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We demonstrate that quantum incompatibility can always be detected by means of a state discrimination
task with partial intermediate information. This is done by showing that only incompatible measurements
allow for an efficient use of premeasurement information in order to improve the probability of guessing the
correct state. Thus, the gap between the guessing probabilities with pre- and postmeasurement information
is a witness of the incompatibility of a given collection of measurements. We prove that all linear
incompatibility witnesses can be implemented as some state discrimination protocol according to
this scheme. As an application, we characterize the joint measurability region of two noisy mutually
unbiased bases.
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Introduction.—Quantum incompatibility is one of the
key features that separate the quantum from the classical
world [1]. It gives rise to several among the most intriguing
quantum phenomena, including measurement uncertainty
relations [2], contextuality [3], and nonlocality [4]. So far,
however, the direct experimental verification of quantum
incompatibility has been a demanding task, as the known
detection methods, based on Bell experiments [5–7] and
steering protocols [8–11], rely on entanglement.
In this paper, we show that quantum incompatibility can

be detected by means of a state discrimination task with
partial intermediate information. More precisely, we con-
sider a scenario where Alice sends Bob a quantum system
that she has prepared into a state chosen from one of n
disjoint state ensembles, but she reveals to him the chosen
ensemble only at a later time. Bob can then decide to
perform his measurement either before or after Alice’s
announcement and, importantly, the achievable success
probabilities can be compared. We show that Bob can
benefit from prior compared to posterior measurement
information and improve his probability of guessing the
correct state only if his measurements are incompatible.
Looking at it from another perspective, the difference

between Bob’s guessing probabilities with pre- and post-
measurement information is a witness of the incompati-
bility of the collection of measurements he uses in the
discrimination task. Since the complement set of incom-
patible collections of measurements is the closed and
convex set of all the compatible collections of measure-
ments, this observation sets the previous detection scheme
for incompatibility within the broader framework of
witnesses.

In general, a witness is any experimentally assessable
linear function whose value is greater than or equal to 0
whenever the measured object does not have the inves-
tigated property, but gives a negative value at least for some
object with that property. The paradigmatic example of
witnesses is that of entanglement witnesses, which have
become one of the main methods to detect entanglement
[12,13]. Other examples include the detection of non-
Gaussianity of states [14], dimensionality of correlations
[15], or for the unital channels the detection of not being a
random unitary channel [16]. The fact that witnesses can be
applied to detect incompatibility has been recently noted
in [17,18].
We prove that any incompatibility witness essentially

arises as a state discrimination task with intermediate
information of the type described above. By standard
separation results for convex sets, this implies that all
incompatible sets of measurements can be detected by
performing some state discrimination where premeasure-
ment information is strictly better than postmeasurement
information. This yields a novel operational interpretation
of quantum incompatibility, and provides a method to
detect it in a physically feasible experiment. In particular,
this proves that entanglement is not needed to reveal
incompatibility.
General framework of witnesses.—We briefly recall the

general setting of witnesses as this clarifies our main results
on incompatibility witnesses and makes the reasoning
behind them easy to follow [19].
Let V be a real linear space and C ⊂ V a compact convex

subset that mathematically describes the objects we are
interested in. This set is further divided into two disjoint
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subsets C0 and C̄0, with C0 being closed and convex. We
can think of C0 and C̄0 as properties—either an element
x ∈ C is in C0 or in C̄0. A witness of the property C̄0, or
C̄0-witness, is a map ξ: C → R such that
(W1) ξðxÞ ≥ 0 for all x ∈ C0 and ξðxÞ < 0 at least for

some x ∈ C̄0;
(W2) ξ(txþ ð1 − tÞy) ¼ tξðxÞ þ ð1 − tÞξðyÞ for all x,

y ∈ C and t ∈ ½0; 1�.
By condition (W2), each witness generates a hyperplane

separating V into two half-spaces. Condition (W1) then
asserts that one of the two halves entirely contains C0, but
still does not contain all of C (see Fig. 1).
We say that an element x ∈ C̄0 is detected by ξ if

ξðxÞ < 0, and we denote by DðξÞ the subset of all elements
of C̄0 that are detected by ξ. Another C̄0-witness ξ0 is called
finer than ξ if Dðξ0Þ ⊇ DðξÞ, and in this case we write
ξ ⪯ ξ0. If Dðξ0Þ ¼ DðξÞ, we say that ξ and ξ0 are detection
equivalent and denote this by ξ ≈ ξ0 (see Fig. 1). As we
typically aim to detect as many elements as possible, we
favor witnesses that cannot be made any finer. A necessary
condition for ξ being optimal in that sense is that ξ is tight,
meaning that ξðxÞ ¼ 0 for some x ∈ C0.
Any C̄0-witness ξ can be written in the form

ξðxÞ ¼ δ − v�ðxÞ ∀ x ∈ C; ð1Þ
where v�: V → R is a linear map and δ ∈ R is a constant.
An essential point for our later developments is that the
representation (1) of a witness ξ is not unique but there is
some freedom in the choice of v� and δ. In addition, if we
are only interested in the set of detected elements DðξÞ, we
have a further degree of freedom, coming from the
possibility to switch from ξ to an equivalent C̄0-witnesses
ξ0 ¼ αξ for some constant α > 0.
Detecting quantum incompatibility.—A measurement

with a finite outcome set X is mathematically described
as a positive operator valued measure (POVM), i.e., a map
A from X to the set LsðHÞ of self-adjoint linear operators
on a Hilbert space H such that the operators AðxÞ are
positive (meaning that hψ jAðxÞψi ≥ 0 for all ψ ∈ H) and
they satisfy the normalization condition

P
xAðxÞ ¼ 1.

For clarity, we limit our discussion to pairs of measure-
ments. The treatment of finite collections of measurements

is similar. Two measurements A and B, having outcome
sets X and Y, respectively, are compatible if there exists a
measurement M, called their joint measurement, with
outcome set X × Y, such that

P
yMðx; yÞ ¼ AðxÞ andP

xMðx; yÞ ¼ BðyÞ. Otherwise, A and B are incompatible.
By OX;Y we denote the compact set of all pairs of

measurements ðA;BÞ with outcome sets X, Y, respectively.
This set is divided into compatible pairs Ocom

X;Y and incom-
patible pairsOinc

X;Y ≡Ocom
X;Y . We define convex combinations

inOX;Y componentwise, and it follows that the subsetOcom
X;Y

of compatible pairs is closed and convex. Hence we can
consider Oinc

X;Y-witnesses; we call them incompatibility
witnesses (IWs).
Discrimination scenario as an incompatibility witness.—

In the standard state discrimination scenario [23–25], Alice
picks a label z from a given set Z with probability pðzÞ. She
encodes the label into a quantum state ϱz and delivers the
state to Bob. Bob knows the set fϱzgz∈Z of states used in the
encoding. He is trying to recover the label by making a
measurement on the quantum system that he has received.
It is convenient to merge the a priori probability distribu-
tion p and the state encoding into a single map E, given as
EðzÞ ¼ pðzÞϱz. We call this map a state ensemble; its
defining properties are that EðzÞ is positive for all z, andP

ztr½EðzÞ� ¼ 1. The guessing probability depends on the
measurement M that Bob uses, and it is given as

PguessðE;MÞ ¼
X
z

tr½EðzÞMðzÞ�:

Further, we denote

PguessðEÞ ¼ max
M

PguessðE;MÞ; ð2Þ

where the optimization is done over all measurements with
outcome set Z.
We are then considering two modifications of the

standard state discrimination scenario, where partial
classical information concerning the correct label is given
either before or after the measurement is performed
[26–29]. The form of the partial information is given as
a partitioning Z ¼ X ∪ Y of Z into two disjoint subsets. By
conditioning the state ensemble E to the occurrence of a
label in X or Y, we obtain new state ensembles EX and EY ,
which we call subensembles of E; they are given as

EXðxÞ ¼
1

pðXÞ EðxÞ; EYðyÞ ¼
1

pðYÞ EðyÞ;

and their label sets are X and Y, respectively. Here we have
denoted pðXÞ ¼ P

z∈XpðzÞ and pðYÞ ¼ P
z∈YpðzÞ. We

write Ê ¼ ðE; fX; YgÞ for the partitioned state ensemble,
i.e., the state ensemble E with the partitioning of Z into
disjoint subsets X and Y.
If Alice announces the correct subensemble before Bob

chooses his measurement, we call the task discrimination

FIG. 1. Witnesses are associated with hyperplanes, and they are
detection equivalent if they yield the same separation of the set C.
Here, two tight equivalent witnesses detect the red point, but not
the black one.
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with premeasurement information. In this case, Bob can
choose a measurement A with the outcome set X to
discriminate EX and a measurement B with the outcome
set Y to discriminate EY . At each round of the experiment
he measures either A or B, depending on Alice’s announce-
ment. Bob’s total guessing probability is

Pprior
guessðÊ;A;BÞ ¼ pðXÞPguessðEX;AÞ þ pðYÞPguessðEY ;BÞ

ð3Þ

and its maximal value is

Pprior
guessðÊÞ ¼ max

ðA;BÞ∈OX;Y

Pprior
guessðÊ;A;BÞ

¼ pðXÞPguessðEXÞ þ pðYÞPguessðEYÞ:
ð4Þ

In the other variant of the discrimination scenario, Alice
announces the correct subensemble only after Bob has
performed his measurement. Bob has to use a fixed
measurement at each round but he can postprocess the
obtained measurement outcome according to the additional
information. We call this task discrimination with post-
measurement information. It has been shown in [28] that
now the maximal guessing probability, denoted as
Ppost
guessðÊÞ, is given by

Ppost
guessðÊÞ ¼ max

ðA;BÞ∈Ocom
X;Y

Pprior
guessðÊ;A;BÞ: ð5Þ

A comparison of (4) and (5) reveals that the maximal
guessing probabilities Pprior

guessðÊÞ and Ppost
guessðÊÞ result in

optimizing the same mathematical quantity, with the
important difference that in the latter the optimization is
restricted to compatible pairs of measurements. From this,
we already conclude that if Pprior

guessðÊ;A;BÞ > Ppost
guessðÊÞ for

some partitioned state ensemble Ê, then A and B are
incompatible. This conclusion is essentially Theorem 1
of [28], stated in slightly different words. In the following,
we develop this observation into a necessary and sufficient
condition for incompatibility by using the framework of
witnesses.
We first notice that, for a partitioned state ensemble Ê ¼

ðE; fX; YgÞ with Pprior
guessðÊÞ > Ppost

guessðÊÞ, the function

ξÊðA;BÞ ¼ Ppost
guessðÊÞ − Pprior

guessðÊ;A;BÞ ð6Þ

is a tight IW for pairs of measurements in OX;Y ; we call it
the incompatibility witness associated with Ê. In some
cases, the exact evaluation of Ppost

guessðÊÞ may be a difficult
task, but still by finding a number δ such that Ppost

guessðÊÞ ≤
δ < Pprior

guessðÊÞ one obtains an IW by setting

ξδ
Ê
ðA;BÞ ¼ δ − Pprior

guessðÊ;A;BÞ: ð7Þ
Clearly, we then have ξδ

Ê
⪯ ξÊ .

An important feature of the witnesses arising from
partitioned state ensembles is that their physical imple-
mentation is straightforward. Namely, the quantities
PguessðEX;AÞ and PguessðEY ;BÞ are obtained by performing
standard state discrimination experiments, and
Pprior
guessðÊ;A;BÞ is then given via (3). The constant term

Ppost
guessðÊÞ must be calculated analytically or numerically, or

at least upper bounded tightly enough. It has been shown in
[28] that the calculation of Ppost

guessðÊÞ reduces to the
evaluation of the standard guessing probability PguessðE0Þ
of an auxiliary state ensemble E0, and the techniques for
calculating the standard guessing probability (see, e.g.,
[30]) are thereby applicable.
Characterization of incompatibility witnesses.—The fol-

lowing two theorems are the main results of this paper.

Theorem 1. For any incompatibility witness ξ, there
exists a partitioned state ensemble Ê such that the asso-
ciated incompatibility witness ξÊ is finer than ξ. Further, if ξ

is tight, there exists a partitioned state ensemble Ê such that
ξ is detection equivalent to ξÊ .

In the case of IWs, the natural choice for the ambient
vector space V containing OX;Y is the Cartesian product
F ðXÞ × F ðYÞ, where F ðXÞ is the vector space of all
operator valued functions F∶X → LsðHÞ. All linear maps
on F ðXÞ × F ðYÞ are expressible in terms of scalar prod-
ucts with elements ðF;GÞ ∈ F ðXÞ × F ðYÞ, so that the
basic representation (1) of witnesses takes the form

ξðA;BÞ ¼ δ −
X
x

tr½FðxÞAðxÞ� −
X
y

tr½GðyÞBðyÞ� ð8Þ

for all ðA;BÞ ∈ OX;Y . The proof of Theorem 1 is based on
the freedom in the choice of ðF;GÞ and δ.
Proof of Theorem 1.—Starting from an IW ξ of the

general form (8), we similarly define a map ξ0 by choosing
F0ðxÞ ¼ α½FðxÞ − μ1�, G0ðyÞ ¼ α½GðyÞ − μ1� and δ0 ¼
αðδ − 2μdÞ, where d is the dimension of the Hilbert space
and α, μ ∈ R are constants that we determine next. A direct
calculation shows that ξ0 ¼ αξ on OX;Y . First, we fix the
value of μ by setting

−μ ¼
X
x∈X

kFðxÞk þ
X
y∈Y

kGðyÞk;

where k · k denotes the uniform operator norm on LsðHÞ.
With this choice, all the operators EðxÞ ¼ jαj½FðxÞ − μ1�
and EðyÞ ¼ jαj½GðyÞ − μ1� are positive. Secondly, we fix
the value of α by setting

1

α
¼

X
x∈X

tr½FðxÞ − μ1� þ
X
y∈Y

tr½GðyÞ − μ1�:
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The right-hand side of this expression is strictly positive, as
otherwise FðxÞ ¼ GðyÞ ¼ μ1 for all x, y and so the original
IW (8) would be constant on OX;Y , which is impossible.
Thereby, α > 0; hence, the map ξ0 ¼ αξ is an IWand ξ0 ≈ ξ.
Moreover, in this way we have obtained a partitioned
state ensemble Ê ¼ ðE; fX; YgÞ, for which the witness ξ0

has the form (7): ξ0ðA;BÞ ¼ δ0 − Pprior
guessðÊ;A;BÞ. Since ξ0

is an IW and hence satisfies (W1), we must have
Ppost
guessðÊÞ ≤ δ0 < Pprior

guessðÊÞ. Thereby, ξ0 ⪯ ξÊ . If in addition

ξ is tight, then δ0 ¼ Ppost
guessðÊÞ, and thus ξ0 ¼ ξÊ . □

An important consequence of Theorem 1 is the
following novel operational interpretation for quantum
incompatibility.

Theorem 2. Two measurements A and B are incom-
patible if and only if there exists a partitioned state
ensemble Ê such that Pprior

guessðÊ;A;BÞ > Ppost
guessðÊÞ.

The probability Pprior
guessðÊ;A;BÞ is assessable by using

Alice’s classical information, and then performing quantum
measurements only on Bob’s side. Since no entangled state
is shared in the state discrimination protocol, Theorem 2
provides a much more practical way to detect incompat-
ibility than schemes based on Bell experiments or steering.
In particular, as a fundamental fact, entanglement is not
needed to detect incompatibility.
Proof of Theorem 2.—The “if” statement has already

been observed earlier, so herewe prove the “only if” part. Let
us assume that ðA;BÞ ∉ Ocom

X;Y . Then, by the usual separation
results for compact convex sets (Corollary 11.4.2 of [31]),
there exist ðF;GÞ ∈ F ðXÞ × F ðYÞ and δ ∈ R such that,
defining ξ as in (8), we have ξðA0;B0Þ ≥ 0 for all ðA0;B0Þ ∈
Ocom

X;Y and ξðA;BÞ < 0. By Theorem 1 there exists a

partitioned state ensemble Ê such that ξ⪯ ξÊ . It follows that

ξÊðA;BÞ<0, i.e., Pprior
guessðÊ;A;BÞ>Ppost

guessðÊÞ. □

Bounding the compatibility region by means of two
mutually unbiased bases.—As we have seen, constructing
an IW involves the solution of two convex optimization
problems: the evaluation of the maximal guessing proba-
bilities defined in (4) and (5). In particular, if Ê is a
partitioned state ensemble for which the two probabilities
differ, whenever the maximum in the right-hand side of (5)
admits an analytical computation, one can insert the
resulting value of Ppost

guessðÊÞ into (6) and thus write the
tight IW associated with Ê in an explicit form.
Interestingly, solving the optimization problem (5) yields

even more. Indeed, evaluating a constrained maximum
typically requires finding some feasible points where the
maximum is attained; if the optimization problem is
convex, these points are necessarily located on the relative
boundary of the feasible domain. In our specific case, it
means that, as a byproduct of solving (5), we get points
lying on the relative boundary ∂Ocom

X;Y of the convex set
OX;Y . Then, by taking convex combinations of these points,

we can even have an insight into the setOcom
X;Y itself. We thus

see that the solution of (5) has a twofold purpose: on the
one hand, through the IW constructed in (6), it provides a
simple method to detect the incompatibility of many
measurement pairs; on the other hand, by using the
resulting optimal points, some information on the set of
compatible pairs can be inferred.
An interesting special case in which the optimization

problems (4) and (5) admit an analytical solution is when
the partitioned state ensemble Ê is made up of two mutually
unbiased bases (MUB) of the system Hilbert space H, or,
more generally, smearings of two MUB. Indeed, suppose
fφhgh∈f1;…;dg and fψkgk∈f1;…;dg is a fixed pair of MUB;
then, we can use it to construct a partitioned state ensemble
as follows. First, we choose Z ¼ f1;…; dg × fφ;ψg as the
overall label set of the ensemble

Eμðj;lÞ ¼
1

2d

�
μljljihljj þ ð1 − μlÞ

1

d
1

�
; ð9Þ

where μ ¼ ðμφ; μψ Þ and μφ; μψ ∈ ½1=ð1 − dÞ; 1� are real
parameters. Next, we partition Z into the subsets X ¼
fð1;φÞ;…ðd;φÞg and Y ¼ fð1;ψÞ;…ðd;ψÞg; here, the
letters φ and ψ are just symbols, which are needed to
distinguish labels in different subsets. Finally, we
set Êμ ¼ ðEμ; fX; YgÞ.
The detailed solution to the optimization problems (4)

and (5) for the partitioned state ensemble Êμ is provided in
Supplemental Material [19]. It turns out that the pair of
measurements

Aðh;φÞ ¼ γφjφhihφhj þ ð1 − γφÞ
1

d
1

Bðk;ψÞ ¼ γψ jψkihψkj þ ð1 − γψÞ
1

d
1

ð10Þ

is a feasible maximum point for a suitable choice of real
numbers γφ and γψ , which depend on μ. The next two
theorems then follow by our earlier observations.

Theorem 3. Let μ ¼ ðμφ; μψÞ ∈ ½1=ð1 − dÞ; 1� ×
½1=ð1 − dÞ; 1� with μ ≠ ð0; 0Þ. Then Ppost

guessðÊμÞ <
Pprior
guessðÊμÞ if and only if μφμψ ≠ 0 and either d ¼ 2 or

maxfμφ; μψg > 0. In this case, the tight incompatibility

witness associated with the partitioned state ensemble Êμ is

ξÊμðA;BÞ¼
1

4

"
μφþμψ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2φþμ2ψ −2

�
1−

2

d

�
μφμψ

s #

−
1

2d

Xd
j¼1

½μφhφjjAðj;φÞφjiþμψhψ jjBðj;ψÞψ ji�:

ð11Þ
Finally, the ensembles Êμ and Êν determine detection
equivalent incompatibility witnesses if and only if
ν ¼ αμ for some α > 0.
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By the equivalence statement in the previous theorem, no
generality is lost if we express the vector μ in terms of a
single real parameter θ. Consequently, also the vector γ ¼
ðγφ; γψÞ parametrizing the optimal measurements (10)
becomes a function of θ. Thus, solving the optimization
problem (5) for the present case actually yields a curve in
the relative boundary ∂Ocom

X;Y .

Theorem 4. The pair of measurements ðA;BÞ of (10)
lies on the relative boundary ∂Ocom

X;Y if

γ¼
�
d−2−dcosðθþθ0Þ

2ðd−1Þ ;
d−2−dcosðθ−θ0Þ

2ðd−1Þ
�

ð12Þ

for θ ∈ ½−θ0; θ0� and θ0 ¼ π − arctan
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
.

When θ ¼ 0, the common value of the two components
of (12) is the noise robustness of the two MUB at hand; it
was already derived by different methods in [32,33]. On the
other hand, under the assumption that the two MUB are
Fourier conjugate, the portion of the curve (12) with γφ > 0

and γψ > 0 was found in [34].
The operators in (10) are positive if and only

if γ ∈ ½1=ð1 − dÞ; 1� × ½1=ð1 − dÞ; 1�. Thus, all pairs of
measurements of the form (10) constitute a square-
shaped section of the set OX;Y . Remarkably, the lower-left
vertex (1=ð1 − dÞ; 1=ð1 − dÞ) of this square corresponds to
a compatible pair of measurements if and only if d ≥ 3; on
the contrary, when d ¼ 2 the relative boundary is sym-
metric around (0,0) [35]. Combining these considerations
and Theorem 4, we can give a partial inspection of the two
sets OX;Y and Ocom

X;Y , as shown in Fig. 2.
Discussion.—The framework of witnesses is an effective

tool in the detection of properties described by sets with
compact and convex complements. We have shown that for
incompatibility of measurements, witnesses are not only a
mathematical tool, but can be implemented in simple

discrimination experiments. An important feature of this
implementation is that it does not require entanglement.
Our characterization yields a novel operational interpre-

tation of incompatibility: a collection of measurements is
incompatible if and only if there is a state discrimination
task where premeasurement information is strictly better
than postmeasurement information.
Entanglement witnesses have been used not only to

detect entanglement but also to quantify entanglement [36].
Further, one can drop the condition (W2) and consider
nonlinear witnesses [37]. These and other modifications or
generalizations will be an interesting matter of investigation
in the case of incompatibility witnesses.
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