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Abstract. A new intrinsic metric called the t-metric is introduced. Several
sharp inequalities between this metric and the most common hyperbolic
type metrics are proven for various domains G � Rn. The behaviour of
the new metric is also studied under a few examples of conformal and
quasiconformal mappings, and the differences between the balls drawn
with all the metrics considered are compared by both computational and
analytical means.
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1. Introduction

In geometric function theory, one of the topics studied deals with the variation
of geometric quantities such as distances, ratios of distances, local geometry
and measures of sets under different mappings. For such studies, we need an
appropriate notion of distance that is compatible with the class of mappings
studied. In classical function theory of the complex plane, one of the key con-
cepts is the intrinsic distance, which measures not only how close the points of
the domain are to each other but also how they are located inside the domain
with respect to its boundary.

The best-known example of a metric used to study intrinsic distances is
the hyperbolic metric, which is also the foundation of the classical hyperbolic
geometry. It has several desirable analytical properties but is often very difficult
to define in subdomains G of an arbitrary metric space X. Because of this issue,
several other newer, more general versions of the hyperbolic metric have been
introduced. These generalizations share some but not all intricate features of
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the hyperbolic metric and, in particular, they take into account the location
of the points inside the domain. Furthermore, the closures of the balls defined
with most of these metrics never intersect the boundary of the domain.

In our research, we call such a generalization of the hyperbolic metric that
fulfills all the properties listed in [7, p. 79] a hyperbolic type metric and any
metric whose values are affected by the boundary of the domain an intrinsic
metric, regardless whether it has also the other properties of a hyperbolic type
metric or not. Note that these terms might have slightly different meanings
in the literature. More potential properties for a hyperbolic type metric are
presented in [7, p. 191-192]. Examples of a hyperbolic type metric include the
triangular ratio metric studied in [12–14], the Barrlund metric [4] and the
Cassinian metric [10], whereas this work focuses on the following new intrinsic
metric.

Definition 1.1. Let G be some non-empty, open, proper and connected subset
of a metric space X. Choose some metric ηG defined in the closure of G and
denote ηG(x) = ηG(x, ∂G) = inf{ηG(x, z) | z ∈ ∂G} for all x ∈ G. The t-
metric for a metric ηG in a domain G is a function tG : G × G → [0, 1],

tG(x, y) =
ηG(x, y)

ηG(x, y) + ηG(x) + ηG(y)
,

for all x, y ∈ G.

Here, we mostly concentrate on the special case where G � Rn and ηG is
the Euclidean distance.

Unlike the hyperbolic type metrics, the t-metric does not have the prop-
erty about the closed balls not intersecting with the boundary, see Theorem
5.5. This is an interesting aspect since this metric clearly fulfills most of the
others, if not all, properties of a hyperbolic type metric in [7, p. 79]. Conse-
quently, we have found an intrinsic metric that is not a hyperbolic type metric
by our definition. It is also noteworthy that the t-metric has a very simple
definition so it could potentially be a great help for researching the distortion
under mappings and studying this metric further could solve one old open
question, see Conjecture 4.4 and Remark 4.5.

The structure of this article is as follows. In Sect. 3, we prove that the
function of Definition 1.1 is really a metric and find the sharp inequalities
between this metric and several hyperbolic type metrics, including also the
hyperbolic metric, in different domains. In Sect. 4, we show how the t-metric
behaves under certain quasiconformal mappings and find the Lipschitz con-
stants for Möbius maps between balls and half-spaces. Finally, in Sect. 5, we
draw t-metric disks and compare their certain properties to those of other
metric disks.
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2. Preliminaries

In this section, we will introduce the definitions of a few different metrics and
metric balls that will be necessary later on but, first, let us recall the definition
of a metric.

Definition 2.1. For any non-empty space G, a metric is a function ηG : G×G →
[0,∞) that fulfills the following three conditions for all x, y, z ∈ G:
(1) Positivity: ηG(x, y) ≥ 0, and ηG(x, y) = 0 if and only if x = y,
(2) Symmetry: ηG(x, y) = ηG(y, x),
(3) Triangle inequality: ηG(x, y) ≤ ηG(x, z) + ηG(z, y).

Let ηG be any metric. An open ball defined with it is Bη(x, r) = {y ∈
G | ηG(x, y) < r} and the corresponding closed ball is Bη(x, r) = {y ∈
G | ηG(x, y) ≤ r}. Denote the surface of these balls by Sη(x, r). For Euclidean
metric, these notations are Bn(x, r), B

n
(x, r) and Sn−1(x, r), respectively,

where n is the dimension. In this paper, the unit ball Bn = Bn(0, 1), the
upper half-plane Hn = {(x1, . . . , xn) ∈ Rn | xn > 0} and the open sector
Sθ = {x ∈ C\{0} | 0 < arg(x) < θ} with an angle θ ∈ (0, 2π) will be com-
monly used as domains G. Note also that the unit basis vectors of Rn will be
denoted by {e1, . . . , en}.

Let us now define the metrics needed for a domain G � Rn. Denote
the Euclidean distance between the points x, y by |x − y| and let dG(x) =
inf{|x − z| | z ∈ ∂G}. Suppose that the t-metric is defined with the Euclidean
distance so that

tG(x, y) =
|x − y|

|x − y| + dG(x) + dG(y)

for all x, y ∈ G, if not otherwise specified.
The following hyperbolic type metrics will be considered: The triangular

ratio metric: sG : G × G → [0, 1],

sG(x, y) =
|x − y|

infz∈∂G(|x − z| + |z − y|) ,

the j∗
G-metric: j∗

G : G × G → [0, 1),

j∗
G(x, y) =

|x − y|
|x − y| + 2min{dG(x), dG(y)} ,

and the point pair function: pG : G × G → [0, 1),

pG(x, y) =
|x − y|

√|x − y|2 + 4dG(x)dG(y)
.

Out of these hyperbolic type metrics, the triangular ratio metric was
studied by Hästö [9], and the two other metrics are more recent. As pointed
out in [8], the j∗

G-metric is derived from the distance ratio metric found by
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Gehring and Osgood in [6]. Note that there are proper domains G in which
the point pair function is not a metric [3, Rmk 3.1 p. 689].

Use notations sh, ch and th for the hyperbolic sine, cosine and tangent,
respectively. Define then the hyperbolic metric as

chρHn(x, y) = 1 +
|x − y|2

2dHn(x)dHn(y)
, x, y ∈ Hn,

sh2 ρBn(x, y)
2

=
|x − y|2

(1 − |x|2)(1 − |y|2) , x, y ∈ Bn

in the upper half-plane Hn and in the Poincaré unit ball Bn [7, (4.8), p.
52 & (4.14), p. 55]. In the two-dimensional space,

th
ρH2(x, y)

2
=

∣∣∣∣
x − y

x − y

∣∣∣∣ , th
ρB2(x, y)

2
=

∣∣∣∣
x − y

1 − xy

∣∣∣∣ =
|x − y|
A[x, y]

,

where y is the complex conjugate of y and A[x, y] =√|x − y|2 + (1 − |x|2)(1 − |y|2) is the Ahlfors bracket [7, (3.17) p. 39].
Note that the following inequalities hold for the hyperbolic type metrics.

Lemma 2.2. [8, Lemma 2.3, p. 1125] For a proper subdomain G of Rn, the
inequality j∗

G(x, y) ≤ pG(x, y) ≤ √
2j∗

G(x, y) holds for all x, y ∈ G.

Lemma 2.3. [8, Lemma 2.1, p. 1124 & Lemma 2.2, p. 1125] For a proper
subdomain G of Rn, the inequality j∗

G(x, y) ≤ sG(x, y) ≤ 2j∗
G(x, y) holds for

all x, y ∈ G.

Lemma 2.4. [7, p. 460] For all x, y ∈ G ∈ {Hn, Bn},

(1) th
ρHn(x, y)

4
≤ j∗

Hn(x, y) ≤ sHn(x, y)

= pHn(x, y) = th
ρHn(x, y)

2
≤ 2th

ρHn(x, y)
4

,

(2) th
ρBn(x, y)

4
≤ j∗

Bn(x, y) ≤ sBn(x, y) ≤ pBn(x, y)

≤ th
ρBn(x, y)

2
≤ 2th

ρBn(x, y)
4

.

3. t-Metric and Its Bounds

Now, we will prove that the function t is truly a metric in the general case.

Theorem 3.1. For any metric space X, a domain G � X and a metric ηG

defined in G, the function tG is a metric.

Proof. The function tG is a metric if it fulfills all the three conditions of Defi-
nition 2.1. Trivially, the first two conditions hold. For all k > 0 and x, y ≥ 0,

x ≤ y ⇔ x

x + k
≤ y

y + k
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and it follows from this and the triangle inequality that

tG(x, y) =
ηG(x, y)

ηG(x, y) + ηG(x) + ηG(y)
≤ ηG(x, z) + ηG(z, y)

ηG(x, z) + ηG(z, y) + ηG(x) + ηG(y)

≤ ηG(x, z)
ηG(x, z) + ηG(x) + ηG(z)

+
ηG(z, y)

ηG(z, y) + ηG(y) + ηG(z)
= tG(x, z) + tG(z, y)

for all x, y, z ∈ G. Thus, tG fulfills the triangle inequality, too. �

We now show that the method of proof of Theorem 3.1 can be used to
prove that several other functions are metrics.

Theorem 3.2. If G is a proper subset of a metric space X, ηG some metric
defined in the closure of G and cG : G × G → [0,∞) some symmetric function
such that, for all x, y, z ∈ G,

cG(x, z) ≤ ηG(z, y) + cG(x, y), (3.3)

then any function φG : G × G → [0, 1], defined as

φG(x, x) = 0, φG(x, y) =
ηG(x, y)

ηG(x, y) + cG(x, y)
if x 	= y

for all x, y ∈ G, is a metric in the domain G.

Proof. Since ηG is a metric and cG is both symmetric and non-negative, the
function φG trivially fulfills the first two conditions of Definition 2.1. Note
that, by the triangle inequality of the metric ηG and the inequality (3.3), the
inequalities

ηG(x, y) ≤ ηG(x, z) + ηG(z, y),

cG(x, z) ≤ ηG(z, y) + cG(x, y),

cG(z, y) ≤ ηG(x, z) + cG(x, y),

hold for all x, y, z ∈ G. Now,

φG(x, y) =
ηG(x, y)

ηG(x, y) + cG(x, y)
≤ ηG(x, z) + ηG(z, y)

ηG(x, z) + ηG(z, y) + cG(x, y)

≤ ηG(x, z)
ηG(x, z) + cG(x, z)

+
ηG(z, y)

ηG(z, y) + cG(z, y)
= φG(x, z) + φG(z, y),

so the function φG fulfills the triangle inequality and it must be a metric.
�

Remark 3.4. (1) If the function cG of Theorem 3.2 is strictly positive, the
condition φG(x, x) = 0 does not need to be separately specified. Namely,
this condition follows directly from the fact that ηG(x, x) = 0 for a metric
ηG. Note also that if cG is a null function, the function φG becomes the
discrete metric.
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(2) If ηG is a metric, then ηα
G is a metric, too, for 0 < α ≤ 1, but this is not

true for α > 1 [7, Ex. 5.24, p. 80].

Corollary 3.5. The function ψ : Bn × Bn → [0, 1], defined as

ψ(x, x) = 0, ψ(x, y) =
|x − y|

|x − y| + c|x||y| if x 	= y,

for all x, y ∈ Bn with a constant 0 < c ≤ 1, is a metric on the unit ball.

Proof. Since now

c|x|(|z| − |y|) ≤ ||z| − |y|| ≤ |z − y| ⇒ c|x||z| ≤ |z − y| + c|x||y|,
for all x, y, z ∈ Bn, the result follows from Theorem 3.2. �

Corollary 3.6. If G is a proper subset of a metric space X and ηG is some
metric defined in the closure of G such that ηG(x) = inf{ηG(x, u) | u ∈ ∂G} ≤
1 for all x ∈ G, then a function υG : G × G → [0, 1], defined as

υG(x, y) =
ηG(x, y)

ηG(x, y) + c
√

(1 + ηG(x))(1 + ηG(y))

with a constant 0 < c ≤ √
2 is a metric in the domain G.

Proof. Fix cG(x, y) = c
√

(1 + ηG(x))(1 + ηG(y)). Now,

cG(x, z) − cG(x, y) = c
√

(1 + ηG(x))(1 + ηG(z)) − c
√

(1 + ηG(x))(1 + ηG(y))

= c · (1 + ηG(x))(1 + ηG(z)) − (1 + ηG(x))(1 + ηG(y))
√

(1 + ηG(x))(1 + ηG(z)) +
√

(1 + ηG(x))(1 + ηG(y))

=
c
√

1 + ηG(x)(ηG(z) − ηG(y))
√

1 + ηG(z) +
√

1 + ηG(y)
≤

√
2c(ηG(z) − ηG(y))

1 + 1

≤ ηG(z) − ηG(y) ≤ ηG(z, y),

so the inequality (3.3) holds for all x, y, z ∈ G and the result follows from
Theorem 3.2. �

Corollary 3.7. The function χ : Bn × Bn → [0, 1], defined as

χ(x, y) =
|x − y|

|x − y| + c
√

(2 − |x|)(2 − |y|)
for all x, y ∈ Bn with a constant 0 < c ≤ √

2, is a metric on the unit ball.

Proof. Follows from Corollary 3.6. �

Let us focus again on the t-metric. Since the result of Theorem 3.1 holds
for any metric ηG, the t-metric is a metric when defined by using the Euclidean
metric. Below, we will consider the t-metric in this special case only. Let us
next prove the inequalities between the t-metric and the three hyperbolic type
metrics defined earlier.
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Theorem 3.8. For all domains G � Rn and all points x, y ∈ G, the following
inequalities hold:
(1) j∗

G(x, y)/2 ≤ tG(x, y) ≤ j∗
G(x, y),

(2) pG(x, y)/2 ≤ tG(x, y) ≤ pG(x, y),
(3) sG(x, y)/2 ≤ tG(x, y) ≤ sG(x, y).

Proof. (1) Trivially, tG(x, y) ≤ j∗
G(x, y) and, by the triangle inequality,

dG(x) + dG(y) ≤ |x − y| + 2min{dG(x), dG(y)},

from which it follows that

j∗
G(x, y) ≤ 2|x − y|

|x − y| + 2min{dG(x), dG(y)} + dG(x) + dG(y)
≤ 2tG(x, y).

(2) From Lemma 2.2 and Theorem 3.8(1), it follows that tG(x, y) ≤ pG(x, y).
Let us now prove that pG(x, y)/2 ≤ tG(x, y). This is clearly equiva-

lent to

|x − y| + dG(x) + dG(y) ≤ 2
√

|x − y|2 + 4dG(x)dG(y). (3.9)

Fix u = |x − y|, v = min{dG(x), dG(y)} and k = |dG(x) − dG(y)|.
The inequality (3.9) is now

u + 2v + k ≤ 2
√

u2 + 4v(v + k)

⇔ k2 + 4uv + 2uk − 3u2 − 12v2 − 12kv ≤ 0.

Define a function f(k) = k2 + 4uv + 2uk − 3u2 − 12v2 − 12kv. Since
the inequality above is equivalent to f(k) ≤ 0, we need to find out the
greatest value of this function. There is no upper limit for u ≥ 0 or v ≥ 0,
but 0 ≤ k ≤ u. We can solve that

f ′(k) = 2k + 2u − 12v = 0 ⇔ k = 6v − u.

Since

f(0) = −3u2 + 4uv − 12v2 ≤ −2u2 − 8v2 ≤ 0,

f(6v − u) = −4u2 + 16uv − 48v2 ≤ −32v2 ≤ 0,

f(u) = −8uv − 12v2 ≤ 0,

f(k) is always non-positive on the closed interval k ∈ [0, u] and,
consequently, the inequality pG(x, y)/2 ≤ tG(x, y) follows.

(3) By the triangle inequality and Lemma 2.3 and Theorem 3.8(1),

sG(x, y)
2

≤ |x − y|
infz∈∂G(|x − z| + |z − y|) + dG(x) + dG(y)

≤ tG(x, y) ≤ j∗
G(x, y) ≤ sG(x, y).

�
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Proposition 3.10. For any fixed domain G � Rn, the inequalities of Theorem
3.8 are sharp.

Proof. For a proper subdomain G, there is some ball Bn(x, r) ⊂ G with
Sn−1(x, r)∩∂G 	= ∅ where r > 0. Fix z ∈ Sn−1(x, r)∩∂G and y ∈ [x, z] so that
|y − z| = kr with k ∈ (0, 1). Clearly, dG(x) = r, dG(y) = kr, |x − y| = (1 − k)r
and infz∈∂G(|x − z| + |z − y|) = (1 + k)r. It follows that

lim
k→0+

tG(x, y)
j∗
G(x, y)

= lim
k→0+

tG(x, y)
pG(x, y)

= lim
k→0+

tG(x, y)
sG(x, y)

= lim
k→0+

(
1 + k

2

)
=

1
2
,

lim
k→1−

tG(x, y)
j∗
G(x, y)

= lim
k→1−

tG(x, y)
pG(x, y)

= lim
k→1−

tG(x, y)
sG(x, y)

= lim
k→1−

(
1 + k

2

)
= 1.

Thus, regardless of how G is chosen, the inequalities of Theorem 3.8 are
sharp. �

Next, we will study the connection between the t-metric and the hyper-
bolic metric.

Lemma 3.11. For all x, y ∈ B2, the inequality |x − y| + 2 − |x| − |y| ≤ 2A[x, y]
holds.

Proof. By the triangle inequality, |x − y|2 ≥ (|x| − |y|)2 holds and therefore

A[x, y] ≥
√

(|x| − |y|)2 + (1 − |x|2)(1 − |y|2) = 1 − |x||y|.
Thus, the inequality in the lemma holds if

|x − y| + 2 − |x| − |y| ≤ 2(1 − |x||y|) ⇔ |x − y| ≤ |x| + |y| − 2|x||y|.
Suppose then that |x − y| > |x| + |y| − 2|x||y|. By [1, Lemma 7.57.(1),p.

152],

A[x, y] ≥ |x − y| + (1 − |x|)(1 − |y|)
for all x, y ∈ B2. Because

|x − y| + 2 − |x| − |y| ≤ 2|x − y| + 2(1 − |x|)(1 − |y|)
⇔ |x − y| ≥ |x| + |y| − 2|x||y|,

the inequality of the lemma holds in this case, too. �
Theorem 3.12. For all x, y ∈ G ∈ {Hn, Bn}, the inequality

1
2
th

ρG(x, y)
2

≤ tG(x, y) ≤ th
ρG(x, y)

2
holds and the constants here are sharp.

Proof. If G = Hn, the inequality follows directly from Lemma 2.4(1) and
Theorem 3.8(3), and its sharpness from Proposition 3.10. By Lemma 2.4(2)
and Theorem 3.8(1),

tBn(x, y) ≤ j∗
Bn(x, y) ≤ th

ρBn(x, y)
2
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for all x, y ∈ Bn and this is sharp because x = ke1 and y = −ke1 fulfill
limk→1−(tBn(x, y)/th(ρBn(x, y)/2)) = 1. By Lemma 3.11,

tB2(x, y)
th(ρB2(x, y)/2)

=
A[x, y]

|x − y| + 2 − |x| − |y| ≥ 1
2
.

Since the values of the t-metric and the hyperbolic metric in the domain
Bn only depend on how the points x, y are located on the two-dimensional
plane containing these two points and the origin, the inequality above holds
also in the general case where n ≥ 2. This inequality is sharp: For x = ke1 and
y = −ke1, limk→0+(tBn(x, y)/th(ρBn(x, y)/2)) = 1/2. �

Theorem 3.13. For a fixed angle θ ∈ (0, 2π) and for all x, y ∈ Sθ, the following
inequalities hold:

(1) tSθ
(x, y) ≤ th(ρSθ

(x, y)/2) ≤ 2(π/θ) sin(θ/2)tSθ
(x, y) if θ ∈ (0, π),

(2) tSθ
(x, y) ≤ th(ρSθ

(x, y)/2) ≤ 2tSθ
(x, y) if θ = π,

(3) (π/θ)tSθ
(x, y) ≤ th(ρSθ

(x, y)/2) ≤ 2tSθ
(x, y) if θ ∈ (π, 2π).

Proof. Follows from Theorems 3.8(3) and 3.12, and [14, Cor. 4.9, p. 9]. �

4. Quasiconformal Mappings and Lipschitz Constants

In this section, we will study the behaviour of the t-metric under different
conformal and quasiconformal mappings in order to demonstrate how this
metric works.

Remark 4.1. The t-metric is invariant under all similarity maps. In particular,
the t-metric defined in a sector Sθ is invariant under a reflection over the
bisector of the sector and a stretching x → r ·x with any r > 0. Consequently,
this allows us to make certain assumptions when choosing the points x, y ∈ Sθ.

First, let us study how the t-metric behaves under a K-quasiconformal
homeomorphism between two sectors, see [15, Ch. 2] for the definition of this
type of mappings. Let c(K) be as in [7, Thm 16.39, p. 313]

c(K) ≤ v(K − 1) + K, v = log(2(1 +
√

1 − 1/e2)) < 1.3507.

Now, c(K) ≥ K and c(K) → 1 whenever K → 1. See also the book [5]
by F.W. Gehring and K. Hag.

Theorem 4.2. If α, β ∈ (0, 2π) and f : Sα → Sβ = f(Sα) is a K-
quasiconformal homeomorphism, the following inequalities hold for all x, y ∈
Sα.
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(1)
β

2c(K)Kπ sin(β/2)
tSα

(x, y)K ≤ tSβ
(f(x), f(y))

≤ c(K)(
π

α
sin(

α

2
))1/KtSα

(x, y)1/K

if α, β ∈ (0, π],

(2)
1

2c(K)K
tSα

(x, y)K ≤ tSβ
(f(x), f(y))

≤ c(K)β
π

(
π

α
sin(

α

2
))1/KtSα

(x, y)1/K

if α ∈ (0, π) and β ∈ (π, 2π),

(3)
1
2
(

π

c(K)α
)KtSα

(x, y)K ≤ tSβ
(f(x), f(y)) ≤ c(K)β

π
tSα

(x, y)1/K

if α, β ∈ [π, 2π).

Proof. Follows from Theorem 3.8(3) and [14, Cor. 5.7, p. 12]. �

Let us now find Lipschitz constants of a few different mappings for the
t-metric.

Theorem 4.3. For all conformal mappings f : G1 → G2 = f(G1) with
G1, G2 ∈ {Hn, Bn}, the inequality

1
2
tG1(x, y) ≤ tG2(f(x), f(y)) ≤ 2tG1(x, y)

holds for all x, y ∈ G1.

Proof. Follows from Theorem 3.12 and the conformal invariance of the hyper-
bolic metric. �

It follows from Theorem 4.3 that the Lipschitz constant Lip(f |G1) for the
t-metric in any conformal mapping f : G1 → G2 = f(G1), G1, G2 ∈ {Hn, Bn},
is at most 2. Suppose now that h is the Möbius transformation h : B2 → H2,
h(z) = (1 − z)i/(1 + z). Since, for x = 0 and y = 1−k

k+1 with 0 < k < 1,

lim
k→1−

(
tHn(h(x), h(y))

tBn(x, y)

)
= lim

k→1−
(k + 1) = 2,

the Lipschitz constant Lip(h|B2) is equal to 2. However, for certain fixed
choices of the Möbius transformation h, there is an even better Lipschitz con-
stant Lip(h|B2) than 2. For instance, the following conjecture is supported by
several numerical tests.

Conjecture 4.4. For all a, x, y ∈ B2, the Möbius transformation Ta : B2 → B2,
Ta(z) = (z − a)/(1 − az) fulfills the inequality

tB2(Ta(x), Ta(y)) ≤ (1 + |a|)tB2(x, y).
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Remark 4.5. It is also an open question whether the inequality of Conjecture
4.4 holds for the triangular ratio metric or so called Barrlund metric, but
numerical tests suggest so, see [3, Conj. 1.6, p. 684] and [4, Conj. 4.3, p. 25].

In the next few results, we will study a mapping f∗ : Sθ → Sθ, f∗(x) = x/
|x|2 defined in some open sector Sθ, and find its Lipschitz constants for the
t-metric.

Theorem 4.6. If θ ∈ (0, π] and f∗ is the mapping f∗ : Sθ → Sθ, f∗(x) = x/
|x|2, the Lipschitz constant Lip(f∗|Sθ) for the t-metric is 1 + sin(θ/2).

Proof. Without loss of generality, we can fix x = ehi and y = reki with 0 <
h ≤ θ/2, h ≤ k < θ and r > 0. Since x∗ = ehi and y∗ = (1/r)eki, it follows
that

tSθ
(x∗, y∗)

tSθ
(x, y)

=

√
1 + r2 − 2r cos(k − h) + sin(h) + r sin(min{k, θ − k})

√
1 + r2 − 2r cos(k − h) + r sin(h) + sin(min{k, θ − k})

.

To maximize this, we clearly need to choose k = θ/2 and make r and h
as small as possible. If k = θ/2,

lim
h→0+, r→0+

tSθ
(x∗, y∗)

tSθ
(x, y)

= 1 + sin(θ/2),

so the theorem follows. �

Theorem 4.7. If x∗ = x/|x|2 and y∗ = y/|y|2, the equality sSθ
(x, y) =

sSθ
(x∗, y∗) holds in an open sector Sθ with θ ∈ (0, 2π).

Proof. Fix x = ehi and y = reki where r > 0 and 0 < h ≤ k < θ. Clearly, x∗ =
x = ehi and y∗ = (1/r)eki. Suppose first that θ ≤ π. By the known solution to
Heron’s problem, the infimum infz∈∂Sθ

(|x−z|+ |z−y|) is min{|x−y|, |x−y′|},
where y′ is the point y reflected over the left side of the sector θ. Clearly,

|x − y| ≤ |x − y′| ⇔ |e−hi − reki| ≤ |ehi − re(2θ−k)i|
⇔ |1 − re(h+k)i| ≤ |1 − re(2θ−h−k)i| ⇔ h + k ≤ 2θ − h − k

⇔ (h + k)/2 ≤ θ/2.

By symmetry, we may assume that (h + k)/2 ≤ θ/2 without loss of
generality. Note that it follows from above that not only infz∈∂Sθ

(|x−z|+ |z −
y|) = |x − y| but also infz∈∂Sθ

(|x∗ − z| + |z − y∗|) = |x∗ − y∗|. Now,

sSθ
(x, y) =

|x − y|
|x − y| =

|1 − re(k−h)i|
|1 − re(k+h)i| =

|1 − re(h−k)i|
|1 − re−(k+h)i| =

|r − e(k−h)i|
|r − e(k+h)i|

=
|1 − (1/r)e(k−h)i|
|1 − (1/r)e(k+h)i| =

|x∗ − y∗|
|x∗ − y∗| = sSθ

(x∗, y∗).
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Consider now the case where θ > π. If k − h ≥ π, then sSθ
(x, y) = 1 =

sSθ
(x∗, y∗) always so suppose that k − h < π instead. This leaves us three

possibilities. If (h + k)/2 ≤ π/2, then (h + k)/2 < θ/2 and

sSθ
(x, y) =

|x − y|
|x − y| =

|x∗ − y∗|
|x∗ − y∗| = sSθ

(x∗, y∗),

just like above. By symmetry, sSθ
(x, y) = sSθ

(x∗, y∗) also if (k + h)/
2 ≥ θ − π/2. If π/2 < (k + h)/2 < θ − π/2 instead, then

sSθ
(x, y) =

|x − y|
|x| + |y| =

|1 − re(k−h)i|
1 + r

=
|1 − (1/r)e(k−h)i|

1 + 1/r

=
|x∗ − y∗|
|x∗| + |y∗| = sSθ

(x∗, y∗).

�

Theorem 4.8. If θ ∈ [π, 2π) and f∗ : Sθ → Sθ is the mapping f∗(x) = x/|x|2,
the Lipschitz constant Lip(f∗|Sθ) for the t-metric is 2.

Proof. It follows from Theorems 4.7 and 3.8(3) that

tSθ
(x, y)
2

≤ tSθ
(x∗, y∗) ≤ 2tSθ

(x, y)

for all x, y ∈ Sθ. Since for x = ehi and y = reπi/2 with h < π/2 and
r > 0,

lim
h,r→0+

tSθ
(x∗, y∗)

tSθ
(x, y)

= lim
h,r→0+

(√
1 + r2 − 2r cos(π/2 − h) + r sin(h) + 1

√
1 + r2 − 2r cos(π/2 − h) + sin(h) + r

)

= 2,

and it follows that

sup
{

tSθ
(x∗, y∗)

tSθ
(x, y)

∣∣∣x, y ∈ Sθ, x 	= y, θ ∈ [π, 2π)
}

= 2.

�

5. Comparison of Metric Balls

Next, we will graphically demonstrate the differences and similarities between
the various metrics considered in this paper by drawing boundaries of balls
centered at the same point but with different radii for each metric. In all of
the figures of this section, the domain G ⊂ R2 is a regular five-pointed star
and the circles have the radii r = 1/10, . . . , 9/10. The center of these circles is
in the center of G in the first figures, and then off the center in the rest of the
figures. All the figures in this section were drawn by using the contour plot
function contour in R-Studio and choosing a grid of the size 1,000×1,000 test
points. While we graphically only inspect circles and disks, we will also prove
some properties for the n-dimensional metric balls.
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Figure 1. Circles in a five-pointed star domain with different
metrics

For several hyperbolic type metrics, the metric balls of small radii resem-
ble Euclidean balls, but the geometric structure of the boundary of the domain
begins to affect the shape of these balls when their radii grow large enough,
see [7, Ch. 13, pp. 239-259]. By analysing this phenomenon more carefully,
we can observe, for instance, that the balls are convex with radii less than
some fixed r0 > 0 in the case of some other metrics, see [7, Thm 13.6, p. 241;
Thm 13.41 p. 256; Thm 13.44, p. 258]. From the figures of this section, we see
that the four metrics studied here share this same property. In particular, we
notice that, while the metric disks with small radii are convex and round like
Euclidean disks, the metric circles with larger radii are non-convex and have
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corner points. By a corner point, we mean here such a point on the circle arc
where no tangent exists.

In the following theorem, we will prove a property that can be seen from
Figs. 1c, d and 2c, d.

Theorem 5.1. If the domain G is a polygon, then the corner points of the circles
Sp(x, r) and St(x, r) are located on the angle bisectors of G.

Proof. Suppose G has sides l0 and l1 that have a common endpoint k. Fix
x ∈ G and choose some point y ∈ G so that k is the vertex of G that is
closest to y and there is no other side closer to y than l0 and l1. Thus, dG(y) =
min{d(y, l0), d(y, l1)} and, for a fixed distance |x − y|, dG(y) is at maximum
when d(y, l0) = d(y, l1). The condition d(y, l0) = d(y, l1) is clearly fulfilled
when y is on the bisector of ∠(l0, l1) and, the greater the dG(y), the smaller
the distances pG(x, y) and tG(x, y) are now. Consequently, if the circle Sp(x, r)
or St(x, r) has a corner point, it must be located on an angle bisector of G.

�

However, it can been seen from Fig. 2a, b that the circles with the metrics
sG and j∗

G can have corner points also elsewhere than on the angle bisectors
of the domain G. We also notice that the circles in Fig. 2b clearly differ from
those in Fig. 2a. This can be described with the concept of starlikeness, which
is a looser form of convexity. Namely, a set K is starlike with respect to a point
x ∈ K if and only if the segment [x, y] belongs to K fully for every y ∈ K. In
particular, the five-pointed star domain is starlike with respect to its center.
The disks by the metrics j∗

G and tG (Fig. 2b, d) are clearly not starlike and,
even if it cannot be clearly seen from Fig. 2c, there are disks drawn with the
point pair function pG that are not starlike.

Lemma 5.2. There exist disks Bj∗(x, r), Bp(x, r), and Bt(x, r) that are not
starlike with respect to their center.

Proof. Consider the domain G = H2 ∪ {z ∈ C | − 1 < Re(z) < 1,−3 <
Im(z) ≤ 0}. Fix x = −2i and y = 3 + i. Clearly, dG(x) = dG(y) = 1 and
|x − y| = 3

√
2. Consequently,

j∗
G(x, y) = tG(x, y) =

3
3 +

√
2

< 0.7, pG(x, y) =
3√
11

< 0.91.

The segment [x, y] does not clearly belong to G fully and no disk in G
can contain this segment. However, its end point y is clearly included in the
disks Bj∗(x, 0.7), Bt(x, 0.7) and Bp(x, 0.91). Thus, we have found examples of
non-starlike disks. �

There are no disks or balls like this for the triangular ratio metric.

Lemma 5.3. [7, p. 206] The balls Bs(x, r) in any domain G � Rn are always
starlike with respect to their center x.
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Figure 2. Circles in a five-pointed star domain with different
metrics

For several common hyperbolic type metrics ηG, the closed ball Bη(x,M)
with M = ηG(x, y) and x, y ∈ G is always a compact subset of the domain
G, see [7, p. 79]. For instance, the hyperbolic metric ρG has this property [7,
p. 192]. As can be seen from the figures, the j∗-metric, the triangular ratio
metric and the point pair function share this property, too.

Lemma 5.4. The balls Bj∗(x, r), Bp(x, r) and Bs(x, r) touch the boundary of
the domain G � Rn if and only if r = 1.

Proof. If the ball Bη(x, r), ηG ∈ {j∗
G, pG, sG}, touches the boundary of G,

then there is some point y ∈ Bη(x, r) with dG(y) → 0+ and ηG(x, y) → 1−.
Thus, we need to just prove that the balls with radius 1 always touch the



71 Page 16 of 18 O. Rainio and M. Vuorinen Results Math

boundary. Consider then the line segment [x, z] between a point x ∈ G and a
point z ∈ ∂G such that |x − z| = dG(x). For ηG ∈ {j∗

G, pG}, the ball Bη(x, 1)
must include all the points [x, z] ∩ G because ηG(x, y) < 1 by definition for all
y ∈ G, and thus there is some point y ∈ [x, z] with dG(y) → 0+. The triangular
ratio metric sG(x, y) is 1 if and only if |x − y| = |x − u| + |u − y| for some
u ∈ ∂G or, equivalently, [x, y] ∩ ∂G 	= ∅. However, if |x − z| = dG(x), then
[x, z] ∩ ∂G = {z} and, for all points y ∈ [x, z] ∩ G, sG(x, y) < 1. Thus, there is
some point y ∈ [x, z] with dG(y) → 0+ and this point y is included in the ball
Bs(x, 1). �

However, the t-metric differs from the hyperbolic type metrics in this
aspect: the closure of a t-metric ball is a compact set, if and only if the radius
of the ball is less than 1/2.

Theorem 5.5. The balls Bt(x, r) touch the boundary of the domain G � Rn if
and only if r ≥ 1

2 .

Proof. If Bt(x, r) touches the boundary, there must be some y ∈ Bt(x, r) such
that dG(y) → 0+. Since dG(x) ≤ |x − y| + dG(y), it follows that tG(x, y) is
equal to or greater than the limit value

|x − y|
|x − y| + |x − y| + 0 + 0

=
1
2
.

Thus, only balls Bt(x, r) with a radius r ≥ 1
2 can touch the boundary of

G.
Let us yet prove that the balls Bt(x, 1

2 ) always touch the boundary of G.
Fix x ∈ G and z ∈ ∂G so that |x − z| = dG(x). For all points y ∈ [x, z] ∩ G,

tG(x, y) =
|x − y|

|x − y| + dG(x) + dG(x) − |x − y| =
|x − y|
2dG(x)

<
1
2
.

Thus, there is some point y ∈ [x, z] with dG(y) → 0+ and it is included
in the ball Bt(x, 1

2 ). �

The result above is visualized in Figs. 1d and 2d.
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[9] Hästö, P.: A new weighted metric, the relative metric I. J. Math. Anal. Appl.
274, 38–58 (2002)

[10] Ibragimov, Z., Mohapatra, M., Sahoo, S., Zhang, X.: Geometry of the Cassinian
metric and its inner metric. Bull. Malays. Math. Sci. Soc. 40(1), 361–372 (2017)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


71 Page 18 of 18 O. Rainio and M. Vuorinen Results Math

[11] Mohapatra, M., Sahoo, S.: A Gromov hyperbolic metric vs the hyperbolic and
other related metrics. Comput. Methods Funct. Theory 18(3), 473–493 (2018)

[12] Rainio, O.: Intrinsic quasi-metrics. Bull. Malays. Math. Sci. Soc. 44, 2873–2891
(2021)

[13] Rainio,O., Vuorinen,M.: Triangular ratio metric in the unit disk. Complex Var.
Elliptic Equ. (to appear). https://doi.org/10.1080/17476933.2020.1870452

[14] Rainio, O., Vuorinen, M.: Triangular Ratio Metric Under Quasiconformal Map-
pings In Sector Domains. Comput. Methods Func. Theory (to appear) Arxiv,
2005.11990
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