Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
tüвітак

Turk J Math
(2019) 43: $2354-2365$
© TÜBİTAK
doi:10.3906/mat-1906-64

A new subclass of starlike functions

Hesam MAHZOON ${ }^{1, *}{ }^{(1)}$, Rahim KARGAR ${ }^{2}$ © ${ }^{(D)}$ Janusz SOKÓ£ ${ }^{3}$ ©
${ }^{1}$ Department of Mathematics, Islamic Azad University, West Tehran Branch, Tehran, Iran
${ }^{2}$ Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran
${ }^{3}$ Faculty of Mathematics and Natural Sciences, University of Rzeszów, Rzeszów, Poland

Received: 17.06.2019 • Accepted/Published Online: 07.08.2019 • Final Version: 28.09 .2019

Abstract

Motivated by the Rønning-starlike class [Proceedings of the American Mathematical Society 1993; 118: 189-196], we introduce the new class \mathcal{S}_{c}^{*} that includes analytic and normalized functions f, which satisfy the inequality $$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \geq\left|\frac{f(z)}{z}-1\right| \quad(|z|<1)
$$

In this paper, we first give some examples that belong to the class \mathcal{S}_{c}^{*}. Also, we show that if $f \in \mathcal{S}_{c}^{*}$ then $\operatorname{Re}\{f(z) / z\}>$ $1 / 2$ in $|z|<1$ (Marx-Strohhäcker problem). Afterwards, upper and lower bounds for $|f(z)|$ are obtained where f belongs to the class \mathcal{S}_{c}^{*}. We also prove that if $f \in \mathcal{S}_{c}^{*}$ and $\alpha \in[0,1)$, then f is starlike of order α in the disc $|z|<(1-\alpha) /(2-\alpha)$. At the end, we estimate logarithmic coefficients, the initial coefficients, and the Fekete-Szegö problem for functions $f \in \mathcal{S}_{c}^{*}$.

Key words: Starlike, subordination, Marx-Strohhäcker problem, logarithmic coefficients, Fekete-Szegö problem

1. Introduction

Let $\Delta:=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disc on the complex plane \mathbb{C} and $\mathcal{H}(\Delta)$ be the class of functions f that are analytic in Δ. Also let $\mathcal{A} \subset \mathcal{H}(\Delta)$ be the class of all functions f that satisfy the standard normalization $f(0)=0=f^{\prime}(0)-1$. It is known that if $f \in \mathcal{A}$, then it has the following Taylor-Maclaurin series expansion:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \Delta) \tag{1.1}
\end{equation*}
$$

The set of all univalent functions f in Δ is denoted by \mathcal{U}. If f and g belong to class $\mathcal{H}(\Delta)$, then we say that a function f is subordinate to g, written as

$$
f(z) \prec g(z) \quad \text { or } \quad f \prec g
$$

if there exists a Schwarz function $w: \Delta \rightarrow \Delta$ with the following properties:

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1 \quad(z \in \Delta)
$$

*Correspondence: mahzoon_hesam@yahoo.com
2010 AMS Mathematics Subject Classification: 30C45

MAHZOON, KARGAR and SOKÓモ/Turk J Math

such that $f(z)=g(w(z))$ for all $z \in \Delta$. Notice that if $g \in \mathcal{U}$, then we have the following geometric equivalence: relation

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \quad \text { and } \quad f(\Delta) \subset g(\Delta)
$$

Let $\alpha \in[0,1)$. A function $f \in \mathcal{A}$ is called starlike of order α if and only if f satisfies the following inequality:

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(z \in \Delta)
$$

The familiar class of the starlike functions of order α is denoted by $\mathcal{S}^{*}(\alpha)$. An extremal function for the class $\mathcal{S}^{*}(\alpha)$, namely the Koebe function of order α, is defined by:

$$
\begin{equation*}
k_{\alpha}(z)=\frac{z}{(1-z)^{2(1-\alpha)}} \quad(0 \leq \alpha<1) \tag{1.2}
\end{equation*}
$$

We denote by $\mathcal{S}^{*} \equiv \mathcal{S}^{*}(0)$ the class of the starlike functions. For each $\alpha \in[0,1)$ we have $\mathcal{S}^{*}(\alpha) \subset \mathcal{U}$. Also, we say that a function $f \in \mathcal{A}$ is convex of order α if and only if $z f^{\prime}(z) \in \mathcal{S}^{*}(\alpha)$. We denote by $\mathcal{K}(\alpha)$ the class of the convex functions of order α in Δ. Also $\mathcal{K}(\alpha) \subset \mathcal{U}$ where $0 \leq \alpha<1$. The class of the convex functions in Δ is denoted by $\mathcal{K} \equiv \mathcal{K}(0)$. Analytically, $f \in \mathcal{K}(\alpha)$ if and only if:

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \quad(z \in \Delta)
$$

The classes $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$ were introduced by Robertson [8]. Next, we consider the class $\mathcal{S}_{\alpha}^{*} \subset \mathcal{S}^{*}(\alpha)$ as follows:

$$
\mathcal{S}_{\alpha}^{*}:=\left\{f \in \mathcal{A}:\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1-\alpha\right\} .
$$

Let $\mathcal{R}(\alpha)$ denote the class of functions $f \in \mathcal{A}$ satisfying the following inequality:

$$
\operatorname{Re}\left\{\frac{f(z)}{z}\right\}>\alpha \quad(z \in \Delta, 0 \leq \alpha<1)
$$

It is know that $\mathcal{S}^{*}(1 / 2) \subset \mathcal{R}(1 / 2)$ for all $z \in \Delta$ and that the constant $1 / 2$ is the best possible; see [2, p. 73].
Rønning (see [10]) introduced a certain subclass of the starlike functions, denoted by S_{p}, consisting of all functions $f \in \mathcal{A}$ with the following property:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \geq\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \quad(z \in \Delta) \tag{1.3}
\end{equation*}
$$

Since $\operatorname{Re}\{\xi\}=|\xi-1|$ describes a parabola with vertex at $\xi=1 / 2$ and $(1 / 2, \infty)$ as symmetry axis, the functions satisfying condition (1.3) are associated with a parabolic region. Also, $S_{p} \subset \mathcal{S}^{*}(1 / 2)$.

Motivated by the class S_{p}, we introduce a new subclass of the starlike functions as follows:
Definition 1.1 Let $f \in \mathcal{A}$. Then we say that a function f belongs to the class \mathcal{S}_{c}^{*} if it satisfies the following condition:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \geq\left|\frac{f(z)}{z}-1\right| \quad(z \in \Delta) \tag{1.4}
\end{equation*}
$$

We observe that the class \mathcal{S}_{c}^{*} is a subclass of the starlike functions. It is easy to see that the identity function satisfies inequality (1.4) and thus $\mathcal{S}_{c}^{*} \neq \emptyset$. In Section 2 we give more examples that satisfy inequality (1.4).

2. Examples

First, consider the function f_{γ} as follows:

$$
\begin{equation*}
f_{\gamma}(z)=z+\gamma z^{2} \quad(z \in \Delta) \tag{2.1}
\end{equation*}
$$

We are looking for a $\gamma \in \mathbb{C}$ such that f_{γ} belong to the class \mathcal{S}_{c}^{*}. With a little calculation, (2.1) implies that

$$
\frac{z f_{\gamma}^{\prime}(z)}{f_{\gamma}(z)}=1+\frac{\gamma z}{1+\gamma z} \quad \text { and } \quad \frac{f_{\gamma}(z)}{z}-1=\gamma z \quad(z \in \Delta)
$$

Now let $\gamma z=r e^{i \theta}$ where $\theta \in[-\pi, \pi]$. Then

$$
\operatorname{Re}\left\{\frac{z f_{\gamma}^{\prime}(z)}{f_{\gamma}(z)}\right\}=\operatorname{Re}\left\{1+\frac{\gamma z}{1+\gamma z}\right\}=1+\operatorname{Re}\left\{\frac{r e^{i \theta}}{1+r e^{i \theta}}\right\}=1+\frac{r(r+\cos \theta)}{1+2 r \cos \theta+r^{2}}
$$

and

$$
\left|\frac{f_{\gamma}(z)}{z}-1\right|=|\gamma z|=\left|r e^{i \theta}\right|=r
$$

Therefore, we are looking for r_{0} such that

$$
h(x, r):=1+\frac{r(r+x)}{1+2 r x+r^{2}}-r \geq 0 \quad\left(0 \leq r<r_{0}, \quad-1 \leq x \leq 1, \quad x:=\cos \theta\right)
$$

Since h is an increasing function with respect to $x \in[-1,1]$, we have

$$
\begin{aligned}
h(-1, r) & =1+\frac{r(r-1)}{1-2 r+r^{2}}-r \geq 0 \\
& \Leftrightarrow \frac{1-3 r+r^{2}}{1-r} \geq 0 \\
& \Leftrightarrow r \in(-\infty,(3-\sqrt{5}) / 2] \cup[(3+\sqrt{5}) / 2, \infty)
\end{aligned}
$$

Consequently if $|\gamma| \leq(3-\sqrt{5}) / 2=0.38 \ldots$, then the function (2.1) belongs to the class \mathcal{S}_{c}^{*}.
Next, we consider the function \mathfrak{f}_{β} as follows:

$$
\begin{equation*}
\mathfrak{f}_{\beta}(z)=\frac{z}{1-\beta z} \quad(z \in \Delta) \tag{2.2}
\end{equation*}
$$

We will look for some β such that \mathfrak{f}_{β} belongs to the class \mathcal{S}_{c}^{*}. A simple calculation gives us

$$
\frac{z \mathfrak{f}_{\beta}^{\prime}(z)}{\mathfrak{f}_{\beta}(z)}=\frac{1}{1-\beta z} \quad \text { and } \quad \frac{\mathfrak{f}_{\beta}(z)}{z}-1=\frac{\beta z}{1-\beta z} \quad(z \in \Delta)
$$

If we let $\beta z=r e^{i \theta}$, where $0 \leq r<1$ and $\theta \in[-\pi, \pi]$, then

$$
\operatorname{Re}\left\{\frac{z \mathfrak{f}_{\beta}^{\prime}(z)}{\mathfrak{f}_{\beta}(z)}\right\}=\operatorname{Re}\left\{\frac{1}{1-\beta z}\right\}=\frac{1-r \cos \theta}{1-2 r \cos \theta+r^{2}}
$$

and

$$
\left|\frac{\mathfrak{f}_{\beta}(z)}{z}-1\right|=\left|\frac{\beta z}{1-\beta z}\right|=\frac{r}{\sqrt{1-2 r \cos \theta+r^{2}}}
$$

Therefore, we are looking for r_{0}, such that

$$
g(x, r):=\frac{1-r x}{r \sqrt{1-2 r x+r^{2}}} \geq 1 \quad\left(0 \leq r<r_{0}, \quad-1 \leq x \leq 1, \quad x:=\cos \theta\right)
$$

It is easy to check that g attains its minimum with respect to $x \in[-1,1]$ at $x=r$, so we are looking for r_{0} such that

$$
g(r):=\frac{1-r^{2}}{r \sqrt{1-r^{2}}} \geq 1 \quad\left(0 \leq r<r_{0}\right)
$$

and this gives $r_{0}=\sqrt{2} / 2$. Therefore, if $|\beta| \leq \sqrt{2} / 2=0.707 \ldots$ exactly, then (2.2) belongs to the class \mathcal{S}_{c}^{*}.
The following lemma will be useful.

Lemma 2.1 (See [6]) Let $p(z)$ be an analytic function in Δ of the form

$$
p(z)=1+\sum_{n=m}^{\infty} c_{n} z^{n} \quad\left(c_{m} \neq 0\right)
$$

with $p(z) \neq 0$ in Δ. If there exists a point $z_{0} \in \Delta$ such that

$$
|\arg \{p(z)\}|<\frac{\pi \varphi}{2} \quad \text { for } \quad|z|<\left|z_{0}\right|
$$

and

$$
\left|\arg \left\{p\left(z_{0}\right)\right\}\right|=\frac{\pi \varphi}{2}
$$

for some $\varphi>0$, then we have

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p(z)}=i l \varphi
$$

where

$$
\begin{equation*}
l \geq \frac{m}{2}\left(a+\frac{1}{a}\right) \geq m \text { when } \quad \arg \left\{p\left(z_{0}\right)\right\}=\frac{\pi \varphi}{2} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
l \leq-\frac{m}{2}\left(a+\frac{1}{a}\right) \leq-m \text { when } \arg \left\{p\left(z_{0}\right)\right\}=-\frac{\pi \varphi}{2} \tag{2.4}
\end{equation*}
$$

where

$$
\left\{p\left(z_{0}\right)\right\}^{1 / \varphi}= \pm i a \quad \text { and } \quad a>0
$$

In the next section, we shall investigate some geometric properties of the class \mathcal{S}_{c}^{*}.

3. Main results

We begin this section with the following.

Theorem 3.1 Let the function $f \in \mathcal{A}$ belong to the class \mathcal{S}_{c}^{*}. Then

$$
\begin{equation*}
\frac{f(z)}{z} \prec \varphi(z) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(z):=\frac{1}{1-z} \quad(z \in \Delta) \tag{3.2}
\end{equation*}
$$

Proof Let $f \in \mathcal{A}$ be in the class \mathcal{S}_{c}^{*}. Define

$$
\begin{equation*}
p(z):=\frac{f(z)}{z} \quad(z \in \Delta) \tag{3.3}
\end{equation*}
$$

Therefore p is analytic in Δ and $p(0)=1$. From (3.3), we obtain

$$
\begin{equation*}
1+\frac{z p^{\prime}(z)}{p(z)}=\frac{z f^{\prime}(z)}{f(z)} \quad(z \in \Delta) \tag{3.4}
\end{equation*}
$$

Since $f \in \mathcal{S}_{c}^{*}$, by relation (3.4) and by definition of \mathcal{S}_{c}^{*}, we have

$$
\begin{aligned}
\operatorname{Re}\left\{1+\frac{z p^{\prime}(z)}{p(z)}\right\} & =\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \\
& \geq\left|\frac{f(z)}{z}-1\right|=|p(z)-1| \\
& \geq \operatorname{Re}\{1-p(z)\}
\end{aligned}
$$

The last inequality implies that

$$
\begin{equation*}
\operatorname{Re}\left\{p(z)+\frac{z p^{\prime}(z)}{p(z)}\right\} \geq 0 \quad(z \in \Delta) \tag{3.5}
\end{equation*}
$$

By making use of the subordination principle, inequality (3.5) results in

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{p(z)} \prec \frac{1+z}{1-z} \tag{3.6}
\end{equation*}
$$

If we apply Theorem 3.3 d , [5, p. 109], then from (3.6) we conclude that

$$
p(z) \prec q(z) \prec \frac{1+z}{1-z},
$$

where $q(z)$ is the univalent solution of the differential equation

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{q(z)}=\frac{1+z}{1-z} \quad(z \in \Delta) \tag{3.7}
\end{equation*}
$$

Also $q(z)$ is the best dominant of (3.6). A simple calculation shows that the solution of the differential equation (3.7) is equal to

$$
q(z)=\left(\int_{0}^{1}\left(\frac{1-z}{1-t z}\right)^{2} d t\right)^{-1}=\frac{1}{1-z} \quad(z \in \Delta)
$$

concluding the proof. Here, the proof ends.
Marx and Strohhäcker (see [4, 12]) proved that if $f \in \mathcal{A}$, then the following implication is sharp:

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0 \Rightarrow \operatorname{Re}\left\{\frac{f(z)}{z}\right\}>\frac{1}{2} \quad(z \in \Delta)
$$

The same results of this kind are known as the Marx-Strohhäcker problem and they have many applications in complex dynamical systems; see [11, 13]. Following this, we obtain the Marx-Strohhäcker problem for the class \mathcal{S}_{c}^{*}.

Theorem 3.2 If f given by (1.1) belongs to class \mathcal{S}_{c}^{*}, then

$$
\operatorname{Re}\left\{\frac{f(z)}{z}\right\}>\frac{1}{2} \quad(z \in \Delta)
$$

This means that $\mathcal{S}_{c}^{*} \subset \mathcal{R}(1 / 2)$.
Proof By (3.1), using the definition of subordination and from

$$
\operatorname{Re}\{\varphi(z)\}=\operatorname{Re}\left\{\frac{1}{1-z}\right\}>\frac{1}{2} \quad(z \in \Delta)
$$

we get the desired result.
Open problem. Find the largest α such that $f \in \mathcal{S}_{c}^{*}$ implies that

$$
\operatorname{Re}\left\{\frac{f(z)}{z}\right\}>\alpha \quad(z \in \Delta)
$$

From Theorem 3.2 we see that $\alpha \geq 1 / 2$. Furthermore, function (2.2) shows that this α cannot be greater than $2-\sqrt{2}=0.58 \ldots$.

The following theorem, called the growth theorem, gives upper and lower bounds for $|f(z)|$, where f belongs to the class \mathcal{S}_{c}^{*}.

Theorem 3.3 Let $f \in \mathcal{S}_{c}^{*}$. Then we have

$$
\begin{equation*}
r \varphi(-r) \leq|f(z)| \leq r \varphi(r) \quad(|z|=r<1) \tag{3.8}
\end{equation*}
$$

where $\varphi(z)$ is defined in (3.2).
Proof Let φ be given by (3.2). If $f \in \mathcal{S}_{c}^{*}$, then by Theorem 3.1 we have

$$
\frac{f(z)}{z} \prec \varphi(z)
$$

The last subordination relation implies that

$$
\begin{equation*}
\frac{f(z)}{z} \in \varphi(|z| \leq r) \tag{3.9}
\end{equation*}
$$

for each $r \in(0,1)$ and $|z| \leq r$. Since

$$
\operatorname{Re}\left\{1+\frac{z \varphi^{\prime \prime}(z)}{\varphi^{\prime}(z)}\right\}=\operatorname{Re}\left\{1+2 \frac{z}{1-z}\right\}>0 \quad(z \in \Delta)
$$

φ is convex univalent in Δ and for each $r \in(0,1)$ the set $\varphi(|z| \leq r)$ is symmetric with respect to the real axis. This leads us to the following two-sided inequality:

$$
\begin{equation*}
\varphi(-r) \leq|\varphi(z)| \leq \varphi(r) \tag{3.10}
\end{equation*}
$$

where $r \in(0,1)$ and $|z| \leq r$. The assertion now is obtained from (3.9) and (3.10). This is the end of the proof.

Theorem 3.4 Let $f \in \mathcal{S}_{c}^{*}$ and $\alpha \in[0,1)$. Then

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1-\alpha \quad(|z|<(1-\alpha) /(2-\alpha))
$$

Proof Let $f \in \mathcal{S}_{c}^{*}$. Then by Theorem 3.1 we have

$$
\frac{f(z)}{z} \prec \frac{1}{1-z}
$$

By definition of subordination there exists a Schwarz function w such that

$$
\frac{f(z)}{z}=\frac{1}{1-w(z)} \quad(z \in \Delta)
$$

Clearly w is analytic in Δ with $w(0)=0$ and

$$
\begin{equation*}
\log \left\{\frac{f(z)}{z}\right\}=\log \left\{\frac{1}{1-w(z)}\right\} \quad(z \in \Delta) \tag{3.11}
\end{equation*}
$$

We find from the last equation, (3.11), that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=1+\frac{z w^{\prime}(z)}{1-w(z)} \quad(z \in \Delta) \tag{3.12}
\end{equation*}
$$

It is well known that $|w(z)| \leq|z|$ (cf. [2]), and also, by the Schwarz-Pick lemma, for a Schwarz function w the following inequality holds:

$$
\begin{equation*}
\left|w^{\prime}(z)\right| \leq \frac{1-|w(z)|^{2}}{1-|z|^{2}} \quad(z \in \Delta) \tag{3.13}
\end{equation*}
$$

Thus, by $|w(z)| \leq|z|$ and (3.13), the relation (3.12) implies that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|=\left|\frac{z w^{\prime}(z)}{1-w(z)}\right| \leq \frac{|z|\left|w^{\prime}(z)\right|}{1-|w(z)|} \leq \frac{|z|}{1-|z|}<1-\alpha
$$

provided that $|z|<\frac{1-\alpha}{2-\alpha}$. This completes the proof.
In the sequel, the following lemma (see [3]) (popularly known as Jack's lemma) will be required.

Lemma 3.5 Let the (nonconstant) function $\omega(z)$ be analytic in Δ with $\omega(0)=0$. If $|\omega(z)|$ attains its maximum value on the circle $|z|=r<1$ at a point $z_{0} \in \Delta$, then

$$
z_{0} \omega^{\prime}\left(z_{0}\right)=k \omega\left(z_{0}\right)
$$

where k is a real number and $k \geq 1$.
Theorem 3.6 Let the function $f \in \mathcal{A}$ satisfy the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\frac{1}{2} \quad(z \in \Delta) \tag{3.14}
\end{equation*}
$$

Then $f \notin \mathcal{S}_{c}^{*}$. This means that $\mathcal{S}^{*}(1 / 2) \not \subset \mathcal{S}_{c}^{*}$.
Proof If the function $f \in \mathcal{A}$ belongs to the class \mathcal{S}_{c}^{*}, then by the proof of Theorem 3.4 we have

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=1+\frac{z w^{\prime}(z)}{1-w(z)} \quad(z \in \Delta) \tag{3.15}
\end{equation*}
$$

Suppose now that there exists a point $z_{0} \in \Delta$ such that $\left|w\left(z_{0}\right)\right|=1$ and $|w(z)|<1$ when $|z|<\left|z_{0}\right|$. If we apply Lemma 3.5 , then we have

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right) \quad\left(w\left(z_{0}\right)=e^{i t} ; t \in \mathbb{R} ; k \geq 1\right) \tag{3.16}
\end{equation*}
$$

Therefore, we find from (3.15) and (3.16) that

$$
\operatorname{Re}\left\{\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right\}=\operatorname{Re}\left\{1+\frac{z_{0} w^{\prime}\left(z_{0}\right)}{1-w\left(z_{0}\right)}\right\}=1+\operatorname{Re}\left\{\frac{k w\left(z_{0}\right)}{1-w\left(z_{0}\right)}\right\}=1+\operatorname{Re}\left\{\frac{k e^{i t}}{1-e^{i t}}\right\}=1-\frac{k}{2} \leq \frac{1}{2}
$$

which contradicts the hypothesis (3.14). This completes the proof.
Actually, there exists a function $f \in \mathcal{A}$, a starlike function of order $1 / 2$ such that $f \notin \mathcal{S}_{c}^{*}$. The functions (2.2) are starlike of order $1 / 2$ for every $\beta,|\beta| \leq 1$, while they are in \mathcal{S}_{c}^{*} only for $|\beta| \leq \sqrt{2} / 2$.

Remark 3.7 Finding some $\alpha \in[0,1)$ such that $\mathcal{S}_{c}^{*} \subset \mathcal{S}^{*}(\alpha)$ is an open problem. In the sequel, we will answer this problem partially. Indeed, we conjecture that $\mathcal{S}_{c}^{*} \subset \mathcal{S}^{*}(\alpha)$ when $\alpha \in(1 / 2,1)$. For this purpose, let $\gamma=0.2$ in (2.1). Then the function $f_{0.2}(z)=z+0.2 z^{2}$ belongs to the class \mathcal{S}_{c}^{*}. A simple calculation gives us

$$
\operatorname{Re}\left\{\frac{z f_{0.2}^{\prime}(z)}{f_{0.2}(z)}\right\}=\operatorname{Re}\left\{\frac{1+0.4 z}{1+0.2 z}\right\}>\frac{3}{4} \quad(z \in \Delta)
$$

Therefore, $f_{0.2}$ is a starlike function of order $3 / 4$. Also, if we let $\beta=0.2$ in (2.2), then the function $\mathfrak{f}_{0.2}(z)=\frac{z}{1-0.2 z}$ belongs to the class \mathcal{S}_{c}^{*}. We have

$$
\operatorname{Re}\left\{\frac{z f_{0.2}^{\prime}(z)}{\mathfrak{f}_{0.2}(z)}\right\}=\operatorname{Re}\left\{\frac{1}{1-0.2 z}\right\}>0.83 \quad(z \in \Delta)
$$

This means that $\mathfrak{f}_{0.2} \in \mathcal{S}^{*}(0.83)$. These examples show that $\mathcal{S}_{c}^{*} \subset \mathcal{S}^{*}(\alpha)$ where $1 / 2<\alpha<1$. On the other hand, we know that the function k_{α} is starlike of order $\alpha(0 \leq \alpha<1)$, where k_{α} is defined in (1.2). A simple calculation of (1.2) gives that

$$
\begin{equation*}
\frac{z k_{\alpha}^{\prime}(z)}{k_{\alpha}(z)}=1+2(1-\alpha) \frac{z}{1-z} \quad(z \in \Delta) \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{k_{\alpha}(z)}{z}-1\right|=\left|\frac{1}{(1-z)^{2(1-\alpha)}}-1\right| \quad(z \in \Delta) \tag{3.18}
\end{equation*}
$$

If k_{α} belongs to the class \mathcal{S}_{c}^{*}, then from (3.17), (3.18), and the definition of \mathcal{S}_{c}^{*} we have

$$
\begin{equation*}
\operatorname{Re}\left\{1+2(1-\alpha) \frac{z}{1-z}\right\} \geq\left|\frac{1}{(1-z)^{2(1-\alpha)}}-1\right| \quad(z \in \Delta) \tag{3.19}
\end{equation*}
$$

If the last inequality holds for all $z \in \Delta$, then it holds for $|z|=1$, too. Also, for real z close to 1 , we have $L H S \rightarrow \alpha$, while RHS $\rightarrow \infty$. This shows that there are no $\alpha \geq 0$ so that $\mathcal{S}^{*}(\alpha) \subset \mathcal{S}_{c}^{*}$.

In order to estimate the logarithmic coefficients and because φ is univalent, we may rewrite Theorem 3.1 in the following form.

Theorem 3.8 If the function $f \in \mathcal{A}$ belongs to the class \mathcal{S}_{c}^{*}, then

$$
\log \left\{\frac{f(z)}{z}\right\} \prec-\log \{1-z\}
$$

The logarithmic coefficients γ_{n} of $f \in \mathcal{A}$ are defined by

$$
\begin{equation*}
\log \left\{\frac{f(z)}{z}\right\}=\sum_{n=1}^{\infty} 2 \gamma_{n} z^{n} \quad(z \in \Delta) \tag{3.20}
\end{equation*}
$$

The sharp upper bounds for the modulus of logarithmic coefficients are known for functions in very few subclasses of \mathcal{U}. For functions in the class \mathcal{S}^{*} we have the sharp inequality $\left|\gamma_{n}\right| \leq 1 / n$ where $n \geq 1$, but this is false for the full class \mathcal{U}, even in order of magnitude. Also, if $f \in \mathcal{S}^{*}(\alpha)$, then $\left|\gamma_{n}\right| \leq(1-\alpha) / n$ where $0 \leq \alpha<1$ and $n \geq 1$. Since the estimate of the logarithmic coefficients is an important problem in the theory of univalent functions, we shall investigate this problem for the functions in the class \mathcal{S}_{c}^{*}.

The following lemma is due to Rogosinski [9, 2.3 Theorem X].
Lemma 3.9 Let $q(z)=\sum_{n=1}^{\infty} Q_{n} z^{n}$ be analytic and univalent in Δ such that it maps Δ onto a convex domain. If $p(z)=\sum_{n=1}^{\infty} P_{n} z^{n}$ is analytic in Δ and satisfies the subordination $p(z) \prec q(z)$, then $\left|P_{n}\right| \leq\left|Q_{1}\right|$ where $n=1,2, \ldots$.

Theorem 3.10 Let $f \in \mathcal{A}$. If $f \in \mathcal{S}_{c}^{*}$ and the coefficient of $\log (f(z) / z)$ is given by (3.20), then

$$
\begin{equation*}
\left|\gamma_{n}\right| \leq \frac{1}{2} \quad(n \in \mathbb{N}=\{1,2,3, \ldots\}) \tag{3.21}
\end{equation*}
$$

The result is sharp.

Proof Let the function $f \in \mathcal{A}$ belong to the class \mathcal{S}_{c}^{*}. Then, by Theorem 3.8, we have

$$
\begin{equation*}
\log \left\{\frac{f(z)}{z}\right\} \prec-\log \{1-z\} \tag{3.22}
\end{equation*}
$$

Replacing the Taylor-Maclaurin series on both sides of (3.22) gives

$$
\sum_{n=1}^{\infty} 2 \gamma_{n} z^{n} \prec \sum_{n=1}^{\infty} \frac{z^{n}}{n}
$$

It is easily seen that the function $-\log \{1-z\}$ is convex univalent in Δ; therefore, by Lemma 3.9 we get the inequality (3.21).

In the sequel, we estimate the initial coefficients of the function f of the form (1.1) belonging to the class \mathcal{S}_{c}^{*}. First, we recall the following lemma.

Lemma 3.11 (See [1, Lemma 1]) If f is a Schwarz function of the form

$$
w(z)=w_{1} z+w_{2} z^{2}+w_{3} z^{3}+\cdots
$$

then

$$
\left|w_{2}-t w_{1}^{2}\right| \leq \begin{cases}-t, & \text { if } t \leq-1 \\ 1, & \text { if }-1 \leq t \leq 1 \\ t, & \text { if } t \geq 1\end{cases}
$$

For $t<-1$ or $t>1$, the equality holds if and only if $w(z)=z$ or one of its rotations. For $-1<t<1$, the equality holds if and only if $w(z)=z^{2}$ or one of its rotations. The equality holds for $t=-1$ if and only if $w(z)=z \frac{\lambda+z}{1+\lambda z} \quad(0 \leq \lambda \leq 1)$ or one of its rotations, while for $t=1$, the equality holds if and only if $w(z)=-z \frac{\lambda+z}{1+\lambda z} \quad(0 \leq \lambda \leq 1)$ or one of its rotations.

Theorem 3.12 Let f be of the form (1.1). If f belongs to the class \mathcal{S}_{c}^{*}, then

$$
\left|a_{2}\right| \leq 1, \quad\left|a_{3}\right| \leq 1 \quad \text { and } \quad\left|a_{4}\right| \leq 1
$$

All inequalities are sharp.
Proof Let the function f be of the form (1.1). Since $f \in \mathcal{S}_{c}^{*}$, by Theorem 3.1 we have

$$
\frac{f(z)}{z} \prec \frac{1}{1-z} .
$$

By the definition of subordination there exists a Schwarz function w with $w(z)=w_{1} z+w_{2} z^{2}+w_{3} z^{3}+\cdots$ and $|w(z)|<1$ so that

$$
\frac{f(z)}{z}=\frac{1}{1-w(z)} \quad(z \in \Delta)
$$

or equivalently,

$$
\begin{equation*}
f(z)=\frac{z}{1-w(z)} \quad(z \in \Delta) \tag{3.23}
\end{equation*}
$$

By substituting the Taylor series of f and w in (3.23) and comparing the coefficients, we obtain

$$
\begin{equation*}
a_{2}=w_{1}, \quad a_{3}=w_{2}+w_{1}^{2} \quad \text { and } \quad a_{4}=w_{3}+2 w_{1} w_{2}+w_{1}^{3} \tag{3.24}
\end{equation*}
$$

Since $\left|w_{1}\right| \leq 1$ (see $\left[7\right.$, p. 128]), we get $\left|a_{2}\right| \leq 1$. In order to estimate a_{3}, we apply Lemma 3.11. However, we have

$$
\left|a_{3}\right|=\left|w_{2}+w_{1}^{2}\right|=\left|w_{2}-(-1) w_{1}^{2}\right| \leq 1
$$

Prokhorov and Szynal in [7, Lemma 2] proved that if $(\mu, \nu)=(2,1)$, then $\left|w_{3}+\mu w_{1} w_{2}+\nu w_{1}^{3}\right| \leq 1$. Therefore,

$$
\left|a_{4}\right|=\left|w_{3}+2 w_{1} w_{2}+w_{1}^{3}\right| \leq 1
$$

This completes the proof.
The problem of finding sharp upper bounds for the coefficient functional $\left|a_{3}-\mu a_{2}^{2}\right|(\mu \in \mathbb{C})$ for different subclasses of class \mathcal{A} is known as the Fekete-Szegö problem. Next, we study this problem for the class \mathcal{S}_{c}^{*}.

Theorem 3.13 If $f \in \mathcal{A}$ of the form (1.1) belongs to the class \mathcal{S}_{c}^{*}, then for any complex number μ

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}1-\mu, & \text { if } \mu \leq 0 \\ 1, & \text { if } 0 \leq \mu \leq 2 \\ \mu-1, & \text { if } \mu \geq 2\end{cases}
$$

The result is sharp.
Proof By use of Lemma 3.11 and (3.24), the proof is obtained.

Acknowledgment

The authors would like to thank the anonymous referee for valuable suggestions.

References

[1] Ali RM, Ravichandran V, Seenivasagan N. Coefficient bounds for p-valent functions. Applied Mathematics and Computation 2007; 187 (1): 35-46. doi: 10.1016/j.amc.2006.08.100
[2] Duren PL. Univalent Functions. Berlin, Germany: Springer-Verlag, 1983.
[3] Jack IS. Functions starlike and convex of order α. Journal of the London Mathematical Society 1971; 3 (2): 469-474. doi: $10.1112 / \mathrm{jlms} / \mathrm{s} 2-3.3 .469$
[4] Marx A. Untersuchungen über schlichte Abbildungen. Mathematische Annalen 1933; 107 (1): 40-67 (in German).
[5] Miller SS, Mocanu PT. Differential Subordinations, Theory and Applications. Series of Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225. New York, NY, USA: Marcel Dekker, 2000.
[6] Nunokawa M. On properties of non-Carathéodory functions. Proceedings of the Japan Academy, Series A, Mathematical Sciences 1992; 68 (6): 152-153. doi: 10.3792/pjaa.68.152
[7] Prokhorov DV, Szynal J. Inverse coefficients for (α, β)-convex functions. Annales Universitatis Mariae CurieSklodowska, Sectio A - Mathematica 1984; 35: 125-143.
[8] Robertson MIS. On the theory of univalent functions. Annals of Mathematics 1936; 37 (2): 374-408. doi: 10.2307/1968451

MAHZOON, KARGAR and SOKÓモ/Turk J Math

[9] Rogosinski W. On the coefficients of subordinate functions. Proceedings of the London Mathematical Society 1943; 2 (1): 48-82. doi: $10.1112 / \mathrm{plms} / \mathrm{s} 2-48.1 .48$
[10] Rønning F. Uniformly convex functions and a corresponding class of starlike functions. Proceedings of the American Mathematical Society 1993; 118 (1): 189-196. doi: $10.2307 / 2160026$
[11] Shoikhet D. Semigroups in Geometrical Function Theory. Berlin, Germany: Springer Science \& Business Media, 2013.
[12] Strohhäcker E. Beiträge zur Theorie der schlichten Funktionen. Mathematische Zeitschrift 1933; 37 (1): 356-380 (in German).
[13] Tuneski N, Nunokawa M, Jolevska-Tuneska B. A Marx-Strohhacker type result for close-to-convex functions. In: Agranovsky M, Golberg A, Jacobzon F, Shoikhet D, Zalcman L (editors). Complex Analysis and Dynamical Systems. Trends in Mathematics. Basel, Switzerland: Birkhäuser, 2018.

