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The elemental composition of organisms belongs to a suite of functional traits that
may adaptively respond to fluctuating selection pressures. Life history theory predicts
that predation risk and resource limitations impose selection pressures on organisms’
developmental time and are further associated with variability in energetic and behavioral
traits. Individual differences in developmental speed, behaviors and physiology have
been explained using the pace-of-life syndrome (POLS) hypothesis. However, how an
organism’s developmental speed is linked with elemental body composition, metabolism
and behavior is not well understood. We compared elemental body composition,
latency to resume activity and resting metabolic rate (RMR) of western stutter-trilling
crickets (Gryllus integer) in three selection lines that differ in developmental speed.
We found that slowly developing crickets had significantly higher body carbon, lower
body nitrogen and higher carbon-to-nitrogen ratio than rapidly developing crickets.
Slowly developing crickets had significantly higher RMR than rapidly developing crickets.
Male crickets had higher RMR than females. Slowly developing crickets resumed
activity faster in an unfamiliar relative to a familiar environment. The rapidly developing
crickets did the opposite. The results highlight the tight association between life history,
physiology and behavior. This study indicates that traditional methods used in POLS
research should be complemented by those used in ecological stoichiometry, resulting
in a synthetic approach that potentially advances the whole field of behavioral and
physiological ecology.

Keywords: carbon-to-nitrogen ratio, developmental speed, ecological stoichiometry, elemental body composition,
trait-based ecology, Gryllus integer, pace-of-life syndrome, physiological stress
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INTRODUCTION

Ecological communities consist of a variety of species and are
shaped by a complex array of intra- and interspecific interactions
that maintain nutrient and energy flows through ecosystems
(Meunier et al., 2017; Sperfeld et al., 2017). Importantly, for any
given individual, the availability of resources in any particular
environment is limited; time, effort and energy used for one
purpose diminish those available for another (Stearns, 1992;
Sperfeld et al., 2017). This often causes trade-offs in allocations
of an individual’s resources to such competing life functions
as immunity, reproduction, self-maintenance, development and
growth (Roff, 1992; Krams et al., 2013a; Luoto, 2019).

Biotic and abiotic environmental stressors (e.g., predation,
food limitation, extreme temperatures, drought, competition,
growth in stressful conditions) may challenge organismal
homeostasis (Boonstra, 2013; Wingfield, 2013; Ferguson et al.,
2018). The stressed individual may then alter its behavior and
functional traits to accommodate to the challenge, resulting
in implications to their dietary choices and the elemental
composition of their bodies and waste materials (Christianson
and Creel, 2010; Hawlena and Schmitz, 2010a,b). This suggests
that investments in stress tolerance and biochemical and
behavioral adaptations to environmental stress may further affect
the amount of energy available to each individual (Hochachka
and Somero, 2002; Ellis and Del Giudice, 2014; Luoto, 2019).
Ecological stoichiometry, a framework based on energetics, links
the study of these trade-offs with the relative supply of elements
in the environment and themetabolic demands and physiological
traits of organisms (Meunier et al., 2017; Sperfeld et al., 2017).

Differences in behavioral and physiological responses to
stress can be explained using the pace-of-life syndrome (POLS)
hypothesis (Réale et al., 2010; Debecker and Stoks, 2018; Mathot
and Frankenhuis, 2018; Royauté et al., 2018). This hypothesis
originated from the classic concept of r- and K-selection
(MacArthur and Wilson, 1967; Pianka, 1970) and the more
recent idea of fast-slow life history continuum (e.g., Promislow
and Harvey, 1990; Bielby et al., 2007). It suggests that differences
in life history strategies among species or populations are
associated with physiological (e.g., metabolic rate; Ricklefs and
Wikelski, 2002; Wikelski et al., 2003; Wiersma et al., 2007)
and behavioral differences (Wolf et al., 2007; Biro and Stamps,
2008; Réale et al., 2009; Luoto, 2019). The POLS hypothesis
predicts that rapidly developing individuals with high activity
and boldness have faster life histories (e.g., faster development
and reproduction) and higher metabolic rate, which reduces life
span through increased oxidative damage (Janssens and Stoks,
2018). This prediction is based on the assumption that high
activity and boldness increase resource acquisition. Passive and
shy individuals, in contrast, are expected to show the opposite
features (Réale et al., 2010).

However, evidence suggests that slower development of
prey individuals may also incur stress as it is associated with
upregulation of stress-related genes (Gutiérrez-Adán et al.,
2004). Wings of late-hatched female damselflies Lestes viridis
were found to be more asymmetrical than those of early-
hatched ones (De Block et al., 2008). Importantly, selection for

slower development confers higher levels of anxiety/neuroticism
along the stress reactivity axis in crickets (Krams et al., 2017).
The observed anxiety in behavior and resting metabolic rate
(RMR) in slowly developing crickets under stressful conditions
decreased after a selective serotonin reuptake inhibitor (SSRI)
treatment (Krams et al., 2018). On the other hand, slower
development may be associated with longer lifespan (Brooks
and Garratt, 2017; Kecko et al., 2017) which may require
an improved immune system (Niemelä et al., 2013; Krams
et al., 2015, 2016a). In some species where females have
longer lifespan than males, the strength of immune responses
and inflammatory immune responses are generally higher
in females than in males (Klein, 2012; Klein and Flanagan,
2016; Kecko et al., 2017). However, females often suffer
a higher propensity to many autoimmune diseases such as
rheumatoid arthritis, fibromyalgia, anxiety and depression (e.g.,
Dumont-Lagacé et al., 2015), suggesting associations between
slower development, longer lifespan and stress resistance
(Brooks and Garratt, 2017).

It is considered that rapidly developing individuals are
bolder and more stress resistant than slowly developing shy
individuals (e.g., Steimer et al., 1997). Nevertheless, how an
organism’s developmental speed is linked with elemental body
composition, metabolism and behavior is not well understood,
and a comprehensive approach that combines stoichiometry
with behaviors has been lacking in prior research. Selective lines
is an effective method to produce comparable individuals of
varying developmental times (Krams et al., 2017). Here, we tested
behavioral responses to handling (as a proxy of stress resistance;
Adamo et al., 2013), RMR and elemental body composition of
three selected lines of western stutter-trilling crickets (Gryllus
integer) that differ in developmental speed.

Based on existing findings on the effects of stress on
organismal stoichiometry (Hawlena and Schmitz, 2010a,b;
Krams et al., 2016b), we predicted higher concentrations of
carbon (C), lower nitrogen (N), a greater C/N ratio and
greater RMR as indicators of physiological stress in the slow
developmental line compared with the rapid line and possibly
also with the control line because of the higher sensitivity to
antidepressants (selective serotonin reuptake inhibitor, SSRI)
found in the slow and control developmental lines (Krams
et al., 2018). We predicted shorter latency of resuming activity
among startled slowly developing individuals (as opposed to
rapidly developing crickets) in an unfamiliar environment as
an indicator of physiological stress. It has been shown that
SSRI treatment increased the time to resume movements
(i.e., decreased anxiety) of slowly developing crickets in an
unfamiliar environment (Krams et al., 2018). Since males and
females may differ in their stress responses, we tested for possible
sexual dimorphism in concentrations of C, N and the C/N ratio
(Bayer and Hobert, 2018).

MATERIALS AND METHODS

Insects and Selection Lines
The laboratory stock originated from a wild population (Davis,
CA, USA). This stock was first maintained at the University of
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Oulu and the University of Eastern Finland, and then moved
to the University of Tartu in Estonia, where the present data
were collected. In this study, we tested crickets that had been
selected for five generations for their developmental speed.
G. integer nymphs were reared individually in plastic containers
(28 × 98 × 73 mm: length, width, height, respectively) with
a hole of 30 mm in diameter covered with plastic netting
for ventilation. Each container was equipped with a shelter
made of cardboard. The individual crickets were kept under a
constant 12:12 h light–dark cycle, at 26 ± 1◦C with ad libitum
food consisting of fish flakes (Eheim) and reindeer pellets
(Rehuraisio Oy, Poron herkku) and ad libitum water. Although
nymphal density does not affect adult behavior, it does increase
life history investments in immune function and maturation
(Niemelä et al., 2012b).

The selection design consisted of three main selection
lines (rapid development, slow development and control). In
each generation, offspring were obtained from ∼20 families
within each main line. For rapid and slow developmental
lines, mated males and females were selected according to
their maturation time, and only the most rapid or slowest
maturing individuals were used for matings in each main line
(for more details on selection, see Krams et al., 2017). In the
control line, matings were randomized over the whole natural
maturation time range. Two months after hatching, random
samples of offspring from the rapid developmental line were
placed into individual containers in a random order. The
same procedure was performed 3 months after hatching in the
control line and 4 months after hatching in the slow line in
each generation.

After five generations of selection for developmental speed,
developmental time (the average maturation time ± SD)
for rapidly developing individuals was 91.03 ± 6.06 days
(n = 29 crickets), 117.33 ± 7.53 days (n = 30) for the
control individuals and 136.17 ± 8.28 days (n = 24) for slowly
developing crickets. All groups differed significantly in their
developmental time [one-way analyses of variance (ANOVA):
F(2,77) = 257.89, P < 0.0001].

Body C and N Content
Following food deprivation of 15 h and water ad libitum,
all crickets were immediately frozen at −80◦C (Angelantoni
Lifescience, Italy). Before elemental analysis, we dried bodies of
29 rapidly developing crickets, 30 control crickets and 24 slowly
developing crickets at 60◦C for 48 h. Each individual was ground
to a homogenous powder and measured for C and N content
using a C-N combustion auto-analyzer (Hawlena and Schmitz,
2010a,b; Krams et al., 2016b).

Behavioral Trials: Resuming Activity in a
Familiar Environment
We started behavioral trials on day 10 after crickets reached
maturity. Before behavioral trials and measuring RMR, we
weighed each individual using a Kern analytical balance
(ABT 120-4M; Kern and Sohn, Balingen, Germany).
Behavioral trials were conducted under constant temperature
(25 ± 1◦C) and sound-proof conditions. We used dim

red light (25 W red incandescent bulb) since Gryllus
spp. cannot see long (red) wavelengths properly (Briscoe
and Chittka, 2001), which allowed us to observe these
nocturnal insects without disturbing them. The crickets
were provided with drinking water before the onset of the
trials, while food was removed 5 h before the beginning of
experimental trials.

We captured the focal cricket in its housing-box and handled
it by holding the insect in the hand for 1 min. After the handling
procedure, the cricket was placed back in its burrow-like
triangular cardboard shelter (5 cm long, with a 1 × 1 × 1 cm
entrance). We recorded the latency to resume activity when the
insect started tomove inside the cardboard shelter.We waited for
all crickets to resume activity (max. 908 s). The same procedure
was repeated for each individual 4 days later. Latency to resume
activity indicates the duration of freezing or immobile state,
a widespread anti-predator response occurring in many taxa
(Chelini et al., 2009; Krams et al., 2013a,b).

Behavioral Trials: Resuming Activity in an
Unfamiliar Environment
Two days after the first test conducted in an environment familiar
to the crickets, we handled them for 1 min and then gave them
the opportunity to escape into a burrow-like conical plastic
Eppendorf test tube (volume 5 mL, Sigma-Aldrich), which was
used as an insect chamber. The insect chamber was connected
to the respirometer with rubber tubing (Lighton, 2008). When
reaching the insect chamber, each of the crickets immediately
became completely immobile, as if it was hiding in a burrow.
We waited for all crickets to resume active struggling movements
(max. 1850 s).

Metabolic Rate Measurements
Wemeasured cricket RMR as the rate of carbon dioxide emission
in an incurrent flow-through system. The LI-7000 differential
CO2/H2O analyzer (LiCor, Lincoln, NE, USA) was calibrated at
different flow rates by means of calibration gases (Trägergase,
VEB, Saxon Junkalor GmbH, Dessau; Quinlan and Lighton,
1999; Lighton, 2008) with gas injection (see also Kuusik et al.,
2002; Mänd et al., 2006). While measuring CO2 emissions,
the insect chamber was perfused with dry (5–7%RH) CO2-free
air, produced by passing air over Drierite (W. A. Hammond
Drierite Co. Ltd., Xenia, OH, USA) and soda-lime granules at
an airflow rate of 60 ml min−1. Average ambient temperature
within the respirometry chamber was 23.60 ± 0.30◦C. Baseline
drift of the analyzer was corrected during analysis from the
measurements at the beginning and end of each trial with the
respirometer chamber empty (Duncan, 2003; Duncan and Byrne,
2005; Gray and Bradley, 2006). The respirometric device was
combined with an infrared optical system using IR emitting
diodes (TSA6203) and IR-sensor diodes (BP104) that were placed
on the sides of the insect chamber. IR-diodes made it possible to
record CO2 production and to follow movements of each cricket
simultaneously. The insects remained in their chambers for 4 h,
and we recorded their minimum rates of metabolism at moments
when crickets were immobile. As soon as the measurements were
over, we returned the crickets back to their plastic housing-boxes.
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We repeated the trials 5 days later. Since insects differed in
their body mass, we used body mass-specific RMR values in
this study.

Statistical Analyses
We used two-way ANOVAs with developmental line (slow,
rapid, control) and sex as fixed factors to assess differences in
elemental composition (C, N and C/N ratio). We considered
elemental composition analyses to belong to the same families of
tests (Rubin, 2017). We thus controlled for multiple testing using
Holm-Bonferroni procedure to adjust P-values. An adjusted
P-value < 0.05 was considered to be statistically significant.
Assumptions of homogeneity of variances were met (Levene’s
test, P > 0.05). We report only the main effects when
no significant interactions between fixed factors were found;
otherwise, Tukey’s HSDs are also reported. To test for the effects
of developmental line and sex on RMR, linear mixed effects
model (LMM) was used. Another LMM was fitted to test for
the effects of developmental line, sex and environment (familiar,
unfamiliar) on differences in latency to resume activity (log-
transformed). In both LMMs, individual cricket ID was included
as a random factor to account for the possible correlation of
repeated measurements of the same individual. Analyses were
performed using IBM SPSS 22 for Windows and the program R,
version 3.3.2 (R Development Core Team, 2016).

RESULTS

Carbon
Rapidly developing crickets had less body C (%; 50.5 ± 3.5,
mean ± SD) than slowly developing (52.7 ± 3.0, mean ± SD)
and control (53.0 ± 3.5, mean ± SD) crickets (Tukey’s tests,

P = 0.047 and P = 0.02, respectively), while slowly developing
and control crickets did not differ in body C (Tukey’s test,
P = 0.96; Figure 1A). The main effect of developmental line
to body C was significant (two-way ANOVA: F(2,77) = 4.562,
P = 0.039). Body C of females and males did not show
significant differences (two-way ANOVA: F(1,77) = 0.962,
P = 0.33). There was no significant interaction between
developmental line and sex to body C (two-way ANOVA:
F(2,77) = 0.484, P = 0.618).

Nitrogen
In contrast, rapidly developing crickets had higher body N (%;
11.5 ± 1.4, mean ± SD) than slowly developing (10.6 ± 1.2,
mean ± SD) and control (10.5 ± 1.5, mean ± SD) crickets
(Tukey’s tests, P = 0.031 and P = 0.022, respectively). Slowly
developing and control crickets did not differ in body N (Tukey’s
test, P = 1.0; Figure 1B). The main effect of developmental line
to body N was significant (two-way ANOVA: F(2,77) = 4.452,
P = 0.03), while sex had no effect on it (two-way ANOVA:
F(1,77) = 1.062, P = 0.306). There was no significant interaction
between developmental line and sex to body N (two-way
ANOVA: F(2,77) = 0.368, P = 0.693).

C/N Ratio
Rapidly developing crickets had a lower C/N ratio (4.48 ± 0.91,
mean ± SD) than control crickets (5.18 ± 1.10, mean ± SD;
Tukey’s test, P = 0.028). A marginally non-significant difference
was found when comparing rapidly developing crickets
with slowly developing crickets (5.1 ± 0.94, mean ± SD;
Tukey’s test, P = 0.068). Slowly developing and control
crickets did not differ in their C/N ratio (Tukey’s test,
P = 0.98; Figure 1C). The main effect of developmental
line was significant (two-way ANOVA: developmental line:

FIGURE 1 | Average carbon percentage (A), nitrogen percentage (B) and carbon-to-nitrogen ratio (C) in Gryllus integer crickets selected for slow development (S,
squares, n = 24), rapid development (R, circles, n = 29) and control developmental (C, diamonds, n = 30) lines. Error bars represent 95% confidence intervals.
Asterisks indicate significant differences between the lines (∗P < 0.05).
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FIGURE 2 | Mass-specific resting metabolic rate (RMR) of females (F, open circle, n = 45) and males (M, closed circle, n = 38; A), selected for slow development
(squares, n = 24), rapid development (circles, n = 29) and control developmental (diamonds, n = 30; B) lines. Symbols and error bars show averages and 95% CIs,
respectively. Asterisks indicate significant differences (∗∗P < 0.01; ∗∗∗P < 0.001).

F(2,77) = 3.904, P = 0.024), while C/N ratios of females and
males were not significantly different (two-way ANOVA:
F(1,77) = 1.144, P = 0.288). There was no significant interaction
between developmental line and sex to C/N (two-way ANOVA:
F(2,77) = 0.229, P = 0.796).

Resting Metabolic Rate
Body mass-specific RMR differed significantly between females
and males (LMM, F(1,77) = 8.704, P = 0.004), with male crickets
having higher RMR than females (Figure 2A), and between
developmental lines (LMM, F(2,77) = 16.329, P < 0.0001). The
highest mean RMR was recorded in crickets from the slow
developmental line and the lowest RMR was recorded in crickets
from the rapid developmental line (Figure 2B). We found
no significant interaction between developmental line and sex
(LMM, F(2,77) = 0.430, P = 0.652).

Resuming Activity in Familiar and
Unfamiliar Environments
Selection line and environment had significant effects on
crickets’ behaviors (LMM, F(2,332) = 44.663, P < 0.0001,
and F(1,332) = 5.319, P = 0.022, respectively), while sex had
no effect (LMM, F(1,332) = 0.778, P = 0.378; Figure 3).
There was also a significant interaction between selection
line and environment (LMM, F(2,332) = 452.9, P < 0.0001).
Thus, slowly developing crickets resumed activity faster in
an unfamiliar but more slowly in a familiar environment on

FIGURE 3 | Latency to resume activity (back-transformed means ± 95%
CIs) of selected slow (squares), rapid (circles), and control (diamonds)
developing crickets in familiar (open symbols) and unfamiliar environments
(closed symbols). Different letters denote significant differences at P < 0.05.

average, while rapidly developing crickets did the opposite. Other
interactions were respectively non-significant and marginally
non-significant: sex∗environment (LMM, F(1,332) = 0.486,
P < 0.486) line∗sex (LMM, F(2,332) = 3.01, P = 0.051).
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DISCUSSION

Our results show that differences in POLS (developmental speed)
alter insect body stoichiometry and that those changes were
associated with different behavioral and physiological stress
responses. Thus, developmental speed should be considered as
an important factor in research on ecological stoichiometry as
it may influence the need for specific nutrients (see Snell-Rood
et al., 2015; Camus et al., 2017) and POLS trait interactions
more generally.

Surprisingly, slowly developing crickets did not differ
significantly from the control line on any of the three
stoichiometric parameters while rapidly developing crickets did
on all three of them. Rapidly developing crickets had the
lowest C, the highest N concentrations and the lowest C/N
ratio. This suggests that rapidly developing crickets probably
experienced the lowest levels of stress during their nymphal
development or were more resilient to stress because of genetic
or epigenetic factors. Rapidly developing individuals should
benefit from faster growth because this provides a higher chance
of surviving to reproduction at low cost (Roff, 1992; Stearns,
1992). This finding is contradictory with predictions arising from
life history theory because it has been traditionally assumed
that juvenile growth rates operate near their physiological
maximum (Stearns and Koella, 1986; Roff, 1992; Stearns,
1992) where tight energy budgets may bring oxidative stress
and other costs (Fischer et al., 2004; Slos and Stoks, 2008;
Krams et al., 2017). A number of studies confirm that rapid
growth is costly, which suggests that growth rates are generally
optimized rather than maximized in many species (Gotthard
et al., 1994; Nylin et al., 1996; Lankford et al., 2001; Arendt,
2003; Fischer et al., 2004). However, we show that slowly
developing and control crickets may be under higher levels
of stress as indicated by their higher body C concentration,
lower body N and higher C/N ratio. This may be especially
true in an unfamiliar environment where slowly developing and
control crickets were found to have higher RMR than rapidly
developing crickets.

These results can be framed in a larger context of
ecological stoichiometry by considering an interesting set of
results reported in another species. Grasshoppers (Melanoplus
sanguinipes) from a subarctic region have about 80 days
shorter growing (rapid growth) season compared to those
from temperate areas (Fielding and Defoliart, 2007). This
shorter growth period is associated with decreased body mass
of the subarctic grasshoppers but improved post-ingestive
efficiencies and N assimilations on low- and high-quality foods.
The temperate grasshoppers, in contrast, are less efficient in
digesting low-quality food. This shows that faster development
may not generally affect digestive abilities of orthopterans
and are unlikely to be associated with elevated levels of
physiological stress.

The current results on behavioral traits support an earlier
study which showed that slowly developing crickets (compared
with rapidly developing ones) resume their daily activities
more slowly after being handled in a familiar (less stressful)
environment and faster when being handled in a novel (more

stressful) environment (Krams et al., 2017). This suggests that
slowly developing, often shy crickets are more stressed than
rapidly developing, often bold ones. Previous studies show
that slowly and rapidly developing crickets markedly differ in
behavioral and physiological traits: slowly developing individuals
are shy, generally larger, more stressed under unfamiliar
conditions, they show stronger encapsulation responses and
have higher RMR and lower maximum metabolic rate (MMR)
compared with rapidly developing crickets (Niemelä et al., 2012a,
2013; Krams et al., 2017).

Although field cricket females are bigger in body size than
males and can occasionally kill them (Kortet and Hedrick,
2005), we did not find any signs of higher stress in males.
It is likely that the higher dominance position of female
crickets is outweighed by their higher somatic and reproductive
costs because a significant correlation between female body
size and fecundity is often observed in G. integer and other
insects (Blanckenhorn, 2000; Hedrick and Kortet, 2012; but see
Tammaru et al., 2002). It is important to note that crickets lived
in individual cages in this study so that males and females could
not interact with each other.We hypothesize that living in groups
would increase stress in males, which needs to be tested by
measuring behavioral reactions, concentrations of hormones and
metabolic rate coupled with research methods used in ecological
stoichiometry.

While it is possible that hormone concentrations in the
brains of slowly developing crickets serves as a proximate
mechanism underlying their higher stress levels and differences
in body elemental composition (Stevenson et al., 2005; Zhou
et al., 2008; Adamo and McKee, 2017; Krams et al., 2018),
it is not clear what is the ultimate reason for becoming
shy when developing slowly. Intuitively, shy individuals may
benefit from limited activities and greater suspiciousness
under higher predator risk. However, it is not clear why
this adaptation should be reached via a stressed phenotype
(e.g., higher C, higher RMR, lower N, slower development).
Acquiring a more holistic understanding of these questions
would be facilitated by studying crickets’ physiological condition,
body elemental composition, neurotransmitter concentrations,
antipredator responses, sexual selection and survival under
natural conditions to test whether shy personality always
co-occurs with elevated anxiety and heightened physiological
markers of stress. Future studies should include an assessment
of phosphorus concentration which is important for RNA
production and serves (quantified as the RNA:DNA ratio) as
a proxy for protein synthesis (Janssens et al., 2017). These
approaches are needed to further develop the general stress
paradigm (Hawlena and Schmitz, 2010a).

CONCLUSION

The results of this study show that slow development is associated
with a stressed phenotype. This phenotype is characterized
by shorter behavioral latencies in a novel environment and
higher stress levels associated with higher body C and
lower N concentrations. This study shows that ecological
stoichiometry is a tool that needs to be used alongside
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other traditional methods to study animal stress. Explicit
focus on ecological stoichiometry has the potential to explain
contradictory results, to sharpen predictions and to move
the general stress research paradigm forward through a more
holistic understanding of organismal responses to fluctuating
selection pressures.
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