω. By the domain monotonicity of
the hyperbolic metric, we have hΩ(E) ≤ hD(E). On the other hand, we have d(E, ∂Ω) =
d(E, 1) = d(E, ∂D) so that JΩ(E) = JD(E). Hence,

κ(D) + ε >
hD(E)

JD(E)
≥ hΩ(E)

JΩ(E)
≥ κ(Ω).

Since ε > 0 is arbitrary, we obtain the required inequality κ(D) ≥ κ(Ω). �

Remark 3.2. Note that the set functional JD(E) in the above proof is not the same
thing as the diameter of E in the jD metric

jD(E) = sup{jD(x, y) : x, y ∈ E} .
It is easy to see that the inequality

JD(E)/2 ≤ jD(E) ≤ JD(E)

holds for all E ⊂ D, with equality in the second inequality if E is a disk, card (E) = 2, or
card (E) = 3 and the triangle with vertices E is either equilateral or a so-called Reuleaux
triangle.

Moreover, for a half-plane, we have the following result.

Lemma 3.3. Let H be an open half-plane in C. Then κ(D) = κ(H).



8 O. RAINIO, T. SUGAWA, AND M. VUORINEN

Proof. By Lemma 3.1, it is enough to prove the inequality κ(H) ≥ κ(D). We choose the
right half-plane {z : Re z > 0} as H. For every ε > 0, we can find a compact subset E
of H such that

hH(E)

JH(E)
< κ(H) + ε.

Let ζ0 be the nearest boundary point to E. For simplicity, we assume that ζ0 = 0. For
R > 0, we denote the disk {z : |z −R| < R} by ∆R. For a large enough R, E ⊂ ∆R and
d(E, ∂∆R) = d(E, 0) = d(E, ∂H) so that JH(E) = J∆R

(E). On the other hand, since

ρ∆R
(z) =

2R

R2 − |z − R|2 =
1

Re z − |z|2/(2R)
→ 1

Re z
= ρH(z)

locally uniformly on H, we obtain h∆R
(E) → hH(E) as R → +∞. Noting the inequality

h∆R
(E)/J∆R

(E) ≥ κ(∆R) = κ(D),

we have
hH(E)

JH(E)
= lim

R→+∞

h∆R
(E)

J∆R
(E)

≥ κ(D).

Hence, κ(H)+ε > κ(D). Since ε > 0 was arbitrary, we obtain the inequality κ(H) ≥ κ(D)
as required. �

We next prove the following lemma.

Lemma 3.4. Let Ω be a convex domain in C with Ω 6= C. Then κ(Ω) = κ(D).

Proof. Let E be any compact subset of Ω. Take ζ0 ∈ ∂Ω so that d(E, ∂Ω) = d(E, ζ0).
Since Ω is convex, there is a supporting line, say, L at the point ζ0. Let H be the connected
component of C \ L containing Ω. Then Ω ⊂ H and ζ0 ∈ ∂H = L. Since d(E, ∂H) =
d(E, ζ0) = d(E, ∂Ω), we obtain

hΩ(E)

JΩ(E)
≥ hH(E)

JH(E)
≥ κ(H) = κ(D).

Here, we used Lemma 3.3. Taking the infimum over E, we obtain the inequality κ(Ω) ≥
κ(D). Recalling Lemma 3.1, we have the desired relation. �

To deduce the equality condition is the most subtle part in the proof of Theorem 1.5.
A key ingredient is Keogh’s lemma about non-convex domains. See Figure 1.

Lemma 3.5 (Keogh [21]). Suppose that a domain Ω in C is not convex. Then there

are two open disks ∆1 and ∆2 whose boundaries intersect perpendicularly such that G =
∆1 \∆2 is contained in Ω and the midpoint ζ0 of the concave boundary arc ∆1 ∩ ∂∆2 of

G lies on the boundary ∂Ω of Ω.

We are now ready to prove the following result, which is the last piece of the proof of
Theorem 1.5.
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G

Ω

∆1

∆2

ζ0

Figure 1. The domain G = ∆1\∆2 in Ω

Lemma 3.6. Let Ω be a non-convex domain in C. Then κ(Ω) < κ(D).

Proof. We find open disks ∆1,∆2 as in Keogh’s lemma so that G = ∆1 \∆2 ⊂ Ω and the
midpoint ζ0 of the concave boundary arc of G is contained in ∂Ω. We may assume that
∆1 = D and ζ0 = a ∈ (0, 1) so that the center of ∆2 lies on the real axis. Then the second
disk ∆2 is the image of the right half-plane H under the Möbius transformation

T (z) =
z + a

1 + az
.

Thus, G = T (D−), where D− is the left half {z ∈ D : Re z < 0} of the unit disk. We now
construct a conformal map f of the upper half-plane H onto G as follows. We denote the
analytic automorphism (1 + z/2)/(1 − z/2) of H by M . Note that M maps the positive
imaginary axis iR+ = {iy : 0 < y < +∞} onto the upper half of the unit circle |ζ | = 1.
The function S(ζ) =

√
ζ maps H onto the first quadrant D = {w : Rew > 0, Imw > 0}.

Then the Möbius transformation L(w) = i(w − 1)/(w + 1) maps D onto the left half
D− of D. Hence, the function f = T ◦ L ◦ S ◦ M maps H onto G in such a way that
f(iR+) = (−1, a). More concretely, f is expressed by

f(z) = T

(
i

√
1 + z/2−

√
1− z/2√

1 + z/2 +
√

1− z/2

)
.
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In view of this form, we see that f(z) is analytic on |z| < 1. (This follows also from the
Schwarz reflection principle.) Therefore, we can expand f(z) about z = 0 as follows:

f(z) = a + a1z + a2z
2 + · · · (|z| < 1).

By a straightforward computation, we have here

a1 =
i

4
(1− a2), a2 =

a

16
(1− a2)

and therefore

(3.7) A :=
a2
a1

=
a

4i
.

Let Ex := xE∗ = {xzj : j = 0, 1, 2} for 0 < x < 1, where E∗ = {z0, z1, z2} ⊂ H with
z0 = i is the set in Theorem 1.6 and thus κ(H) = hH(E

∗)/JH(E
∗). Let wj = f(xzj) and

set E ′
x = f(Ex) = {wj : j = 0, 1, 2}. Since f(xz) = a + a1xz + O(x2) as x → 0 locally

uniformly in z, d(E ′
x) = |w1−w2| and d(E ′

x, ∂G) = d(w0, ∂G) = d(w0,∆1∩∂∆2) for a small
enough x > 0. Note here that w0 = f(xz0) = f(ix) ∈ (0, a) because f(iR+) = (−1, a).
Hence, d(E ′

x, ∂G) = d(w0,∆1 ∩ ∂∆2) = d(w0, a). We now look at the quantity

F (x) =
d(E ′

x)

d(E ′
x, ∂G)

=
|w1 − w2|
|w0 − a| =

∣∣∣∣
w1 − w2

w0 − a

∣∣∣∣ .

We observe that

W =
w1 − w2

w0 − a
=

f(xz1)− f(xz2)

f(xz0)− f(0)

is even analytic in x ∈ D and we compute

W =
a1x(z1 − z2) + a2x

2(z21 − z22) +O(x3)

a1xz0 + a2x2z20 +O(x3)

=
z1 − z2

z0
· 1 + Ax(z1 + z2) +O(x2)

1 + Axz0 +O(x2)

=
z1 − z2

z0
·
[
1 + Ax(z1 + z2 − z0) +O(x2)

]
,

where A = a2/a1 = a/(4i) by (3.7). Hence F (x) = |W | is real analytic in −1 < x < 1 and

F (x) =
|z1 − z2|

|z0|
{
1 + Re

[
Ax(z1 + z2 − z0)

]
+O(x2)

}

=
|z1 − z2|

|z0|
{
1 +

ax

4
Im (z1 + z2 − z0) +O(x2)

}

as x → 0. Since Im zj = d(zj, ∂H) > d(z0, ∂H) for j = 1, 2, we have

F (0) =
|z1 − z2|

|z0|
=

d(E∗)

d(E∗, ∂H)
and F ′(0) =

a|z1 − z2|
4|z0|

Im (z1 + z2 − z0) > 0.



INTRINSIC GEOMETRY AND BOUNDARY STRUCTURE OF PLANE DOMAINS 11

In particular, F (x) is strictly increasing at x = 0 and thus F (x) > F (0) for small enough
x > 0. Since G ⊂ Ω, we have the inequality hΩ(E

′
x) ≤ hG(E

′
x). We also note that

d(E ′
x, ∂Ω) ≥ d(E ′

x, ∂G) = d(w0, a) ≥ d(E ′
x, ∂Ω),

because a ∈ ∂Ω, and therefore d(E ′
x, ∂Ω) = d(E ′

x, ∂G) so that JΩ(E
′
x) = JG(E

′
x). More-

over, since the hyperbolic distance is conformally invariant, hG(E
′
x) = hG(f(Ex)) =

hH(Ex) = hH(E
∗). Hence, for a small enough x > 0,

κ(Ω) ≤ hΩ(E
′
x)

JΩ(E ′
x)

≤ hG(E
′
x)

JG(E ′
x)

=
hH(E

∗)

log(1 + F (x))

<
hH(E

∗)

log(1 + F (0))
=

hH(E
∗)

JH(E∗)
= κ(H).

The proof is finished. �

Now Theorem 1.5 follows from Lemmas 3.1, 3.4 and 3.6.

4. Extremal configuration of three points in H

In this section, we work to find extremal configurations of three-point sets E in the
upper half-plane for the functional hH(E)/JH(E). Since the both quantities hH(E) and
JH(E) are invariant under the affine mappings of the form z 7→ az + b with a > 0 and
b ∈ R, we may restrict our attention to the family E of three-point subsets E of H
containing i =

√
−1 with d(E, ∂H) = d(i, ∂H) = 1. Namely, the infimum in the definition

of κ3(H) may be limited to E :

κ3(H) = inf
E∈E

hH(E)

JH(E)
= inf

E∈E

hH(E)

log(1 + d(E))
.

Our goal in this section is to determine the extremal sets E for which the above infimum
is attained, and to compute (at least numerically) the value of κ3(H). First, we note the
following fact for the upper half-plane H. Though the result is essentially known (e.g.,
[18, Lemma 4.9 (2)]), we give a short proof for convenience of the reader.

Lemma 4.1.

κ2(H) = inf
z1,z2∈H

hH(z1, z2)

jH(z1, z2)
= 1.

Proof. Note that ρH(z) = 1/Re z = 1/d(z, ∂H). Hence, we have hH(z, w) = kH(z, w)
for z, w ∈ H. Thus, the inequality jH(z, w) ≤ hH(z, w) is nothing but the Gehring-Palka
inequality [5]. Hence, we have κ2(H) ≥ 1. On the other hand, by Lemma 2.3, we have
κ2(H) ≤ c(H) ≤ 1, where the last inequality follows from Theorem A. �

We will write

∆(z0, r) = {z ∈ H : hH(z, z0) < r} = {z : |z − z0| < ρ|z − z̄0|}
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for the open hyperbolic disk in H centered at z0 ∈ H with hyperbolic radius r > 0, where
ρ = tanh(r/2) = (er −1)/(er+1) ∈ (0, 1) and denote its closure by ∆(z0, r). We need the
following elementary fact for the proof of Lemma 4.15, which will be a key result below.

Lemma 4.2. Let C be the boundary circle of the hyperbolic disk ∆(z0, r) in H.

(i) The Euclidean distance |z − z0| between z ∈ C and z0 takes its maximum at the

top of C and its minimum at the bottom of C.

(ii) The Euclidean diameter of the circle C is 2( Im z0) sinh r.

(iii) The hyperbolic distance of the endpoints of an arbitrary diameter of the circle C
is at least equal to ϕ(r) given in (4.3).

Proof. We write z0 = x0 + iy0. It is well known (see, e.g., [18, (4.11)]) that the boundary
of ∆(z0, r) is the Euclidean circle |z − c| = R, where

c = x0 + iy0 cosh r and R = y0 sinh r.

Since Re z0 = Re c and Im z0 < Im c, it is evident that |z−z0| is maximized at z = c+ iR
and minimized at z = c− iR on C. The proof of the first assertion is now complete. The
second assertion is clear because the Euclidean diameter of C is 2R. It is clear that the
diameter of the circle C with the minimal hyperbolic diameter is [c− R, c+R]. We now
compute the hyperbolic distance

hH(c+R, c− R) = hH(i cosh r + sinh r, i cosh r − sinh r)

= 2 artanh
sinh r√
cosh 2r

= log

√
cosh 2r + sinh r√
cosh 2r − sinh r

= 2 log

√
cosh 2r + sinh r

cosh r
=: ϕ(r).(4.3)

Then the third assertion follows. �

Remark 4.4. By geometry, we see that |c+i Re±iθ−z0| is strictly decreasing in 0 < θ < π,
which will be needed in the proof of Lemma 4.15.

We remark also that the sharp upper bound of the hyperbolic distance of the endpoints
of a diameter of C is hH(c + iR, c − iR) = 2r. By the form of ϕ(r), we also see that

ϕ(r) → log
√
2+1√
2−1

= 2 log(
√
2 + 1) = 1.7627 . . . as r → +∞.

In order to find the extremal configuration, we divide the family E into one-parameter
subfamilies. More concretely, for u > 0, let E(u) be the subfamily of E consisting of sets
E with hH(E) = 2u. Then

(4.5) κ3(H) = inf
0<u<+∞

inf
E∈E(u)

2u

JH(E)
= inf

0<u<+∞

2u

log(1 +M(u))
,
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where

(4.6) M(u) = sup
E∈E(u)

d(E)

Our task is to find the extremal configuration of E ∈ E(u) for the functional d(E). We
first define a candidate of the extremal set. For a given number u > 0, we choose t > 0
and θ ∈ (0, π/2) such that

hH(ie
t+iθ, iet−iθ) = hH(ie

t+iθ, i) = 2u.

In other words, we choose t and θ so that the set E∗(u) = {i, iet+iθ, iet−iθ} forms the
vertices of a hyperbolic equilateral triangle with sidelength 2u. We now give formulae
describing θ and t in terms of u. Since hH(ie

t+iθ, iet) = u,we obtain u = 2 artanh (tan(θ/2))
and thus

(4.7) θ = 2 arctan(tanh(u/2)).

Moreover, by the hyperbolic cosine formula for a hyperbolic right triangle [22, Thm 7.11.1,
p. 146], we have

cosh t = cosh hH(ie
t, i) =

cosh hH(ie
t+iθ, i)

cosh hH(iet+iθ, iet)
=

cosh 2u

cosh u
.

Hence,

(4.8) t = arcosh ((cosh 2u)/ coshu).

We now compute
|iet+iθ − iet−iθ| = 2et sin θ = χ(u),

where

χ(u) = 2e arcosh ((cosh 2u)/ coshu) sin
[
2 arctan tanh(u/2)

]
(4.9)

= 2
cosh 2u+

√
(cosh2 2u)− (cosh2 u)

cosh u
· tanhu

=
2 sinh u

1 + sinh2 u

[
1 + 2 sinh2 u+ sinh u

√
3 + 4 sinh2 u

]
.

Note that χ(u) ≤ d(E∗(u)). In the same way, we compute

Im
(
iet+iθ

)
= et cos θ = e arcosh ((cosh 2u)/ cosh u) cos

[
2 arctan tanh(u/2)

]

=
cosh 2u+

√
cosh2 2u− cosh2 u

cosh u
· 1

cosh u
>

cosh 2u

cosh2 u
> 1 .

Therefore, we obtain d(E∗(u), ∂H) = 1 for every u > 0. We summarize the above obser-
vations in the following lemma.

Lemma 4.10. The set E∗(u) of the vertices of the hyperbolic equilateral triangle in H

with sidelength 2u constructed above belongs to E(u) for every u > 0.
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We make further preparatory observations.

Lemma 4.11. If 0 < u ≤ log(11/4) ≈ 1.0116, then d(E∗(u)) = χ(u) and

2u

log(1 +M(u))
< 1.

Proof. We will prove the inequality

(4.12)
2u

log(1 + χ(u))
< 1

for 0 < u ≤ log(11/4). Since E∗(u) ∈ E(u) by Lemma 4.10, we have M(u) ≥ d(E∗(u)) ≥
χ(u). Thus, the second assertion will follow from (4.12).

By using the elementary inequality
√
3 + 4 sinh2 u >

√
3 + 3 sinh2 u =

√
3 cosh u for

u > 0, we obtain the estimate

χ(u) >
2 sinh u

1 + sinh2 u

[
1 + 2 sinh2 u+

√
3 sinh u cosh u

]
.

Thus, we have

χ(u) + 1− e2u ≥ 2 sinh u

1 + sinh2 u

[
1 + 2 sinh2 u+

√
3 sinh u coshu

]
+ 1− e2u

=
(
√
3− 1)(eu + 1)(eu − 1)2P (eu − 1)

eu(e2u + 1)2
,

where P (T ) is the polynomial given by

P (T ) = 4 + (7 +
√
3)T + 4T 2 −

√
3T 3 − 1 +

√
3

2
T 4.

We now estimate P (T ) for T ≥ 0 from below:

P (T ) ≥ 4 + 8T + 4T 2 − 2T 3 − 2T 4 = 2(1 + T )(2 + 2T − T 3).

Since Q(T ) = 2 + 2T − T 3 is concave on [0,+∞), we have

Q(T ) ≥ min{Q(0), Q(7/4)} = 9/64 > 0 for 0 ≤ T ≤ 7/4.

Hence, we have proved that e2u < 1 + χ(u) and thus (4.12) holds for 0 < u ≤ log(11/4).
Finally, we prove that d(E∗(u)) = χ(u) for such u. Indeed, the inequality

|iet+iθ − iet−iθ| < |iet+iθ − i|
would hold otherwise. Then the two-point subset E = {i, iet+iθ} of E∗(u) satisfies
hH(E) = 2u, d(E) = d(E∗(u)) and d(E, ∂H) = d(E∗(u), ∂H) = 1. Thus, we would
have

2u

log(1 + χ(u))
>

2u

JH(E∗(u))
=

2u

JH(E)
≥ κ2(H) = 1

by Lemma 4.1. This contradicts (4.12). In this way, we have proved that d(E∗(u)) =
χ(u). �



INTRINSIC GEOMETRY AND BOUNDARY STRUCTURE OF PLANE DOMAINS 15

Lemma 4.13. Let 0 < u < +∞. The condition ϕ(2u) ≥ 2u holds if and only if u ≤ u0,
where ϕ is given in (4.3) and u0 ≈ 0.831443 is the positive solution to the equation

4 cosh4 u = cosh 4u.

Proof. We observe that for u > 0,

ϕ(2u) = 2 artanh
[
(sinh 2u)/

√
cosh 4u

]
< 2u

⇔ sinh 2u√
cosh 4u

=
2 sinhu cosh u√

cosh 4u
< tanhu =

sinh u

cosh u

⇔ 4 <
cosh 4u

cosh4 u
.

Since (cosh 4u)/ cosh4 u increases from 1 to 8 when u moves from 0 to +∞, there exists
a unique number u0 > 0 satisfying the relation 4 = (cosh 4u0)/ cosh

4 u0. We now see that
ϕ(2u) < 2u if and only if u > u0. �

The following elementary result is also needed later.

Lemma 4.14. The function f(x) = x/ log(1 + 2 sinh x) strictly increases from 1/2 to 1
as x moves from 0 to +∞.

Proof. Because f(x) = x/ log(ex − e−x + 1), differentiation yields

f ′(x) = h(x)/
[
log(ex − e−x + 1)

]2
, where h(x) = log(ex − e−x + 1)− x(ex + e−x)

ex − e−x + 1
.

Further, we have

h′(x) = − x(ex − e−x)

ex − e−x + 1
+

x(ex + e−x)2

(ex − e−x + 1)2
=

x(e−x − ex + 4)

(ex − e−x + 1)2
=

2x(2 − sinh x)

(1 + 2 sinh x)2
.

We now see that h′(x) > 0 for 0 < x < arsinh 2 and h′(x) < 0 for arsinh 2 < x. Since
h(0) = 0 and

h(x) = x+ log(1 + e−x − e−2x)− x
1 + e−2x

1 + e−x − e−2x
= O(xe−x) = o(1)

as x → +∞, the function h(x) is positive for all x > 0. Hence, f ′(x) > 0 for all x > 0,
which implies that f(x) is strictly increasing in x > 0. It is easy to see that f(x) → 1/2
as x → 0 and that f(x) → 1 as x → +∞. �

We are ready to prove our result.

Lemma 4.15. Let u > 0. Then the quantity M(u) defined in (4.6) is evaluated as

M(u) =

{
χ(u) if 0 < u < u0,

2 sinh 2u if u0 ≤ u,
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where χ(u) is given in (4.9) and u0 ≈ 0.831443 is the positive solution to the equation

4 cosh4 u = cosh 4u. Moreover, when 0 < u < u0, a set E ∈ E(u) satisfies d(E) = M(u) if
and only if E = E∗(u).

Proof. We denote the circle ∂∆(i, 2u) by C in the following. Since every E ∈ E(u) is
contained in the closed disk ∆(i, 2u), the diameter d(E) is at most 2 sinh 2u by Lemma
4.2(ii). Hence, we observe that

M(u) ≤ 2 sinh 2u, u > 0.

First, we assume that u ≥ u0; equivalently by Lemma 4.13, ϕ(2u) ≤ 2u. Let z1, z2
be the endpoints of the horizontal diameter of the boundary circle C = ∂∆(i, 2u). Note
that Im zj = cosh 2u > 1. Then, by Lemma 4.2(iii), hH(z1, z2) = ϕ(2u) ≤ 2u. Thus,
E = {i, z1, z2} ∈ E(u) which implies d(E) = 2 sinh 2u ≤ M(u). Therefore, we have proved
that M(u) = 2 sinh 2u. Note that the extremal set E is not necessarily unique when
ϕ(2u) < 2u (for instance, we can rotate the diameter a little about the Euclidean center
of C).

Next, we assume that u < u0; namely, ϕ(2u) > 2u. We prove that there exists a set
E0 ∈ E(u) attaining the supremum in (4.6); namely, M(u) = d(E0). Indeed, by definition,
we can find a sequence of sets Ek in E(u) such that d(Ek) → M(u) as k → ∞. Since each
E ∈ E(u) is contained in the closed hyperbolic disk ∆(i, 2u), by passing to a subsequence
if necessary, we may assume that Ek = {i, zk, wk} and zk → z∞ and wk → w∞ as k → ∞
for some z∞, w∞ ∈ ∆(i, 2u). By continuity, we have d(E∞) = M(u) for E∞ = {i, z∞, w∞}.
We have to check that E∞ belongs to E(u). If E∞ consists only of two points, by Lemma
4.1,

log(1 +M(u)) ≤ JH(E∞) ≤ hH(E∞) = 2u,

which contradicts Lemma 4.11 because u ≤ u0 < log(11/4). We have proved the claim.
Now assume that E0 = {i, z0, w0} ∈ E(u) satisfies d(E0) = M(u). By assumption, we

have z0 ∈ ∆(i, 2u)∩∆(w0, 2u). Observe that z0 ∈ ∂∆(i, 2u) = C in the present situation.
In fact, let r = hH(z0, w0) and suppose hH(z0, i) < 2u. Then z0 can be moved along the
circle ∂∆(w0, r) upwards a bit to get a new point z′0 in such a way that

Im z0 < Im z′0, hH(z
′
0, i) < 2u, hH(z

′
0, w0) = r and |z0 − w0| < |z′0 − w0|

by Lemma 4.2 and Remark 4.4. Hence we would have hH(E
′
0) = hH(E0) and d(E0) < d(E ′

0)
for E ′

0 = {i, z′0, w0}. This, however, violates the initial assumption that d(E0) = M(u).
Therefore, we conclude that hH(z0, i) = 2u. In the same way, we obtain hH(w0, i) = 2u.
We can further prove, as before (cf. the proof of Lemma 4.11), that |z0 − w0| = d(E0).

The remaining task is now to determine the configuration of the points z0, w0 on the
circle C maximizing the quantity |z0 − w0| under the constraints hH(z0, w0) ≤ 2u and
min{ Im z0, Imw0} ≥ 1. We recall that the hyperbolic distance of the endpoints of an
arbitrary Euclidean diameter of C is at least ϕ(2u) by Lemma 4.2(iii). We first suppose
that ϕ(2u) < 2u. Let C0 be the shorter component of C \ {z0, w0}. It is evident that the
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chord |z0 − w0| is shortest when (and only when) z0 and w0 are situated symmetrically
with respect to the imaginary axis. Therefore, we have

E0 = E∗(u) and M(u) = 2u/ log(1 + d(E∗(u))) = ξ(u) .

By the above proof, uniqueness of the extremal set for 0 < u ≤ u0 is clear. Thus, the
proof is now complete. �

Remark 4.16. In view of Lemmas 4.11 and 4.14, as a corollary of the last lemma, we
have the inequality

inf
E∈E(u)

2u

JH(E)
=

2u

log(1 +M(u))
< 1

for every u > 0.

We are now in a position to prove the following theorem.

Theorem 4.17. There is a zero u = u∗ of the derivative ξ′(u) of the function

ξ(u) =
2u

log(1 + χ(u))

in the interval 0 < u < u0 ≈ 0.83 such that

κ(H) =
hH(z

∗, w∗)

log(1 + |z∗ − w∗|) =
hH(E

∗)

log(1 + d(E∗)/d(E∗, ∂H))
,

where u0 is given in Lemma 4.13, E∗ = E∗(u∗) = {i, z∗, w∗}, z∗ = iet
∗+iθ∗ , w∗ = iet

∗−iθ∗

and t∗, θ∗ are given in (4.8) and (4.7), respectively, for u = u∗. Moreover, if κ(H) =
hH(E)/ log(1 + d(E)/d(E, ∂H)) for a three-point set E in H, then there are real numbers

a, b with a > 0 such that E = aE∗ + b.

Proof. Lemma 4.15 implies that for u ≥ u0 = 0.831 . . . ,

2u

log(1 +M(u))
=

2u

log(1 + 2 sinh 2u)
.

Since the function x/ log(1 + 2 sinh x) is increasing in 0 < x < +∞ by Lemma 4.14, we
can restrict the range of the infimum in (4.5) to (0, u0]:

κ(H) = κ3(H) = inf
0<u≤u0

2u

log(1 +M(u))
= inf

0<u≤u0

2u

log(1 + χ(u))
= inf

0<u≤u0

ξ(u),

where χ(u) is given in (4.9). By the form of χ(u) in (4.9), we observe that χ(u) = 2u +
2
√
3u2+O(u3) as u → 0+. Thus, we obtain ξ(u) ≥ 2u/ log(1+χ(u)) = 1−(

√
3−1)u+O(u2)

as u → 0+. In particular, ξ(0+) = 1 and ξ′(0+) = 1−
√
3 < 0. Since ξ′(u0) = 0.1917 · · · > 0,

the above infimum of ξ(u) is attained at its critical point in (0, u0).
The last assertion easily follows from the uniqueness of the extremal set in Lemma 4.15.

The proof is now complete. �
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See Figure 2 for the graph of the function 2u/ log(1 + M(u)). By numerical compu-
tations, we obtain u∗ ≈ 0.432335123777, t∗ ≈ 0.727535978839, θ∗ ≈ 0.419463976058, and
κ(H) = ξ(u∗) ≈ 0.8750987500145. Note that by Theorem 1.5 κ(H) = κ(Ω) for a convex
hyperbolic domain Ω. In conclusion, we have the following theorem:

Theorem 4.18. For any convex hyperbolic domain Ω, κ(Ω) ≈ 0.875098750014.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.6

0.7

0.8

0.9

1.0

Figure 2. The graph of 2u/ log(1+M(u)) (the thick line); the blue curve
indicates the graph of ξ(u) and the red one does the graph of 2u/ log(1 +
2 sinh 2u)

Finally, we prove Theorem 1.6.

Proof of Theorem 1.6. It remains to prove the first assertion. Let Ω ( C be a convex
domain and suppose that κ(Ω) = hΩ(E)/JΩ(E) for a compact subset E of Ω. As in
the proof of Lemma 2.1, we take points z0, z1, z2 ∈ E so that d(E) = |z1 − z2| and
d(E, ∂Ω) = d(z0, ∂Ω) and let E0 = {z0, z1, z2}. (Since κ(Ω) = κ(H) < 1, the set E0

contains exactly three points.) By Lemma 2.1, we have κ3(Ω) = κ(Ω). Thus, in the
chain of inequalities (2.2), the last term is the same as the initial term. Thus, we have
hΩ(E) = hΩ(E0). Hence κ(Ω) = hΩ(E0)/JΩ(E0).

Let ζ0 ∈ ∂Ω be such that d(E0, ∂Ω) = d(z0, ∂Ω) = |z0 − ζ0|. Take a half-plane H as
in the proof of Lemma 3.4 such that Ω ⊂ H and z0 ∈ ∂H. Then JΩ(E0) = JH(E0) and
hΩ(E0) ≥ hH(E0). If Ω is a proper subdomain ofH, then we would have hH(E0) < hΩ(E0).
Thus,

κ(H) ≤ hH(E0)

JH(E0)
<

hΩ(E0)

JΩ(E0)
= κ(Ω).

On the other hand, Theorem 1.5 yields κ(H) = κ(Ω), which is a contradiction. Thus, Ω
equals H, a half-plane. �
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5. Application to Capacity Estimation

Finally, we apply the results above to capacity estimation. First, we recall some basic
notions.

Definition 5.1. [18, Def. 9.2, p. 150] A pair (Ω, E) of a domain Ω in C and a non-empty
compact subset E of Ω is called a condenser. The capacity of this condenser is defined to
be

cap (Ω, E) = inf
u

∫∫

C

|∇u(z)|2dxdy (z = x+ iy),

where the infimum is taken over the family of all non-negative functions u in the Sobolev
class W 1,2

loc (C) with compact support in Ω such that u(z) ≥ 1 for z ∈ E.

If Ω is a simply connected proper subdomain of C and E is a (non-degenerate) contin-
uum in Ω such that the set R = Ω \ E is a doubly connected domain (a ring), then its
modulus is known to be 2π/cap (Ω, E).

We define the homeomorphism µ : (0, 1) → R+ by the formula (see, e.g., [18, 7.4.1, p.
122])

µ(r) =
π

2
· K(

√
1− r2)

K(r)
,

where K(r) is Legendre’s complete elliptic integral of the first kind defined by

K(r) =

∫ 1

0

dx√
(1− x2)(1− r2x2)

.

It is known that µ(r) represents the modulus of the Grötzsch ring D \ [0, r]. In particular,
µ(r) decreases from +∞ to 0 as r moves from 0 to 1. We note that 2π/µ(r) is the capacity
of D \ [0, r]. For later convenience, we put

Φ(x) =
2π

µ(tanh(x/2))
, 0 < x < ∞.

Note that Φ(x) increases from 0 to +∞ as x moves from 0 to +∞. We are ready to give
the main result in this section. Recall that JΩ(E) = log(1 + d(E)/d(E, ∂Ω)).

Theorem 5.2. Let E be a continuum in a simply connected domain Ω ( C. Then the

following are valid.

(i) The inequality

cap (Ω, E) ≥ Φ(κ(Ω)JΩ(E)) ≥ Φ(κ0JΩ(E))

holds, where κ0 is given in (1.7).
(ii) If Ω is convex,

cap (Ω, E) ≥ Φ(κ1JΩ(E))),

where κ1 = κ(D) > 0.87509875.
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Proof. Let f : Ω → D be a conformal homeomorphism and set E ′ = f(E). Since the
capacity and the hyperbolic distance are conformally invariant, we obtain

cap (Ω, E) = cap (D, E ′) ≥ Φ(hD(E
′)) = Φ(hΩ(E)),

where we used a consequence of the circular symmetrization (see [18, Lemma 9.20, p.
163]). Other parts follow from Corollary 1.8 and Theorem 4.18. �

Example 5.3. Consider next an example where Ω = {z : −1 < Im z < 1} and E = [1, 2].
Because Ω is convex, it follows from Theorem 5.2 that

cap (Ω, E) ≥ Φ(κ1JΩ(E)) ≈ 2π

µ(0.43754937 log 2))
> 2.4288.

By applying the circular (spherical) symmetrization (see [18, 9.1, pp. 155-157]) with the
origin as a center and x-axis as the symmetrization axis. Observe first that the negative
x-axis is contained in the complement of the symmetrized condenser whereas [1, 2] remains
invariant and hence

cap (Ω, E) ≥ τ2(1) = 2,

where τ2(t) denotes the capacity of the Teichmüller ring C \ ([−1, 0] ∪ [t,+∞)) for t > 0
(see [18, 7.3, pp. 120]), which is a weaker lower bound for the capacity than what we
proved above. On the other hand, if we take into account that the whole left half-plane
is contained in the complement of the symmetrized condenser, we obtain

cap (Ω, E) ≥ Φ(log 2) =
2π

µ(tanh(log
√
2))

≈ 2.55852.

Hence the value of our bound given in Theorem 5.2 lies between these two bounds ob-
tained by symmetrization. Finally, let us find the exact value of cap (Ω, E). Obviously,

cap (Ω, E) = cap (Ω, E0), where E0 = [0, 1]. Note that the function f(z) =
2

π
log

1 + z

1− z
maps the unit disk D onto Ω and that f−1(E0) = [0, tanh(π/4)]. Thus

cap (Ω, E) = cap (Ω, E0) = cap (D, [0, tanh(π/4)]) =
2π

µ(tanh(π/4))
= Φ(

π

2
) ≈ 3.75108.
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