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Abstract: Motivated by the Rønning-starlike class [Proceedings of the American Mathematical Society 1993; 118:
189-196], we introduce the new class S∗

c that includes analytic and normalized functions f , which satisfy the inequality

Re

{
zf ′(z)

f(z)

}
≥

∣∣∣∣f(z)z
− 1

∣∣∣∣ (|z| < 1).

In this paper, we first give some examples that belong to the class S∗
c . Also, we show that if f ∈ S∗

c then Re{f(z)/z} >

1/2 in |z| < 1 (Marx–Strohhäcker problem). Afterwards, upper and lower bounds for |f(z)| are obtained where f

belongs to the class S∗
c . We also prove that if f ∈ S∗

c and α ∈ [0, 1) , then f is starlike of order α in the disc
|z| < (1 − α)/(2 − α) . At the end, we estimate logarithmic coefficients, the initial coefficients, and the Fekete–Szegö
problem for functions f ∈ S∗

c .

Key words: Starlike, subordination, Marx–Strohhäcker problem, logarithmic coefficients, Fekete–Szegö problem

1. Introduction
Let ∆ := {z ∈ C : |z| < 1} be the open unit disc on the complex plane C and H(∆) be the class of functions f

that are analytic in ∆ . Also let A ⊂ H(∆) be the class of all functions f that satisfy the standard normalization
f(0) = 0 = f ′(0)− 1 . It is known that if f ∈ A , then it has the following Taylor–Maclaurin series expansion:

f(z) = z +

∞∑
n=2

anz
n (z ∈ ∆). (1.1)

The set of all univalent functions f in ∆ is denoted by U . If f and g belong to class H(∆) , then we say that
a function f is subordinate to g , written as

f(z) ≺ g(z) or f ≺ g,

if there exists a Schwarz function w : ∆ → ∆ with the following properties:

w(0) = 0 and |w(z)| < 1 (z ∈ ∆),
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such that f(z) = g(w(z)) for all z ∈ ∆ . Notice that if g ∈ U , then we have the following geometric equivalence:
relation

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(∆) ⊂ g(∆).

Let α ∈ [0, 1) . A function f ∈ A is called starlike of order α if and only if f satisfies the following inequality:

Re

{
zf ′(z)

f(z)

}
> α (z ∈ ∆).

The familiar class of the starlike functions of order α is denoted by S∗(α) . An extremal function for the class
S∗(α) , namely the Koebe function of order α , is defined by:

kα(z) =
z

(1− z)2(1−α)
(0 ≤ α < 1). (1.2)

We denote by S∗ ≡ S∗(0) the class of the starlike functions. For each α ∈ [0, 1) we have S∗(α) ⊂ U . Also, we
say that a function f ∈ A is convex of order α if and only if zf ′(z) ∈ S∗(α) . We denote by K(α) the class of
the convex functions of order α in ∆ . Also K(α) ⊂ U where 0 ≤ α < 1 . The class of the convex functions in
∆ is denoted by K ≡ K(0) . Analytically, f ∈ K(α) if and only if:

Re

{
1 +

zf ′′(z)

f ′(z)

}
> α (z ∈ ∆).

The classes S∗(α) and K(α) were introduced by Robertson [8]. Next, we consider the class S∗
α ⊂ S∗(α) as

follows:

S∗
α :=

{
f ∈ A :

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1− α

}
.

Let R(α) denote the class of functions f ∈ A satisfying the following inequality:

Re

{
f(z)

z

}
> α (z ∈ ∆, 0 ≤ α < 1).

It is know that S∗(1/2) ⊂ R(1/2) for all z ∈ ∆ and that the constant 1/2 is the best possible; see [2, p. 73].
Rønning (see [10]) introduced a certain subclass of the starlike functions, denoted by Sp , consisting of

all functions f ∈ A with the following property:

Re

{
zf ′(z)

f(z)

}
≥
∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ (z ∈ ∆). (1.3)

Since Re{ξ} = |ξ−1| describes a parabola with vertex at ξ = 1/2 and (1/2,∞) as symmetry axis, the functions
satisfying condition (1.3) are associated with a parabolic region. Also, Sp ⊂ S∗(1/2) .

Motivated by the class Sp , we introduce a new subclass of the starlike functions as follows:

Definition 1.1 Let f ∈ A . Then we say that a function f belongs to the class S∗
c if it satisfies the following

condition:

Re

{
zf ′(z)

f(z)

}
≥
∣∣∣∣f(z)z

− 1

∣∣∣∣ (z ∈ ∆). (1.4)

We observe that the class S∗
c is a subclass of the starlike functions. It is easy to see that the identity function

satisfies inequality (1.4) and thus S∗
c ̸= ∅ . In Section 2 we give more examples that satisfy inequality (1.4).
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2. Examples
First, consider the function fγ as follows:

fγ(z) = z + γz2 (z ∈ ∆). (2.1)

We are looking for a γ ∈ C such that fγ belong to the class S∗
c . With a little calculation, (2.1) implies that

zf ′
γ(z)

fγ(z)
= 1 +

γz

1 + γz
and

fγ(z)

z
− 1 = γz (z ∈ ∆).

Now let γz = reiθ where θ ∈ [−π, π] . Then

Re

{
zf ′

γ(z)

fγ(z)

}
= Re

{
1 +

γz

1 + γz

}
= 1 + Re

{
reiθ

1 + reiθ

}
= 1 +

r(r + cos θ)

1 + 2r cos θ + r2

and ∣∣∣∣fγ(z)z
− 1

∣∣∣∣ = |γz| = |reiθ| = r.

Therefore, we are looking for r0 such that

h(x, r) := 1 +
r(r + x)

1 + 2rx+ r2
− r ≥ 0 (0 ≤ r < r0, −1 ≤ x ≤ 1, x := cos θ).

Since h is an increasing function with respect to x ∈ [−1, 1] , we have

h(−1, r) = 1 +
r(r − 1)

1− 2r + r2
− r ≥ 0

⇔ 1− 3r + r2

1− r
≥ 0

⇔ r ∈ (−∞, (3−
√
5)/2] ∪ [(3 +

√
5)/2,∞).

Consequently if |γ| ≤ (3−
√
5)/2 = 0.38 . . . , then the function (2.1) belongs to the class S∗

c .
Next, we consider the function fβ as follows:

fβ(z) =
z

1− βz
(z ∈ ∆). (2.2)

We will look for some β such that fβ belongs to the class S∗
c . A simple calculation gives us

zf′β(z)

fβ(z)
=

1

1− βz
and

fβ(z)

z
− 1 =

βz

1− βz
(z ∈ ∆).

If we let βz = reiθ , where 0 ≤ r < 1 and θ ∈ [−π, π] , then

Re

{
zf′β(z)

fβ(z)

}
= Re

{
1

1− βz

}
=

1− r cos θ

1− 2r cos θ + r2
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and ∣∣∣∣ fβ(z)z
− 1

∣∣∣∣ = ∣∣∣∣ βz

1− βz

∣∣∣∣ = r√
1− 2r cos θ + r2

.

Therefore, we are looking for r0 , such that

g(x, r) :=
1− rx

r
√
1− 2rx+ r2

≥ 1 (0 ≤ r < r0, −1 ≤ x ≤ 1, x := cos θ).

It is easy to check that g attains its minimum with respect to x ∈ [−1, 1] at x = r , so we are looking for r0

such that

g(r) :=
1− r2

r
√
1− r2

≥ 1 (0 ≤ r < r0),

and this gives r0 =
√
2/2 . Therefore, if |β| ≤

√
2/2 = 0.707 . . . exactly, then (2.2) belongs to the class S∗

c .
The following lemma will be useful.

Lemma 2.1 (See [6]) Let p(z) be an analytic function in ∆ of the form

p(z) = 1 +

∞∑
n=m

cnz
n (cm ̸= 0),

with p(z) ̸= 0 in ∆ . If there exists a point z0 ∈ ∆ such that

| arg{p(z)}| < πφ

2
for |z| < |z0|

and

| arg{p(z0)}| =
πφ

2

for some φ > 0 , then we have
z0p

′(z0)

p(z)
= ilφ,

where

l ≥ m

2

(
a+

1

a

)
≥ m when arg{p(z0)} =

πφ

2
(2.3)

and

l ≤ −m

2

(
a+

1

a

)
≤ −m when arg{p(z0)} = −πφ

2
, (2.4)

where
{p(z0)}1/φ = ±ia and a > 0.

In the next section, we shall investigate some geometric properties of the class S∗
c .
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3. Main results
We begin this section with the following.

Theorem 3.1 Let the function f ∈ A belong to the class S∗
c . Then

f(z)

z
≺ φ(z), (3.1)

where

φ(z) :=
1

1− z
(z ∈ ∆). (3.2)

Proof Let f ∈ A be in the class S∗
c . Define

p(z) :=
f(z)

z
(z ∈ ∆). (3.3)

Therefore p is analytic in ∆ and p(0) = 1 . From (3.3), we obtain

1 +
zp′(z)

p(z)
=

zf ′(z)

f(z)
(z ∈ ∆). (3.4)

Since f ∈ S∗
c , by relation (3.4) and by definition of S∗

c , we have

Re

{
1 +

zp′(z)

p(z)

}
= Re

{
zf ′(z)

f(z)

}
≥
∣∣∣∣f(z)z

− 1

∣∣∣∣ = |p(z)− 1|

≥ Re{1− p(z)}.

The last inequality implies that

Re

{
p(z) +

zp′(z)

p(z)

}
≥ 0 (z ∈ ∆). (3.5)

By making use of the subordination principle, inequality (3.5) results in

p(z) +
zp′(z)

p(z)
≺ 1 + z

1− z
. (3.6)

If we apply Theorem 3.3d, [5, p. 109], then from (3.6) we conclude that

p(z) ≺ q(z) ≺ 1 + z

1− z
,

where q(z) is the univalent solution of the differential equation

q(z) +
zq′(z)

q(z)
=

1 + z

1− z
(z ∈ ∆). (3.7)
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Also q(z) is the best dominant of (3.6). A simple calculation shows that the solution of the differential equation
(3.7) is equal to

q(z) =

(∫ 1

0

(
1− z

1− tz

)2

dt

)−1

=
1

1− z
(z ∈ ∆),

concluding the proof. Here, the proof ends. 2

Marx and Strohhäcker (see [4, 12]) proved that if f ∈ A , then the following implication is sharp:

Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0 ⇒ Re

{
f(z)

z

}
>

1

2
(z ∈ ∆).

The same results of this kind are known as the Marx–Strohhäcker problem and they have many applications in
complex dynamical systems; see [11, 13]. Following this, we obtain the Marx–Strohhäcker problem for the class
S∗
c .

Theorem 3.2 If f given by (1.1) belongs to class S∗
c , then

Re

{
f(z)

z

}
>

1

2
(z ∈ ∆).

This means that S∗
c ⊂ R(1/2) .

Proof By (3.1), using the definition of subordination and from

Re{φ(z)} = Re

{
1

1− z

}
>

1

2
(z ∈ ∆),

we get the desired result. 2

Open problem. Find the largest α such that f ∈ S∗
c implies that

Re

{
f(z)

z

}
> α (z ∈ ∆).

From Theorem 3.2 we see that α ≥ 1/2 . Furthermore, function (2.2) shows that this α cannot be greater than
2−

√
2 = 0.58 . . . .
The following theorem, called the growth theorem, gives upper and lower bounds for |f(z)| , where f

belongs to the class S∗
c .

Theorem 3.3 Let f ∈ S∗
c . Then we have

rφ(−r) ≤ |f(z)| ≤ rφ(r) (|z| = r < 1), (3.8)

where φ(z) is defined in (3.2).

Proof Let φ be given by (3.2). If f ∈ S∗
c , then by Theorem 3.1 we have

f(z)

z
≺ φ(z).
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The last subordination relation implies that

f(z)

z
∈ φ(|z| ≤ r) (3.9)

for each r ∈ (0, 1) and |z| ≤ r . Since

Re

{
1 +

zφ′′(z)

φ′(z)

}
= Re

{
1 + 2

z

1− z

}
> 0 (z ∈ ∆),

φ is convex univalent in ∆ and for each r ∈ (0, 1) the set φ(|z| ≤ r) is symmetric with respect to the real axis.
This leads us to the following two-sided inequality:

φ(−r) ≤ |φ(z)| ≤ φ(r), (3.10)

where r ∈ (0, 1) and |z| ≤ r . The assertion now is obtained from (3.9) and (3.10). This is the end of the proof.
2

Theorem 3.4 Let f ∈ S∗
c and α ∈ [0, 1) . Then∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1− α (|z| < (1− α)/(2− α)) .

Proof Let f ∈ S∗
c . Then by Theorem 3.1 we have

f(z)

z
≺ 1

1− z
.

By definition of subordination there exists a Schwarz function w such that

f(z)

z
=

1

1− w(z)
(z ∈ ∆).

Clearly w is analytic in ∆ with w(0) = 0 and

log

{
f(z)

z

}
= log

{
1

1− w(z)

}
(z ∈ ∆). (3.11)

We find from the last equation, (3.11), that

zf ′(z)

f(z)
= 1 +

zw′(z)

1− w(z)
(z ∈ ∆). (3.12)

It is well known that |w(z)| ≤ |z| (cf. [2]), and also, by the Schwarz–Pick lemma, for a Schwarz function w the
following inequality holds:

|w′(z)| ≤ 1− |w(z)|2

1− |z|2
(z ∈ ∆). (3.13)

Thus, by |w(z)| ≤ |z| and (3.13), the relation (3.12) implies that∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ = ∣∣∣∣ zw′(z)

1− w(z)

∣∣∣∣ ≤ |z||w′(z)|
1− |w(z)|

≤ |z|
1− |z|

< 1− α,
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provided that |z| < 1−α
2−α . This completes the proof. 2

In the sequel, the following lemma (see [3]) (popularly known as Jack’s lemma) will be required.

Lemma 3.5 Let the (nonconstant) function ω(z) be analytic in ∆ with ω(0) = 0 . If |ω(z)| attains its
maximum value on the circle |z| = r < 1 at a point z0 ∈ ∆ , then

z0ω
′(z0) = kω(z0),

where k is a real number and k ≥ 1 .

Theorem 3.6 Let the function f ∈ A satisfy the inequality

Re

{
zf ′(z)

f(z)

}
>

1

2
(z ∈ ∆). (3.14)

Then f ̸∈ S∗
c . This means that S∗(1/2) ̸⊂ S∗

c .

Proof If the function f ∈ A belongs to the class S∗
c , then by the proof of Theorem 3.4 we have

zf ′(z)

f(z)
= 1 +

zw′(z)

1− w(z)
(z ∈ ∆). (3.15)

Suppose now that there exists a point z0 ∈ ∆ such that |w(z0)| = 1 and |w(z)| < 1 when |z| < |z0| . If we
apply Lemma 3.5, then we have

z0w
′(z0) = kw(z0) (w(z0) = eit; t ∈ R; k ≥ 1). (3.16)

Therefore, we find from (3.15) and (3.16) that

Re

{
z0f

′(z0)

f(z0)

}
= Re

{
1 +

z0w
′(z0)

1− w(z0)

}
= 1 + Re

{
kw(z0)

1− w(z0)

}
= 1 + Re

{
keit

1− eit

}
= 1− k

2
≤ 1

2
,

which contradicts the hypothesis (3.14). This completes the proof. 2

Actually, there exists a function f ∈ A , a starlike function of order 1/2 such that f ̸∈ S∗
c . The functions (2.2)

are starlike of order 1/2 for every β , |β| ≤ 1 , while they are in S∗
c only for |β| ≤

√
2/2 .

Remark 3.7 Finding some α ∈ [0, 1) such that S∗
c ⊂ S∗(α) is an open problem. In the sequel, we will answer

this problem partially. Indeed, we conjecture that S∗
c ⊂ S∗(α) when α ∈ (1/2, 1) . For this purpose, let γ = 0.2

in (2.1). Then the function f0.2(z) = z + 0.2z2 belongs to the class S∗
c . A simple calculation gives us

Re

{
zf ′

0.2(z)

f0.2(z)

}
= Re

{
1 + 0.4z

1 + 0.2z

}
>

3

4
(z ∈ ∆).

Therefore, f0.2 is a starlike function of order 3/4 . Also, if we let β = 0.2 in (2.2), then the function
f0.2(z) =

z
1−0.2z belongs to the class S∗

c . We have

Re

{
zf′0.2(z)

f0.2(z)

}
= Re

{
1

1− 0.2z

}
> 0.83 (z ∈ ∆).

2361



MAHZOON, KARGAR and SOKÓŁ/Turk J Math

This means that f0.2 ∈ S∗(0.83) . These examples show that S∗
c ⊂ S∗(α) where 1/2 < α < 1 . On the other

hand, we know that the function kα is starlike of order α (0 ≤ α < 1) , where kα is defined in (1.2). A simple
calculation of (1.2) gives that

zk′α(z)

kα(z)
= 1 + 2(1− α)

z

1− z
(z ∈ ∆) (3.17)

and ∣∣∣∣kα(z)z
− 1

∣∣∣∣ = ∣∣∣∣ 1

(1− z)2(1−α)
− 1

∣∣∣∣ (z ∈ ∆). (3.18)

If kα belongs to the class S∗
c , then from (3.17), (3.18), and the definition of S∗

c we have

Re

{
1 + 2(1− α)

z

1− z

}
≥
∣∣∣∣ 1

(1− z)2(1−α)
− 1

∣∣∣∣ (z ∈ ∆). (3.19)

If the last inequality holds for all z ∈ ∆ , then it holds for |z| = 1 , too. Also, for real z close to 1 , we have
LHS→ α , while RHS → ∞ . This shows that there are no α ≥ 0 so that S∗(α) ⊂ S∗

c .

In order to estimate the logarithmic coefficients and because φ is univalent, we may rewrite Theorem 3.1
in the following form.

Theorem 3.8 If the function f ∈ A belongs to the class S∗
c , then

log

{
f(z)

z

}
≺ − log {1− z} .

The logarithmic coefficients γn of f ∈ A are defined by

log

{
f(z)

z

}
=

∞∑
n=1

2γnz
n (z ∈ ∆). (3.20)

The sharp upper bounds for the modulus of logarithmic coefficients are known for functions in very few subclasses
of U . For functions in the class S∗ we have the sharp inequality |γn| ≤ 1/n where n ≥ 1 , but this is false for
the full class U , even in order of magnitude. Also, if f ∈ S∗(α) , then |γn| ≤ (1− α)/n where 0 ≤ α < 1 and
n ≥ 1 . Since the estimate of the logarithmic coefficients is an important problem in the theory of univalent
functions, we shall investigate this problem for the functions in the class S∗

c .
The following lemma is due to Rogosinski [9, 2.3 Theorem X].

Lemma 3.9 Let q(z) =
∑∞

n=1 Qnz
n be analytic and univalent in ∆ such that it maps ∆ onto a convex domain.

If p(z) =
∑∞

n=1 Pnz
n is analytic in ∆ and satisfies the subordination p(z) ≺ q(z) , then |Pn| ≤ |Q1| where

n = 1, 2, . . . .

Theorem 3.10 Let f ∈ A . If f ∈ S∗
c and the coefficient of log(f(z)/z) is given by (3.20), then

|γn| ≤
1

2
(n ∈ N = {1, 2, 3, . . .}). (3.21)

The result is sharp.
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Proof Let the function f ∈ A belong to the class S∗
c . Then, by Theorem 3.8, we have

log

{
f(z)

z

}
≺ − log {1− z} . (3.22)

Replacing the Taylor–Maclaurin series on both sides of (3.22) gives

∞∑
n=1

2γnz
n ≺

∞∑
n=1

zn

n
.

It is easily seen that the function − log {1− z} is convex univalent in ∆ ; therefore, by Lemma 3.9 we get the
inequality (3.21). 2

In the sequel, we estimate the initial coefficients of the function f of the form (1.1) belonging to the class S∗
c .

First, we recall the following lemma.

Lemma 3.11 (See [1, Lemma 1]) If f is a Schwarz function of the form

w(z) = w1z + w2z
2 + w3z

3 + · · · ,

then

|w2 − tw2
1| ≤

 −t, if t ≤ −1;
1, if −1 ≤ t ≤ 1;
t, if t ≥ 1.

For t < −1 or t > 1 , the equality holds if and only if w(z) = z or one of its rotations. For −1 < t < 1 ,
the equality holds if and only if w(z) = z2 or one of its rotations. The equality holds for t = −1 if and
only if w(z) = z λ+z

1+λz (0 ≤ λ ≤ 1) or one of its rotations, while for t = 1 , the equality holds if and only if

w(z) = −z λ+z
1+λz (0 ≤ λ ≤ 1) or one of its rotations.

Theorem 3.12 Let f be of the form (1.1). If f belongs to the class S∗
c , then

|a2| ≤ 1, |a3| ≤ 1 and |a4| ≤ 1.

All inequalities are sharp.

Proof Let the function f be of the form (1.1). Since f ∈ S∗
c , by Theorem 3.1 we have

f(z)

z
≺ 1

1− z
.

By the definition of subordination there exists a Schwarz function w with w(z) = w1z+w2z
2+w3z

3+ · · · and
|w(z)| < 1 so that

f(z)

z
=

1

1− w(z)
(z ∈ ∆),

or equivalently,

f(z) =
z

1− w(z)
(z ∈ ∆). (3.23)
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By substituting the Taylor series of f and w in (3.23) and comparing the coefficients, we obtain

a2 = w1, a3 = w2 + w2
1 and a4 = w3 + 2w1w2 + w3

1. (3.24)

Since |w1| ≤ 1 (see [7, p. 128]), we get |a2| ≤ 1 . In order to estimate a3 , we apply Lemma 3.11. However, we
have

|a3| = |w2 + w2
1| = |w2 − (−1)w2

1| ≤ 1.

Prokhorov and Szynal in [7, Lemma 2] proved that if (µ, ν) = (2, 1) , then |w3 + µw1w2 + νw3
1| ≤ 1 . Therefore,

|a4| = |w3 + 2w1w2 + w3
1| ≤ 1.

This completes the proof. 2

The problem of finding sharp upper bounds for the coefficient functional |a3 −µa22| (µ ∈ C) for different
subclasses of class A is known as the Fekete–Szegö problem. Next, we study this problem for the class S∗

c .

Theorem 3.13 If f ∈ A of the form (1.1) belongs to the class S∗
c , then for any complex number µ

|a3 − µa22| ≤

 1− µ, if µ ≤ 0;
1, if 0 ≤ µ ≤ 2;
µ− 1, if µ ≥ 2.

The result is sharp.

Proof By use of Lemma 3.11 and (3.24), the proof is obtained. 2
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