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Abstract: Global terrestrial biodiversity hotspots (GBH) represent areas featuring exceptional
concentrations of endemism and habitat loss in the world. Unfortunately, geospatial data of
natural habitats of the GBHs are often outdated, imprecise, and coarse, and need updating for
improved management and protection actions. Recent developments in satellite image availability,
combined with enhanced machine learning algorithms and computing capacity, enable cost-efficient
updating of geospatial information of these already severely fragmented habitats. This study aimed
to develop a more accurate method for mapping closed canopy evergreen natural forest (CCEF) of the
Eastern Arc Mountains (EAM) ecoregion in Tanzania and Kenya, and to update the knowledge on its
spatial extent, level of fragmentation, and conservation status. We tested 1023 model possibilities
stemming from a combination of Sentinel-1 (S1) and Sentinel-2 (S2) satellite imagery, spatial texture
of S1 and S2, seasonality derived from Landsat-8 time series, and topographic information, using
random forest modelling approach. We compared the best CCEF model with existing spatial
forest products from the EAM through independent accuracy assessment. Finally, the CCEF model
was used to estimate the fragmentation and conservation coverage of the EAM. The CCEF model
has moderate accuracy measured in True Skill Statistic (0.57), and it clearly outperforms other
similar products from the region. Based on this model, there are about 296,000 ha of Eastern Arc
Forests (EAF) left. Furthermore, acknowledging small forest fragments (1–10 ha) implies that the
EAFs are more fragmented than previously considered. Currently, the official protection of EAFs
is disproportionally targeting well-studied mountain blocks, while less known areas and small
fragments are underrepresented in the protected area network. Thus, the generated CCEF model
should be used to design updates and more informed and detailed conservation allocation plans to
balance this situation. The results highlight that spatial texture of S2, seasonality, and topography are
the most important variables describing the EAFs, while spatial texture of S1 increases the model
performance slightly. All in all, our work demonstrates that recent developments in Earth observation
allows significant enhancements in mapping, which should be utilized in areas with outstanding
biodiversity values for better forest and conservation planning.
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1. Introduction

Global terrestrial biodiversity hotspots (GBH) represent areas featuring exceptional concentrations
of endemism and habitat loss in the world [1]. The 36 GBHs recognized today harbor 50% of vascular
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plants and 42% of terrestrial vertebrates in only 2.3% of the world’s land area. The majority of
GBHs are tropical forest ecosystems that are not only valuable for their biodiversity but also for
their role in hydrological and carbon cycles, moderating environmental extremes, and provision of
other ecosystem services for hundreds of millions of people [1–3]. Habitat loss and fragmentation
due to the expansion of anthropogenic land use is considered as the greatest contemporary threat to
these forested GBHs [4–7]. Recent studies predict that fragmentation, i.e., the division of habitat into
smaller and more isolated patches may become the future norm for tropical forest ecosystems [8–10].
It is widely accepted that limited conservation resources should be focused on these areas to prevent
global environmental degradation and loss of biodiversity [1,11,12].

Forest fragmentation causes multiple impacts for ecological resilience of tropical forests through direct
habitat loss, reduction of fragment size, increase in edge effects, and spatial isolation, while fragmented
forests are also prone to further deforestation [8,9,13,14]. From a conservation perspective, small natural
forest fragments are considered less important compared to large and intact natural forest patches [15–17].
However, small fragments are likely to harbor more irreplaceable unique or rare biodiversity values
compared to an area of the same size in intact landscape [18,19]. Furthermore, they maintain the previous
geographical extent of the habitat and act as stepping stones for wildlife contributing to short- and
long-term species persistence [18,19]. In this context, the forest conservation and management plans
should recognize the contribution of both small and large forest patches into the overall ecosystem
persistence, especially in the areas of outstanding biodiversity values such as the GBHs [11,12].

Unfortunately, geospatial data on natural vegetation of GBHs are generally outdated, imprecise,
and coarse [20]. While recent Landsat-based assessments have provided relatively fine-scale measures
of global forest coverage and dynamics [21], global intact forest landscapes [22], and global hinterland
forests [23], they represent weakly the forest habitats, in particular GBH due to, e.g., generalized
semantics of forests or large minimum mappable unit. Especially in fragmented GBHs, small,
linear, and isolated forest fragments are often underrepresented in such data sets [8,22–24]. To make
well-informed decisions on management and conservation, geospatial data must be able to discriminate
natural undisturbed forests from other forest types (e.g., plantations or degraded forests) and produce
reliable estimations on forest coverage and fragmentation, which is not possible through some global
data sets [20,21]. Thus, updated forest mapping methods increasing the spatial accuracy of the extent
and boundaries of natural forest remnants are needed at contextually relevant scale. This is vital for
the establishment of cost-efficient and accurate monitoring methods of forest changes such as detection
of canopy disturbances [25,26].

Recent advances in satellite data availability and temporal, radiometric, and spatial resolution
provided by the Sentinels, has made it possible to significantly improve the identification of small
fragments in tropical forests [26,27]. Furthermore, methodological advances, such as time series
analysis of optical satellite imagery or synergistic approaches that combine the advantages of optical
and synthetic aperture radar (SAR) imagery, have shown to improve vegetation classification in tropical
areas when detecting detailed vegetation characteristics [28–32]. Moreover, advances in machine
learning algorithms, such as random forests, have improved models regarding forest distribution,
types, and attributes [33,34]. The emergence of cloud computing platforms, such as Google Earth
Engine (GEE), have made processing of enormous data volumes with complex algorithms technically
possible [35]. The development of applications such as Google Earth and Bing maps allows access to
global coverage of very high-resolution (VHR) satellite imagery, facilitating rigorous reference and
validation sample collection over large areas [36]. Altogether, these developments have diversified
the opportunities for repeatable high-resolution forest mapping and monitoring approaches [21,25].
Such approaches are vital, especially in the countries representing Global South where access to data
and computing power is restricted.

The Eastern Arc Mountain (EAM) forests of Tanzania and Kenya are a major component of the East
Afromontane biodiversity hotspot, one of the most fragmented GBHs in the world [37–39]. Previous
studies have estimated that almost 80% of the EAM forests have been cleared [40–43]. Several studies
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have evaluated the historical and present forest coverage of Eastern Arc Forests (EAFs) [37,43–45].
More recently, Newmark and McNeally [39] evaluated the amount and distribution of natural forest
fragments, reporting a higher number of smaller fragments across the EAM. However, the spatial
distribution of small remnants, as well as open gaps within large intact forest patches, remains unknown
in the EAM and their role in promoting connectivity and significance as nodal points for habitat
regeneration and rehabilitation has been unaccounted [19,39,46].

In this study, we developed a high-resolution (10 m) closed canopy evergreen natural forest
(CCEF) model (generated from 10–30 m data) across the EAM through testing optimal combinations of
multi-temporal and multi-sensor satellite imagery and ancillary geospatial data. The CCEF model was
then compared to previous spatial estimates of the EAF and used to evaluate the conservation status of the
natural forests in the EAM. Results were discussed in the light of conservation and management actions.
Furthermore, we discussed the need and potential of similar mapping approaches in updating the spatial
information of other invaluable tropical forest ecosystems located in generally data-scarce Global South.

2. Methods and Study Area

2.1. Study Area

The Eastern Arc Mountains consist of 13 separate mountain blocks that stretch geographically
from southwest Tanzania to south Kenya (Figure 1). The mountains share similar geology and
rainfall patterns, governed by the Indian Ocean climatic regime, supporting humid montane forest
habitats [38,47]. The EAM area holds outstanding biodiversity value, globally ranked among the
most important areas for the conservation of endemic birds and plants [11,42,48], and hosting at
least 96 endemic vertebrate species [38] and four endemic or near-endemic primate species [49,50].
At the same time, millions of people depend for their livelihood on these tropical mountain forest
ecosystems that provide a source of water, wood for fuel and construction, charcoal, handicrafts,
and medicines [51,52]. Deforestation and forest degradation are the biggest threats to EAFs. Fortunately,
a majority of the remaining EAFs are protected via government and private protection areas, and recently
many of the nature and forest reserves have been coded into the International Union for Conservation
of Nature (IUCN) system [53]. Nevertheless, approximately 25% of the EAFs are located outside of the
protected areas [43,47,52].
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2.2. Methods

2.2.1. Methodological Design

The CCEF model was based on freely available satellite images and geospatial data sets.
An overview of the methodological design is illustrated in Figure 2. The approach was divided
into six phases: (1) Data sets’ acquisition and preprocessing, (2) training data collection, (3) value
extraction and variable grouping, (4) random forest model development, (5) validation and map
comparison, and (6) fragmentation and protection status. The sections below describe the phases in
more detail.Remote Sens. 2020, 12, 1429 5 of 21 
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Figure 2. Illustration of methodological design and its six phases. In phase 1, GRD (ground range
detected), GLCM (gray-level co-occurrence matrix), and NDVI (normalized difference vegetation index).
In phase 4, ntree (number of trees) and mtry (number of variables per node). In phase 5, CCEF (closed
canopy evergreen natural forest). In phase 6, ENN (Euclidean nearest neighbor) distance and WDPA
(World Database of Protected Areas).

2.2.2. Data Sets and Preprocessing

As optical Earth observation data, we used Sentinel-2 Multi-Spectral Instrument (MSI) imagery
with spatial resolution of 10–20 m [54]. We screened visually the entire catalogue of Sentinel-2 imagery
available for the study area to extract only images with low cloud coverage on the EAFs, as image
pre-selection has shown to improve the quality of pixel-based composites [55]. Due to frequent cloud
cover in the study area, we had to expand our image acquisition for multiple years (2016–2018).
Altogether, 45 Sentinel-2 top-of-atmosphere (TOA) Level-1C images (Supplementary Materials, Table
S1) were downloaded from the Copernicus Open Access Hub of European Space Agency (ESA) and
atmospherically corrected with Sen2Cor processor. Sen2Cor algorithm associates image-derived
atmospheric properties with the precomputed look-up tables [56]. Default settings of Sen2Cor were
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used. The corrected images were imported to GEE and masked for clouds and shadows using the
available quality band of Sentinel-2 and blue band thresholding. To avoid remaining cloud and
shadow effects, a median pixel composite was calculated from the images and all the visible (B2–B4),
near-infrared (NIR), red edge (B8, B8a, B5–B7), and shortwave infrared (SWIR) bands (B11 and B12)
were extracted for further analysis as these bands have shown to distinguish effectively spectral
variance in forest canopies [57,58].

As radar data, we used the available Sentinel-1 SAR-C Level-1 Interferometric Wide (IW) ground range
detected (GRD) dual-polarized VV (vertical transmit-vertical receive), VH (vertical transmit-horizontal
receive) imagery with spatial resolution of 10 m, which were acquired from the Copernicus Open Access
Hub [59]. Sentinel-1 bands are sensitive to surface structure and moisture content and have shown useful
in forest coverage and structure mapping [60]. Altogether, 33 images were retrieved from 28 September
2008–30 September 2017 (Supplementary Materials, Table S1) since September represents the dry period
throughout the study area with similar conditions considering vegetation phenology and land use practices.
The number of images covering each block varied from three to five depending on the availability of
images. The preprocessing of the SAR images was conducted in Sentinel Application Platform (SNAP) [61]
and included thermal noise removal, image border noise removal, image calibration, radiometric and
geometric corrections, and speckle filtering in order to derive gamma-naught backscatter values (dB) [62].
We used the default settings in each processing step. The images were imported to GEE and masked
for layover and shadow. A mean pixel mosaic was calculated for the whole study area and VV and VH
bands were extracted for further analysis.

Time series of Earth observation products have shown to capture seasonal trends of land cover
features and improve land cover classifications [63]. Our aim was to derive annual phenological
response of vegetation to discriminate between the closed canopy evergreen forest and other type of
vegetation. We used Landsat-8 Operational Land Imager (OLI) Level 1A surface reflectance products
to calculate Normalized Difference Vegetation Index (NDVI) for the entire Landsat-8 epoch in GEE.
The NDVI time series was then fitted with a harmonic model using Fourier transform coefficients of
first order constituting in simple phenological cycles [64]. Four seasonal variables (magnitude, phase,
mean, and standard deviation) were derived from the fitted NDVI model.

Texture measures of satellite images are sensitive to forest structure (variation in crown size,
crown shadow, spacing, and cover) [33]. We generated texture indices for Sentinel-1 and Sentinel-2
bands to assess the ability of the spatial texture to identify closed canopy evergreen forest. We chose
three metrics from a descriptive group (mean, variance, and correlation), three metrics from a contrast
group (contrast, dissimilarity, and homogeneity), and two metrics from an orderliness group (angular
second moment and entropy), calculated based on gray-level co-occurrence matrix (GLCM) [65] as
these texture metrics have shown to capture forest structure efficiently [33,66]. We used the default
parameters in GEE with 3 × 3 pixel window size, resulting in four GLCM with offsets (−1, −1), (0, −1),
(1, −1), and (−1, 0). The directional bands were averaged resulting in one average GLCM from which
the statistics were derived.

Topographic variables have shown to improve models of forest cover [67]. We used global shuttle
radar topographic mission (SRTM) digital elevation model (DEM) to derive altitude, slope, and aspect
at 30-m resolution.

2.2.3. Training Data Collection

The 3000 training samples were randomly distributed to the landscape constrained by the area of
EAM blocks [47] and stratified based on tree coverage percentage (50–70, 70–100) [68] and aspect [69]
(north, east, south, west) to cover the variance within the natural forests in the samples (Supplementary
Material, Table S2). Since our aim was to map closed canopy natural forests, areas with less than 50% of
tree cover were neglected. We used Collect Earth tool of the Open Foris suite to manage the collection
of the samples [70]. The Collect Earth tool allows automatic investigation of Google Earth, Bing Maps,
and GEE from the sample location. The collection was done by interpreting VHR imagery in Google
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Earth and Bing Maps. The interpretation was conducted using 30-m grid cells to account for the
mislocation of different data sets. We defined the natural forest as evergreen forest with canopy closure
at least 75%, as we wanted to focus on the montane forests and rule out the semideciduous woodlands.
Due to cloud cover, low image quality, and lack of recent image availability, we neglected 298 samples,
resulting in a total of 2702 samples, of which 1081 represented natural forests. These samples were
used as dependent variables in the modelling (Figure S1).

2.2.4. Value Extraction

Altogether, 115 variables were extracted from the training sample locations (Table 1) using the
original resolution of each satellite data set.

2.2.5. Variable Grouping

Our aim was to test the best variable combination out of all possible combinations. However,
testing all the possible variable combinations of the 115 independent variables would have led to
billions of different combinations. To avoid this, the independent variables were grouped into 10 groups
(Table 1) describing different properties of the vegetation. Grouping was considered a suitable approach
to test all the possible multi-sensor combinations. Although within group multicollinearity complicates
the estimates of variable importance with this approach, it does not influence the model predictions.

The Sentinel-2 median mosaic bands formed optical variables group containing 10 variables.
The two bands from Sentinel-1 mean mosaic formed a microwave variables group. For Sentinel-2
bands, the calculated texture metrics were grouped based on the texture metrics groups described
in Section 2.2.2, leading to three groups: Descriptive texture of optical, contrast texture of optical,
and orderliness texture of optical. Similarly, the three texture groups were formed from Sentinel-1
bands. The four seasonal variables of NDVI time series formed seasonal group and altitude, slope,
and aspect formed topography group.

Table 1. Variable groups, variables within group, and number of variables in each group.

Group Variables within Group Number of Variables

Optical variables Sentinel-2 bands (B2–B8A, B11–B12) 10
Microwave variables Sentinel-1 bands (VH, VV) 2

Descriptive texture of optical Descriptive group haralicks (mean, variance,
correlation) of Sentinel-2 bands 30

Descriptive texture of microwave Descriptive group haralicks (mean, variance,
correlation) of Sentinel-1 bands 6

Contrast texture of optical Contrast group haralicks (contrast, dissimilarity,
homogeneity) of Sentinel-2 bands 30

Contrast texture of microwave Contrast group haralicks (contrast, dissimilarity,
homogeneity) of Sentinel-1 bands 6

Orderliness texture of optical Orderliness group haralicks (energy, entropy)
of Sentinel-2 bands 20

Orderliness texture of microwave Orderliness group haralicks (energy, entropy)
of Sentinel-1 bands 4

Seasonality of optical Seasonality of Landsat-8 derived NDVI
(magnitude, phase, mean, std) 4

Topography Topography (altitude, slope, aspect) 3

2.2.6. Random Forest Model Development

Modelling was conducted with a random forest (RF) machine learning algorithm. RF has been
widely used in forest modelling based on Earth observation data [33,34,71,72] for its nonparametric
nature and capability to handle dimensionality, multicollinearity, and overfitting [73,74]. RF is an
ensemble learning algorithm developed to improve the classification and regression (CART) method
by building multiple decision trees simultaneously [75]. The final model prediction is made based on
averaging the outcomes of all produced trees [74,75]. The main limitation of RF is its black box nature
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as split rules are unknown [73]. RF models have three main parameters: Number of regression trees
(ntree), number of independent variables tested at each node (mtry), and minimum size of terminal
nodes (node size) [73,75]. RF models were executed in two different platforms: Model development and
cross-validation were conducted in R (version 3.2.2) with randomForest package, due to R’s statistical
capabilities, while the final model was built in GEE.

The training samples (natural forest/other vegetation) were used as dependent variables in the
modelling and all the 115 variables, organized in 10 variable groups, were used as independent
variables. Model development included two main steps: Evaluation of best group combinations and
parameter optimization. In the first step, the model performance was tested with each possible 1023
variable group combinations using default settings (ntree 500, mtry n/3). In the second step, ntree
and mtry were optimized for the best variable group combination from step one [76]. We tested
all mtry settings between 1 and 40, and the following numbers of trees: 100, 200, 500, 1000, 1500,
2000, 3000, and 5000. Both assessments were based on cross-validation with repeated leave-p-out
cross-validation method where 75% of the sample observations was randomly assigned to training
data and the remaining 25% was used as test data. To reduce the effects of permutation, this process
was repeated 30 times.

The results were evaluated with the True Skill Statistic (TSS) as it is independent of prevalence,
and thus a more reliable estimator compared to kappa [77]. For presence-absence model, TSS is
calculated as:

ad− bc
(a + c)(b + d)

(1)

where a is true positives, b is false positives, c is false negatives, and d is true negatives. For calculating
the TSS, model predictions were divided into binary presence-absence data, which was done by
selecting a threshold that would maximize the sum of sensitivity and specificity. In general, TSS values
of 0.2–0.4 can be considered low, 0.4–0.6 moderate, 0.6–0.8 substantial, and 0.8–1.0 perfect [78].

As multicollinearity was not removed from the model, the relative importance of each variable
or variable group could not be evaluated with traditional means. Instead, we used two approaches
to evaluate the importance of variable groups in the models. Firstly, we calculated the frequency of
each variable group in all the 1023 models and ranked based on TSS to find out the variable groups
used most frequently in the best performing models. Secondly, we calculated the alone and drop
contributions of each variable group used in the best model [79,80]. The alone contribution refers to
TSS result of each variable group used alone, while drop contribution indicates the decrease in TSS
when the variable group was removed from the final model.

The final model, developed based on the best variable group combination and model parameters,
was built in GEE to utilize its cloud computing capabilities [35]. The classification target resolution
was set to 10 m, meaning that the data being classified gets automatically resampled to 10-m resolution
with nearest-neighbor method [72].

2.2.7. Validation and Map Comparison

Additional, independent assessment was conducted to estimate the accuracy of the CCEF model.
Before the assessment, we removed the isolated pixels by running a majority filter using four neighboring
cells. Furthermore, we removed manually all forest patches smaller than 1 hectare in size due to their
lower potential biological value [39,81,82] and higher potential inaccuracies [22]. To evaluate the new
information on EAFs gained by the CCEF model we also used the accuracy assessment samples to compare
the CCEF model to two other products estimating the coverage of Eastern Arc Forests: Eastern Arc Forest
Baseline [45] and Forest Fragments of Eastern Arc [39] data sets. The three forest cover layers were stacked as
one forest layer and the samples were distributed according to CCEF model coverage within the stacked
forest layer. In total, 2076 samples were randomly distributed to each block according to the stacked forest
layer coverage per block (Supplementary Material, Table S3). The samples were interpreted through VHR
imagery in Google Earth with a similar setup as in the training sample collection (Figure S3).
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2.2.8. Fragmentation and Protection Status

To evaluate the fragmentation of the forest area we calculated number of patches (NP), patch
area, mean, and standard deviation of Euclidean nearest neighbor distance between patches using
Fragstats version 4 [83]. Furthermore, we estimated the protection status of the EAFs by overlaying
the Geographic Information System (GIS) data of protected areas of World Database of Protected Areas
(WDPA) with the CCEF model [53].

3. Results

3.1. Variable Selection and Parameter Adjustment

The most frequent variable groups in the best performing models were seasonality, descriptive
texture of optical, and topography (Figure 3). The best model (TSS 0.641) used six variable groups:
Optical, descriptive texture of optical, contrast texture of microwave, orderliness texture of microwave,
seasonality of optical, and topography. These variable groups showed different contributions in the
best model. Descriptive texture of optical (90.5%), optical (80.6%), and seasonality (71.6%) showed
the highest explanatory power based on alone contributions (Figure 4A), while seasonality (5.5%),
descriptive texture of optical (5.3%), and topography (3.0%) had the highest importance in the drop
contribution test (Figure 4B). The high and low contributions of optical group in alone and drop
contributions test, respectively, indicated that the explanatory power of optical group overlapped
with other variable group(s), and thus provided relatively minor added value to the final model.
On the other hand, the low and relatively high contributions of topography group in alone and drop
contributions test, respectively, indicated that the topography-related variables had poor explanatory
power alone, but they bring significant value to the final model when combined with the other groups.
Furthermore, the used microwave variable groups, descriptive texture of microwave and orderliness
texture of microwave, had relatively modest alone and drop contributions.
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orderliness, and contrast texture of optical groups were less frequent in the best models. All the models
were built with default parameters (ntree = 500, mtry n/3).
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Figure 4. Alone (A) and drop (B) contributions of the variable groups in the best model proportioned
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The optimization of ntree and mtry parameters had minor effect on TSS (Supplementary Material,
Figure S3). Highest TSS (0.647) was achieved with 3000 trees and 17 variables per node. However,
the highest feasible result in terms of computation time was reached with 500 trees and 6 variables
per node.

3.2. Coverage and Distribution of the Eastern Arc Forest

Based on CCEF model, approximately 296,000 ha of closed canopy natural forest remain in
the EAM (Figure 5A and Table 2). The model area estimate for the whole EAM did not fit within
error-adjusted area estimate calculated based on validation data indicating that the model was a
conservative estimate of the remaining natural forests. Also, compared to the previous maps of EAF
cover, CCEF model estimated less forest cover (Table 2). The overall accuracy (OA) of the CCEF model
was 0.8 and TSS 0.57 tested with the independent validation data set. The accuracy of the CCEF model
varied among the mountain blocks, being highest in Ukaguru and lowest in North Pare. In 10 out of
13 blocks, the CCEF model was the most accurate model compared to the previous forest maps from
the EAM. Complete error matrices are reported in Supplementary Materials (Tables S4–S16).

Table 2. Area estimates and accuracy of forest maps of the Eastern Arc Mountain (EAM) blocks
evaluated based on independent validation data.

CCEF Model FBD [45] Newmark and McNeally [39]

Estimated
Area (ha)

Map Area
(ha)

Map
OA

Map
TSS

Map Area
(ha)

Map
OA

Map
TSS

Map Area
(ha)

Map
OA

Map
TSS

Taita 607 ± 73 623 0.76 0.36 - - - 590 0.76 0.34
North Pare 2287 ± 295 2648 0.7 0.39 2700 0.8 0.59 1546 0.8 0.61
South Pare 11,174 ± 834 10,942 0.87 0.72 13,800 0.75 0.34 11,380 0.78 0.47

West Usambara 23,116 ± 1352 23,578 0.83 0.62 31,900 0.66 0.17 28,213 0.76 0.39
East Usambara 25,995 ± 1603 21,779 0.72 0.55 26,300 0.59 0.09 30,110 0.86 0.57

Nguu 12,472 ± 766 11,799 0.89 0.82 18,800 0.69 0.23 16,170 0.78 0.48
Nguru 21,897 ± 1340 22,666 0.84 0.63 29,700 0.69 0.23 29,927 0.73 0.28

Uluguru 22,704 ± 1291 25,243 0.83 0.56 26,698 0.74 0.38 25,963 0.87 0.68
Ukaguru 12,993 ± 678 13,700 0.93 0.87 17,271 0.6 0.01 17,742 0.8 0.50
Rubeho 35,212 ± 1519 32,394 0.88 0.73 47,131 0.69 0.21 42,274 0.76 0.38

Malundwe 803 ± 68 344 0.9 0.77 174 0.52 0.18 1141 0.58 0
Mahenge 11,789 ± 1235 11,214 0.77 0.48 1918 0.42 0.17 5474 0.3 −0.38

Udzungwa 150,254 ± 5000 119,279 0.75 0.50 135,276 0.6 0.20 195,321 0.66 0.20

Total 333,978 ± 5621 296,209 0.8 0.57 351,668 0.63 0.21 405,851 0.72 0.41
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Figure 5. Highlighted features of CCEF model (A) compared with the forest map of Forestry and
Beekeebing Division (FBD) [45] (center), and Newmark and McNeally [39] (right) in 1:80,000 scale.
Figures (B–D) illustrate the potential of the products for accurate small forest fragment detection,
figures (E–G) illustrate the potential to detect gaps of open or sparsely forested areas within large
fragments, and figures (H–J) illustrate the gaps in the CCEF model caused by persistent cloud cover.

The CCEF model captured the locations of small fragments and revealed the pattern of the
remaining remnants effectively (Figure 5B–D). Moreover, the CCEF model identified the gaps of
nonforested areas within the larger forest patches (Figure 5E–G). However, despite our multi-temporal
and multi-sensor approach, some parts of CCEF model were still contaminated due to persistent cloud
cover (Figure 5H–J).

The remaining EAFs were highly fragmented and isolated (Table 3). Approximately 23,500 ha
(8%) of the forest area is in forest fragments smaller than 10 ha. East Usambara is spatially the most
concise block with relatively small mean distances among forest patches and small standard deviation
of the Euclidean distances. In Nguu, Ukaguru, and Rubeho, there exists multiple separate forest patch
concentrations shown by relatively large mean patch size and high variation of distance between the
patches. Mahenge is the most fragmented block with a high number of small size forest fragments.

The majority of the remaining EAF is protected (Table 3). However, the protection status varies
among the blocks. In Malundwe, all of the forest areas are protected with IUCN, coded Mikumi
National Park. Furthermore, in west and east Usambara over 70% of the forest is protected with
IUCN-coded areas. On the other hand, in Uluguru over 80% of the forest is protected but only 1.3% of
these areas are IUCN-coded and the rest of the forests are protected under national and village forest
reserves. On average, the small remnants (<10 ha) are less protected. The most vulnerable blocks are
Nguru and Mahenge where a vast majority of the forest is located outside the protected areas.

The CCEF model is freely available at Data Publisher for Earth & Environmental Science
(PANGAEA) (https://doi.pangaea.de/10.1594/PANGAEA.914420).

https://doi.pangaea.de/10.1594/PANGAEA.914420
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Table 3. Fragmentation and isolation metrics and protection estimation status of the Eastern Arc forests.

Fragmentation and Isolation Protection Status

Num.of
Patches

Num.of
Patches
(<10 ha)

Forest Area
(<10 ha) (%)

ENN
Mean (m)

ENN StD
(m)

Mean Forest
Patch Area

(ha)

Small Forest
Patches (1–10 ha)
Unprotected (%)

Forests
Unprotected

(%)

Forest
Protected with

IUCN (%)

Forests
Protected

(%)

Taita 64 58 26.8 224 477 10 100 100 - -
North Pare 92 74 7 268 486 29 66 41.1 53.9 58.9
South Pare 226 195 5.1 260 569 48 62 13.4 3 86.6

West Usambara 411 342 3.9 191 507 57 63 23.3 75.6 76.7
East Usambara 491 433 4.9 120 170 44 53 27.8 72.2 72.2

Nguu 167 147 3.5 416 1683 71 35 13.3 70.8 86.7
Nguru 298 262 2.8 199 298 76 92 77.7 21.8 22.3

Uluguru 732 691 6.5 204 463 34 87 19.3 1.1 80.7
Ukaguru 177 152 3 371 895 77 79 15.6 31.8 84.4
Rubeho 570 496 4 250 797 57 35 38 54.7 62

Malundwe 29 28 22.9 171 272 12 0 0 100 100
Mahenge 1569 1446 33 204 351 7 97 89.5 0.2 10.5

Udzungwa 5259 4739 9.8 190 - 22 19 6.4 44.8 93.6

Total/Mean 10,085 9063 7.7 203 581 29 88 23.9 42.1 76.1

ENN = Euclidean nearest neighbor distance.
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4. Discussion

4.1. Extent, Fragmentation, and Protection of Eastern Arc Forests

The produced CCEF model showed that the EAF extent was lower than previous studies
estimated, even though our study included the previously excluded small fragments (1–10 ha) [39,45].
The difference in the EAF coverage, compared to the previous estimations, is explained by the fact that
the CCEF model identified the gaps of nonforested areas within the larger forest patches. Furthermore,
the CCEF models improved the separation of closed canopy evergreen natural forests from other
woody vegetation within the EAM including semideciduous woodlands, degraded forests, agroforests,
and plantations. Furthermore, acknowledging the small fragments showed that the ecosystem is
more fragmented, as previously considered. The number of fragments is over 30 times higher and
the fragment size is one-third of the values reported previously [39]. However, on a positive side,
the average distance from a fragment to the nearest fragment is less than previously reported.

Comparison of the CCEF model with the existing protected area network showed that some 24% is
unprotected, confirming the previous estimates [43,47,52]. However, there are significant geographical
differences in protected area coverage. Many previous studies on biodiversity values of the EAM have
concentrated on the east and west Usambara, Uluguru, and Udzungwa, as these mountain blocks
are considered most important for biodiversity [38]. In these mountain blocks, a vast majority of the
forests are protected. However, in less-studied mountains of Nguru, Rubeho, or Mahenge [84] a vast
majority of the forest remains unprotected.

In total, some 88% of forest patches less than 10 ha in size are unprotected. Although it is well
known that significant conservation measures should be and have been targeted to the large forest
fragments [39,82], there is a global tendency to underestimate the value of small fragments [19,46].
It is highly likely that many of the small fragments are holding significant extinction debt and their
rehabilitation and connection to the larger fragments should be a priority. Therefore, we suggest that
CCEF model should be used to evaluate and update the representativeness of the protected area network
and target new inventories while acknowledging the limitations in available conservation resources.

4.2. Accuracy of the CCEF Model

Overall, the produced CCEF model had a moderate accuracy (TSS 0.57). The assessment was
done with independent and statistically robust accuracy assessment following the state-of-the-art
guidelines [85]. Since the confidence interval for the natural closed canopy forest did not include the
value for the map area of CCEF model, the model can be considered a conservative estimate on the
remaining EAFs. However, the discrepancy between the estimated area and map area was largely
caused by the discrepancy of natural forest cover in Udzungwa. As the accuracy assessment of the
previous forest estimates were based on expert opinion, our approach provided also a more robust
assessment for previously mapped forest areas [39,45].

However, there were clear variations in model performance among EAM blocks, as shown by the
TSS value range (0.36–0.87) (Table 2). The availability of cloud-free and temporally consistent data is
a key prerequisite for developing a consistent model. In cloud-prone areas, the pixel-based median
mosaic may be temporally inconsistent, as several images are needed to construct a cloud-free mosaic.
This may have caused lower performance of the CCEF model in some blocks and can explain the
discrepancy of area between the model and error-adjusted area estimate calculated based on validation
samples. Furthermore, some clouds remained in the median mosaics, especially in the northern
parts of the study area, leaving gaps in the CCEF model. As the Sentinel-2 image archives update,
the availability of cloud-free images from the EAM will increase. Thus, updating the model every
2–3 years enables identification of the dynamics of EAFs and increases the reliability of the coverage.

The number of small fragments in the CCEF model was large and to some extent caused by
the methodological approach. At some areas, natural closed canopy forests were found in patches
surrounded by forests of sparser canopy cover. Such areas were found, e.g., in Mahenge and in
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Udzungwa scarp, where the forest cover is variating in terms of canopy cover and structure. In such
areas, the CCEF model was only identifying the closed canopy patches, leading to a highly fragmented
structure. These forest blocks showed also the highest discrepancies in forest area compared to
Newmark and McNeally’s [39] work as they used human interpretation to define the forest borders.
However, we argue that the spatial pattern of closed canopy forest patches is valuable information for
conservation and management purposes. Future studies should concentrate on the forest disturbance
dynamics within these areas and study the processes behind the sparser canopy cover areas.

4.3. Optimal Modelling Setup for Detecting Closed Canopy Natural Forests

The results of our study demonstrated that combining data from multiple sensors (optical,
microwave) and of multiple natures (texture, topography, seasonality) improves the detection of closed
canopy natural forests in a tropical environment. However, certain variable groups are clearly more
valuable in increasing the model performance.

We found that texture metrics of Sentinel-2 imagery are highly meaningful predictors of closed
canopy natural forest. This suggests that the heterogeneous texture of the natural forest canopy,
caused by different age and height structures and different phenological phases of different species,
can be identified with the texture metrics accounting for the neighborhood reflectance relationships.
The importance of texture metrics has also been reported by other recent studies mapping forest types
and species [33,70,86,87]. In addition to the texture, we found adding variables describing seasonality
and topographical variance increases model performance, also reported by previous land cover
classification studies [71,88,89]. In EAMs, many of the blocks are surrounded by deciduous woodlands
with different temporal spectral signature compared to evergreen forests [38], which explains the
importance of seasonality group in the model. Furthermore, as the EAFs locate at variating and rugged
terrain, the hydrological conditions and solar radiation may vary substantially in small geographical
areas [90], which explains the importance of topographical variables in the CCEF model.

Recent studies have shown that combining radar with optical data improves detection of tropical
rainforests [88], mangrove forests [91], forest plantations [33], and upland vegetation [92], as well as
forest attributes such as above-ground biomass or volume-growing stock [30,34,93]. Results of this
study are in concordance with this knowledge as the best performing model included two microwave
texture variable groups. However, their influence on the model’s performance was modest in both
alone and drop contributions test. Furthermore, radar variables were not frequently present in the
best models. Considering the tedious preprocessing of radar data, its use in similar studies should be
carefully considered.

Bundling independent variables to groups caused certain limitations for assessing variables’
importance, though it was a necessity for computational reasons. Few variables, such as mean of
texture and mean of seasonality, correlated with the band reflectance values [66] as they are simple
descriptive statistical measures. Thus, these variables could have been grouped to multiple groups.
The texture and seasonality groups, where these variables were eventually placed, had high average
TSS and alone and drop contribution test results. However, it can be questioned if these groups would
have had similar contribution on the model’s performance if these correlating variables had placed
to Optical group instead. The grouping of the variables also limited the possibility to run standard
statistical tests for variable importance due to the collinearity between the groups. Therefore, this
study was only able to provide indicative guidance on the importance of the variable groups instead of
full statistical evidence on independent variables.

On the modelling side, it is uncertain if 30 repetitions were enough to remove randomness
caused by permutation from the averaged results. Alternative options could be repeated by random
subsampling cross-validation with only a fraction of the observations used at each repetition or
out-of-bag error estimates integrated to RF, though the reliability and independence of the latter is still
debated [73,80]. Furthermore, in our case, modifying the RF model parameters ntree and mtry had
negligible impact on model performance. The TSS variations were so minor that they could fit into the
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stochasticity caused by permutation. However, optimizing these parameters is an important step in
the model development as their importance is context dependent [76].

4.4. Global Considerations

As is shown by this study, combining the advantages of multiple Earth observation sensors,
machine learning approaches, and cloud computing has a significant potential to improve mapping of
highly valuable fragmented evergreen forests. Previous studies have shown this potential in other key
habitats, such as wetlands and heathlands [91,92,94,95].

Even though spatial information on most of the tropical forest ecosystems and GBHs exists,
this information is often outdated and coarse [20,96–98]. Meanwhile, highly accurate baseline data are
becoming a prerequisite for advanced Earth observation-based forest monitoring, such as detection of
canopy disturbance and forest degradation [25] or in detailed ecological studies on the movements of
those endangered species inhabiting these habitats, such as the primates of EAM [49]. Thus, there is a
continuous need to improve the mapping of GBHs. We urge researchers and practitioners to consider
the need to update the spatial information of other areas with outstanding biodiversity values.

5. Conclusions

This study demonstrated that recent developments in Earth observation regarding image
availability, quality, and processing capacity, allow significant enhancements in mapping accuracies
of fragmented tropical forests over large geographic areas. The results show that texture metrics of
Sentinel-2 imagery, seasonality metrics derived from Landsat-8 time series, and topography metrics
derived from SRTM DEM are highly meaningful predictors of closed canopy natural forest in the EAM
of Tanzania and Kenya. Furthermore, texture metrics of Sentinel-1 imagery were found to improve the
model performance slightly. The developed CCEF model shows that the coverage of the EAF is smaller
than previously estimated, the remaining forests are more fragmented with 88% of the remnants
being less than 10 ha in size, and that 24% of the natural forests are outside of a current conservation
network. Therefore, the CCEF model facilitates evaluation and updates on the representativeness of
the protected area network in this valuable GBH. The methodological setup was based on open source
data and tools, providing a feasible approach for mapping and monitoring tropical forest remnants,
especially relevant in the countries representing Global South where access to data and computing
power has previously prohibited developing efficient and cost-effective approaches.
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