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Abstract— Robust real-time object detection and tracking are

challenging problems in autonomous transportation systems

due to operation of algorithms in inherently uncertain and

dynamic environments and rapid movement of objects. There-

fore, tracking and detection algorithms must cooperate with

each other to achieve smooth tracking of detected objects that

later can be used by the navigation system. In this paper, we

first present an efficient multi-sensor fusion approach based on

the probabilistic data association method in order to achieve

accurate object detection and tracking results. The proposed ap-

proach fuses the detection results obtained independently from

four main sensors: radar, LiDAR, RGB camera and infrared

camera. It generates object region proposals based on the fused

detection result. Then, a Convolutional Neural Network (CNN)

approach is used to identify the object categories within these

regions. The CNN is trained on a real dataset from different

ferry driving scenarios. The experimental results of tracking

and classification on real datasets show that the proposed

approach provides reliable object detection and classification

results in maritime environments.

autonomous vessel, object detection, multi-sensor fusion,
region proposals, convolutional neural networks, maritime
environment.

I. INTRODUCTION

Designing reliable autonomous navigation systems have
drawn a lot of industrial and academic interest in recent
years. Today’s advanced technologies provide great progress
in autonomous vehicles field including surrounding environ-
ment perception, path planning and vehicle control in real-
time. Multi-sensor fusion is one of the key technologies in
this field. It can achieve a detailed environment description
and accurate detection of interest objects based on the
information from different sensors.

Robust object detection is a critical step of autonomous
navigation systems [1]. The sub-sequence actions such as
object classification and tracking would be impossible in
these systems without efficient object detection. However,
designing an automatic object detection method is one of
the most challenging tasks for most applications. In mar-
itime environment, object detection is a challenging problem
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due to the dynamic nature of the sea caused by waves,
weather conditions and boat wakes [2]. Moreover, variety of
objects and their appearance, camera motion and direction
and geographical locations are other factors which make
the detection process challenging. On the other hand in
maritime environment different sensors must be employed
to get enough information from the surrounding. These
multiple sensors demand intelligent sensor fusion techniques
to enhance the information from the surrounding for the
navigator unit, specially while the vessel is in different
environmental conditions. We believe to enhance the safe
navigation in maritime environments, there must be a tight
relationship between the robust object detection and sensor
fusion units .

To address this problem, we proposed a multi-sensor
fusion approach to achieve the complementary properties of
objects by considering multiple sensors. A single sensor can
not provide sufficient information for designing reliable ves-
sel/vehicles under all possible conditions. For example, radar
can accurately measure the distance and velocity of objects
in various weather conditions. However, it has insufficient
resolution for extracting object features in order to perform
the object classification task. RGB and Infrared (IR) cameras
can provide better resolution in a suitable range of distance.
Our fusion approach is applied at decision level to fuse the
object detection results obtained from four essential sensors:
radar, LiDAR, RGB camera and IR camera. The object
detection result determines the interest object localization
surrounding the autonomous vessel/vehicles based on each
sensor independently.

The proposed multi-sensor fusion approach uses the Prob-
abilistic Data Association (PDA) [3] and generates object
region proposals based on the fused object detection result.
We also apply a Convolutional Neural Network (CNN) on
the top of region proposals for classifying the interest objects
within the regions. Inspired by the success of applying CNN
in many number of challenging classification problems [4]–
[6], we employed CNN for this purpose. The performance of
CNNs depends strongly on the network topology. Therefore,
we investigate the effect of both number of layers and neu-
rons on the CNN performance. The obtained results on a real
training data set show that CNN can achieve better detection
accuracy in our problem when it has two convolutional
layers, two max-pooling layers, one fully connected layer,
and a softmax layer.

To the best of our knowledge, currently there are no
existing works on using real data from four sensors to



detect and classify the objects in a maritime environment.
In particular, the contributions of this paper are three-fold:
(1) an efficient object detection method; (2) an accurate
object classification; and (3) evaluation on a real data. For
efficient object detection, we develop a PDA-based fusion
approach to generate meaningful object region proposals.
This approach fuses the object region proposals that are
obtained from LiDAR, radar, RGB camera and IR camera.
The proposed PDA-based approach can reduce the false
detection rate by data fusion of different sensors based
on the uncertainty of the measurement origin in different
environmental conditions. For accurate object classification,
the region proposals are fed into a CNN that is trained on
real datasets.

The proposed object detection and classification solutions
were evaluated using real data that is collected in the Finnish
archipelago by a ferry equipped with four sensor as a part
of Advanced Autonomous Waterborne Applications Initiative
(AAWA) project [7]. This project tested sensor arrays in a
range of operating and climatic conditions in Finland and
has created a simulated autonomous ship control system
which allows the behaviour of the complete communication
system to be explored after surrounding object detections.
The experimental results show that our multi-sensor fusion
approach can achieve better detection results than other more
classical methods tested.

The remainder of the paper is organized as follows. Sec-
tion II discusses some of the most important related works.
The proposed framework is introduced in Section III. Section
IV presents object detection techniques for each sensor data
individually. Section V describes how the proposed multi-
sensor fusion approach fuses the obtained detection results
from all sensors and generates candidate regions. Section
VI presents the details on applying the proposed CNN for
classifying the objects within the regions extracted from
the fusion approach. Experimental setup and results are
presented in Section VII and Section VIII . Finally, the
conclusions is presented in Section IX.

II. RELATED WORK

Automatic object detection is a critical issue for designing
reliable autonomous vessel/vehicles. Multi-sensor fusion is
an efficient approach to obtain accurate object detection by
combining available information originating from various
sensors. Different multi-sensor fusion methods have been
studied for autonomous applications in [8], [9]. The most
common multi-sensor fusion approaches are based on prob-
abilistic techniques [10]. Generally, the multi-sensor fusion
methods can be divided into three main groups based on the
level of data abstraction used for fusion. (1) Measurement
fusion methods first convert the data from each sensor
to a common form and then the actual fusion of data is
performed in the common representation. (2) Feature level
fusion methods extract the relevant feature of each sensor
individually and then the obtained features are combined into
a single vector as an input of a fusion module. Therefore,
the measurement and feature level fusion methods fuse raw

sensor data or concatenate feature descriptors. However, they
can not handle in incomplete measurements if one sensor
modality becomes useless due to malfunctions, breakdown
or severe weather conditions [11]. (3) Decision level fusion
methods independently perform object detection from each
sensor and the outputs of each sensor are fused at the deci-
sion level for final classification. Therefore, they can prevent
the autonomous system from becoming non-functional when
information conflicts are introduced to more than one sensor.
In addition, the reliability and plausibility of each sensor can
be considered. For this reason, we use a decision level multi-
sensor fusion approach for fusing the object detection results
obtained from four sensors. In [11], a decision level multi-
sensor fusion method is presented to fuse the classification
outputs of independent classifiers, such as 3D point clouds of
LiDAR (Light Detection And Ranging) and image data using
CNN. In another work [12], the authors propose a decision
level fusion approach to reduce the number of misdetections
that can lead to false tracks. In comparison with these works,
the advantage of our fusion approach is that the description
of the objects can be enhanced by adding knowledge from
four sensor sources. For example, LiDAR data can give a
good estimation of the distance to the object and its visible
size. Therefore, we use other main sensors such as radar,
IR camera and RGB camera to find more information about
objects surrounding autonomous vessel.

Classification of the object is another main task in
autonomous vessel/vehicles to identify objects of interest
surrounding the vehicles. Primarily, object classification is
conducted using a trained classification model on an offline
dataset. Over the years, CNN is one of the most common
models for object classification and detection specifically
for 2D data, like video and images. CNN can automatically
extract salient features from images and classify them. In
[11], first authors use two independent CNNs for classifying
3D point clouds and image data in an autonomous vehi-
cle system. Then they fuse the classification outputs from
unary classifiers. Their method based on CNN achieve better
performance than the previous methods. In another work,
Girshick et al. [13] propose Region-based Convolutional
Neural Networks (R-CNN), which led to substantial gains in
object detection accuracy. The R-CNN approach first identify
region proposals (i.e regions of interest that are likely to
contain objects) and then classify these regions into object
categories or background using CNN. One disadvantage
of R-CNN is that it computes the CNN independently on
each region proposal, leading to time-consuming and energy-
inefficient computation. In order to reduce running time of
R-CNN, Faster R-CNN [14] ignores the time spent on region
proposals. In addition, R-CNN only plays as a classifier and
it cannot predict object bounds. Prabhakar et al. [15] propose
a system based on Faster R-CNN for detection and classifi-
cation of on-road objects. The outputs of the system are the
rectangular bounding boxes (BB) and class information of
objects which are useful parameters for the motion planning
of self-driving vehicles. Their deep learning network is
found to be robust to variation in object’s view, lighting
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Fig. 1. Proposed decision level fusion framework

and climatic conditions. AlexNet [16], VGGNet [17]and
GoogLeNet [18] are other popular deep CNNs for image
classification and detection.

III. PROPOSED DECISION LEVEL FUSION FRAMEWORK

Our framework can recognize and classify objects appear-
ing around an autonomous vessel based on the three main
following modules. Fig. 1 illustrates our whole framework
(details will be found in later sections).

Object detection: the environment is continuously ob-
served by four sensors (radar, LiDAR, RGB camera, and IR
camera) to obtain a detailed description of the environment.
After preprocessing of raw sensor data, this module identifies
the locations of objects. The output of this module is a list
of detected objects via four available sensors.

Fusion and tracking: this module contains a PDA-based
mutli-sensor fusion approach to fuse the object detection
results obtained from four sensors. Before fusing the data,
the location of detected objects is mapped onto radar co-
ordinates. This come from the fact that bird view of the
objects provides more suitable environment for applying
probabilistic models of movement1. Then, the fused detection
result is mapped onto the input image from the RGB camera
in order to generate region proposals. The region proposals
provide some regions to localize objects. Once an object has
been detected, it can also be tracked based on our approach
in order to derive more valuable object properties such as its
location and velocity.

Object classification: once objects have been detected by
the proposed multi-sensor fusion approach, the type of each
object within regions is determined by a CNN. The generated
regions are used as input to the CNN architecture to extract
the deep features. We focus on three main objects in maritime
environment: boat, seamark and lands.

IV. OBJECT DETECTION

This section presents the object detection method for each
individual sensor.

Radar-based object detection: The marine radar data
frames are mapped first from polar to 2D cartesian coor-
dinates. Then an intensity threshold filtering is applied to

1This comes form the fact that the movement of the objects in camera
coordinate, i.e., front view, in comparison against the radar coordinate, i.e.,
bird view, does not follow a linear pattern, because of non-linearity of the
transformation of xyz coordinates on camera coordinates, and is not suitable
for Kalman filtering and other probabilistic movement prediction methods,
and to do that the camera calibration parameters must be considered

remove noise and extract the objects from radar data. After
that the extracted objects are mapped to a binary image.
The intensity threshold is determined through empirical
experiments. A morphological dilation technique is applied
on the created binary image to cluster the detected objects
into more coherent groups. The refined 2D-plane coordinates
determined from the radar data is used as the basis for
mapping all other sensor data in a format applicable for
sensor fusion.

LiDAR-based object detection: To remove noise from
the point cloud LiDAR data, a low-pass/median filter is
employed. Filtering the LiDAR data can effectively mine
the information from the data for object detection. Later, the
height component of the LiDAR data is discarded in this
module and the x/y-coordinates of the LiDAR point cloud
features are treated similarly to radar data.

IR camera-based object detection: Feature segmentation
is firstly applied on grayscale IR camera images. The IR-
camera segmentation is based on both gradient and intensity-
based feature extraction. Image areas with significant and
uniform horizontal gradients, which are not typical for the
water surface are extracted with grayscale convolution and
threshold operations. Moreover, high-intensity “hot” features
are extracted with a threshold operation. The results of
the gradient and intensity evaluation are combined into a
single binary (1b) feature image. Mathematical morphology
operations are then applied, to remove noise and to cluster
remaining features into more robust object blobs. After IR
camera images have been segmented, they are stitched into
a single binary feature image and a Connected-Component-
Labeling (CCL) operation is applied to extract a bounding
box for each binary object. The bounding boxes are then
given to a standard Kalman filter to remove temporal noise,
such as blinking or very short-lived features.

RGB camera-based object detection: a similar approach
for IR data segmentation is applied for RGB camera. The
approach is based on the extracting local (horizontal) gradi-
ents clusters differing from the typical water surface. Large
high-intensity features (discarding image saturation) are also
extracted with a threshold operation and combined logically
with the gradient data. As the intensity gradients approach
cannot efficiently detect and track some small objects such
as seamark that hardly is distinguishable from the water,
a red/green feature segmentation approach is employed. In
addition, the image-based evaluation and processing tasks are
applied on RGB camera data in order to take into account
environmental issues such as day or night conditions and sun
glare induced sensor saturation. Finally, the object detection
is performed by extracting the binary features from RGB
cameras. The detected objects are stitched together and given
to a Kalman filter for temporal filtering.

Fig. 2 shows an example of the output of object detection
module for each individual sensor in our framework.

V. FUSION AND TRACKING

Each sensor, based on its ability, can detect limited objects
with some levels of deficiency. Combining data captured
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Fig. 2. An example of the output of object detection module in the proposed framework. (a) location intensities of the detected objects by radar; (b) two
detected objects (boat and seamark) by RGB camera; (c) one detected object (land) by IR camera and (d) 3D point cloud data for two detected objects
(boat and seamark). In the bottom left corner of all figures, ’F’ box indicates the location of the ferry.

from multiple sensors corrects such deficiency of individ-
ual sensors to improve the performance in calculating the
location and orientation of objects. In addition, noise and
weaknesses vary under different environmental conditions
for each individual sensor. For example, RGB camera or
IR camera can be used for day and night-time imaging.
However, radars can detect object better than cameras in
different weather conditions (e.g. heavy rain or snow) as
they use S-or X-bands. The data from LiDAR can give a
good estimation of the distance to the object and its visible
size. To achieve accurate object detection by using measured
data from four sensors: RGB camera, IR camera, radar and
LiDAR, we applied an extended version of probabilistic data
association (PDA) technique for multi-sensor systems. In this
technique, the probability that each measured sensor data is
attributable to an object is calculated in real-time based on
the current environmental condition and distance estimation
of the target object from the ferry. The probabilistic data is
used to track the objects over time that is called PDA filtering
(PDAF).

Before performing the proposed fusion approach, all
sensor data is projected to radar domain where size and
position of the detected objects relative to the maritime can
be recognized in a 2D map. Since the LiDAR data is in
3D point cloud format, it can be easily projected to radar
domain by eliminating the third dimension. RGB and IR
cameras data are mapped to radar domain with the inverse
perspective mapping (IPM) technique [19], [20]. To do that
the transformation matrix for each camera is calculated based
on the location of the camera with respect to the surface of
the water, that is the coordinate of radar in 2D bird view
domain. Fig. 3(a) shows an example of mapping the detected
objects by all sensors on radar domain. This is an example of
input in our fusion approach that described in Algorithm 1.

The input of the Algorithm 1 is the list of location of
detected objects by four sensors in radar domain and the
output is the list of fused detection result. A target of interest,
while using the standard PDA method, has the Markov-
property [21] that means its state, xk, i.e., the object position,
velocity, and so on at time step k is only dependant on the

Algorithm 1 Sensor fusion process.
Input: input: Extracted geographical location of objects in radar domain,
env: Environmental condition;
Outputs: FD : List of fused detection result;
Constant: Gd: Gating values for each distance zone d;
R: List of measurement co-variance matrix for different zones and
environmental conditions;

Body:

1: FD  ;;
2: for each distance zone d do

3: for Objs :Objs 2 input and Objs 2 the distance zone d do

4: FD  PDAF(Objs,Gd,R(env,Zd))[FD;

state in time step k � 1. In Markov-property based systems,
the state can be modeled as follows:

xk = f(xk�1) (1)

where f is the iterative map function that evolves the state
of the object in discrete time.

In PDA, a measurement validation region for each detected
object must be defined [3]. For this purpose, the history of the
position and behaviour of the moving object should model by
a normal distribution by considering Markov-property. The
measurement validation region is elliptical region V defined
by Mahalanobis distance [22] as follows:

V (k, �) = {z : [z � ẑk|k�1]
T
S
�1
k [z � ẑk|k�1]  �} (2)

Sk = HkPk|k�1H
T
k +Rk (3)

where ẑk|k�1 and pk|k�1 represent the value of mean and
co-variance for normal distribution, respectively. Pk and Rk

indicates the state co-variance matrix and measurement co-
variance matrix in standard Kalman filter [3]. Pk can model
the noise in object localization and tracking. Rk represents
the real noise by each sensor in a multi-sensor environment.

In Equation 2, parameter � determines the size of the
valid region for measurement and called gate threshold.
Algorithm 1 performs PDA based on the distance from
the detected objects to the autonomous vessel (ferry in our
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Fig. 3. Mapping the detected objects by all sensors in Fig. 2 on (a) radar coordinates and (b) RGB camera image. ’F’ box in the bottom left corner of
each figure indicates the location of the ferry.

case) as the amount of clutter and false alarms in farther
distance is higher. It splits the tracking region into the
divided zones based on radial distance from the ferry with
different gate threshold value for each zone. The farther
zone from the ferry, the largest gate threshold. Algorithm 1
uses the different sensor’s error co-variance matrix for each
distance zone and environmental condition (Line 2-4). The
environmental condition (e.g. night/day) is an input of the
algorithm. It means we consider different error co-variance
matrices based on the current environmental condition. The
environmental condition is obtained based on preprocessing
of images from RGB camera.

In each zone, a PDAF function is applied to calculate the
location of each object (Line 4). An example is shown in
Fig. 3(a) for three zones. If in time step k, the i

th validated
measurement ⇥i inside the measurement validation region
is the target originated measurement with the probability
of P (⇥i|zk). The object location in time step k , x̂k|k is
calculated as follows:

x̂k|k =
X

i

x̂
i
k|k ⇥ P (⇥i|zk) (4)

where x̂
i
k|k is the envisioned state if the i

th measurement
is correct and can be calculated according to the normal
Kalman filter equation as follows:

x̂
i
k|k = x̂k|k�1 +Kkv

i
k (5)

Kk = Pk|k�1H
T
k S

�1
k , v

i
k = z

i
k � ẑk|k�1 (6)

where Kk is the filter gain and vk is the innovation or
the measurement residual on time step k. The prediction of
x̂k|k�1 which is the conditional mean of the state at time
step k as well as covariance matrix Pk is done the same as
traditional Kalman filter as follows:

x̂k|k�1 = Ak�1xk�1|k�1 (7)

Pk|k�1 = Ak�1|k�1Pk�1A
T
k�1 +Qk�1 (8)

where Qk�1 is the covariance matrix of noise on measure-
ment on time step k�1 and is different from R. Equation 4 is
generally takes all the probable measurements into account to
find the position of an object with an appropriate probability.
Fig. 4(a) shows an example of the output of Algorithm 1 that
fused the detection results of four sensors (see Fig. 2) and
generates the location of objects.

Algorithm 2 is performed to extract the object region
proposals. First of all, the corresponding bounding boxes for
each sensor data and final fused object detection results (the
output of Algorithm 1) are mapped on RGB camera image
via the perspective mapping (PM) technique, i.e, opposite
to IPM. It is worth mentioning that radar data gives blobs
in the area where there exists some object. After IPM to
transfer radar data to RGB image, the bounding boxes of
radar data is extracted from the transfered blobs on RGB
image. Fig. 3(b) is an example that shows how the detected
objects in Fig. 2 are mapped on RGB camera image. After
that the nearest bounding box from the fused object detection
results with the highest priority will be selected as a region
proposal. The priority is defined based on the type of the
sensors. Since the experimental results show that the RGB
camera image is the most accurate candidate for defining
a bounding box spatially, it has the highest priority. After
that, the generated bounding boxes by IR camera, LiDAR
and radar have higher priorities, respectively. For example
in Fig. 3(b), there are three bounding boxes around the
boat. However, the bounding box of RGB is a tightest
bounding box in comparison with other two LiDAR and
radar bounding boxes. Finally the generated ROIs will be
passed to the classification module. Fig. 4(b) shows the final
extracted region proposals based on the fused detection result
without labels.

VI. OBJECT CLASSIFICATION

The extracted object region proposals via the proposed
fusion approach are classified by using Convolutional Neural
Network (CNN). An example of the output of classification
module is shown in Fig. 4(b). We applied a CNN on top
of region proposals in order to extract a feature vector from
respective region proposals. The proposed CNN consists of
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Fig. 4. The result of multi-sensor fusion for the example shown in Fig. 3 on radar coordinates and the corresponding regions of interest and classification
results on RGB camera image. ’F’ box in the bottom left corner of each Fig. indicates the location of the ferry.

Algorithm 2 Cropping process.
Inputs: FD: List of fused detection result from Algorithm 1,
BBs : List of BBs of detected objects ;
Outputs: RPs: List of region proposals;

Body:

1: RPs ;;
2: for each Obj 2 FD do

3: RPs RPs [ from BBs select nearest highest
priority BB from Obj;

4: remove Obj from FD;

two convolutional layers, two max-pooling layers, one fully-
connected layer, and a softmax layer. Each convolutional
layer is followed by a max-pooling layer.

All convolutional and fully connected layers utilize the
rectified linear unit (ReLU) as an activation function. ReLU
can make training faster than other activation functions, such
as tanh and sigmoid [6]. It maps negative values to zero and
maintains positive values as

y = max(0, x), (9)

where y and x are the neuron output and input, respectively.
Each neuron in the second, forth, and sixth convolutional
layers is modeled by max-pooling to reduce the amount of
parameters and computation in the network.

In order to reduce overfitting in the fully-connected lay-
ers, we employed a popular regularization method called
“dropout” that proved to be very effective. Dropout [23]
provides a way to approximately combine many different
neural networks efficiently. The key idea is to randomly drop
out hidden and visible units (along with their connections)
from the network during training.

VII. EXPERIMENTAL SETUP

To evaluate our proposed framework, we collected a real
dataset from a ferry operating in the Finnish archipelago [7].
In this dataset, RGB camera images are 1920⇥1080 captured
via 5MP image sensor with 92� lens angle. The frame
rate of the captured video is two frames in seconds. The
deployment locations included the open sea. The IR camera
image resolution is 512⇥640 working between -50�

C to
70�C temperature. The radar range is upto 1.7KM with
angular sampling interval of 0.4�. It is worth mentioning

that, since the navigator must discard the nearby object such
as the mast of the boat and passengers, all the nearby sensor
data up to 18m are filtered.

The proposed CNN model is trained based on the images
of three interest objects. These images are extracted from real
videos that are recorded by the RGB camera. These videos
represent various weather conditions from 4th October 2016
to 25th July 2017 for each sensor. Examples of images are
shown in Fig. 5. Each image includes a object of three
classes: boat, seamark and land. These images are generated
by creating minimal bounding boxes around an object that is
detected by the RGB camera-based object detection method.

(a) (b) (c) (d)

Fig. 5. Example of Images for training the proposed CNN of three interest
objects (a) seamark, (b) boat and (c) lands

The following pre-processing steps were performed on the
images before using them for CNN training:

1) Resizing: as the smallest cropped image size was
32⇥32 pixels, we change the size of all images into
32⇥32 that later are fed to our CNN tool.

2) Feature Normalization: the numeric features must be
normalized for removing the effect of original feature
value scales. The pixel values are in the range of 0 to
255 for each of the red, green, and blue channels. The
pixel values were normalized into the range 0 to 1.

3) Class encoding:the non-numerical class types are con-
verted into the numeric categorizes. We used one hot
encoding to convert four categorical classes into four
binary classes, with only one active.

4) Data augmentation: apart from regularization, an-
other efficient way in order to avoid overfitting is
data augmentation. We create more images from the
original images via a number of random transforma-
tions [24]. Random transformations were applied on



the original training images include rotation, cropping,
swirl, vertical flip and horizontal flip. The number of
images for seamark, boat and land classes after data
augmentation are 4572, 3759, and 4757 respectively.

We tune different hyperparameter in order to evaluate the
performance of CNN model. The performance of the model
is changed depending on the value of hyperparameters. In
order to tune the hyperparameters for all models in this paper,
we utilize 10-fold cross-validation approach subjected to the
dataset of 17,328 images. After that, the most fitted value
of hyperparameters are selected, the final model is trained
with all 17,328 images. The performance of CNNs highly
depends on the network topology. For this reason, we tried
to find the network topology that is optimal to our object
detection problem. The layers’ structure of proposed CNNs
is described in Table I. We got 85.81%, 92.87%, 92.78%,
86.74% and 85.33% test accuracy for Model1, Model2,
Model3 , Model4 and Model5 respectively. Therefore, the
CNN with two convolutional layers is the optimal model,
i.e., Model2.

In order to reduce overfitting, we use dropout in the fully-
connected layers of Model2. The value of the dropout ranges
from 0.0 to 0.9. We see that as dropout is 0.5, the model
can get better accuracy. Moreover, the value of batch size
and epochs are 25 and 10, respectively. In addition, the best
optimizer for our neural network model in order to learn
properly and tune the internal parameter is the Adam [25]
based on our experiments. Moreover, we tune the learning
rate parameter that is used in the Adam with the grid search.
Learning rate controls the speed of wight updating at the end
of each batch. We tried a suite small standard learning rate
from 0.001 to 0.3 in steps of 0.1. The best performance of
the model is achieved when the learning rate is 0.001.

The parameters of proposed PDA-based fusion approach
are are shown inTable II. Two environmental conditions ’day’
and ’night’ is considered for setting different error estimate
for sensors.

VIII. EXPERIMENTAL RESULTS

Our framework is evaluated on a real test dataset which
is collected by the ferry. The proposed framework first
performed object detection based on each sensor data. Then,
it used a PDA-based fusion and tracking approach at decision
level in order to generate region proposals. The generated
regions are mapped onto the RGB images that obtained
from RGB camera. For each region, we wrap the image to
fixed pixel size 32x32 that is required to make it compatible
with the trained CNN. With each warped region, we extract
features from the CNN with two convolutional and one fully
connected layers. In addition, the RGB images of test data
set was manually tagged in order to provide a ground truth
reference. The number of three interest objects of Land, Boat,
and Seamark are 851, 103, and 266 respectively.

Table III and Table IV show that the detection and classi-
fication results obtained by the radar, LiDAR, cameras and
our fusion approach. The first row of each sensor shows that
how many of objects are detected or classified in each class.

For clarity sake, the number of detections and classification
are also represented by percentages at the second row.
Three objects of interest were taken into account: seamark,
land and boat. Table III shows that the correct and false
detection of three objects. The correct detection determines
how many of each object is detected correctly. The false
detection represents how many of all objects are not detected.
The results show that the detection rate of three objects is
improved by our fusion approach. The false detection rates
(12.6%) is due mainly to the noisy radar target detection
and the reflection in raw LiDAR data which creates ghost
objects. However, the fusion approach allows to obtain a
highly correct classification rate for all objects. It is worth
mentioning that sensors in maritime environment behave
differently compared to when they are employed in vehicles.
For example the surface of the water does not reflect the laser
beams for LiDAR data that results in low amount of reflected
data. Another issue is the distance of objects of interest that
is farther compared to objects of interest in vehicles. Such
facts reveals high diversity among the contribution of sensors
to detect an object.

Table IV summarizes the results collected after testing
our trained CNN with on-line data. Correct classifications
represent well classified objects of three classes when the
region proposals obtained from each sensor and our fusion
approach. False classifications show the number of percent-
age of object that are miss-classified for each class. When
the CNN is applied on the regions obtained by our approach,
it can correctly classify 89.4%, 100% and 91.1% of seamark,
boat and land, respectively. Moreover, we can achieve a
high classification accuracy from CNN on region proposals
obtained by each sensor. Therefor, the classification rate of
all objects by the proposed CNN are nearly perfect (86-
100%).

IX. CONCLUSION

This paper presents an efficient multi-sensor fusion ap-
proach based on the probabilistic association method. In
order to achieve reliable object detection, this approach
fuses the data from four sensors and generates object region
proposals. Moreover, a deep convolutional neural network
is proposed for classifying the objects within the regions.
We evaluated the performance of our proposed approach by
conducting experiments with real data obtained by testing
sensor arrays in a range of operating and climatic conditions
in Finland. The obtained results show that our approach has
a clear potential. As a future work, we plan to extend this
approach to apply in time-series data on real marine envi-
ronment in collaboration with Rolls-Royce. Meanwhile, it
would be interesting to investigate uncertainty of CNN output
in order to track the objects of interest across consecutive
sensor data will facilitate detection and recognition. Fusing
the classification results is another possible future works.
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