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A B S T R A C T

In the last decade, increasing incidence of type 1 diabetes (T1D) stabilized in Finland, a phenomenon that
coincides with tighter regulation of perfluoroalkyl substances (PFAS). Here, we quantified PFAS to examine their
effects, during pregnancy, on lipid and immune-related markers of T1D risk in children. In a mother-infant
cohort (264 dyads), high PFAS exposure during pregnancy associated with decreased cord serum phospholipids
and progression to T1D-associated islet autoantibodies in the offspring. This PFAS-lipid association appears
exacerbated by increased human leukocyte antigen-conferred risk of T1D in infants. Exposure to a single PFAS
compound or a mixture of organic pollutants in non-obese diabetic mice resulted in a lipid profile characterized
by a similar decrease in phospholipids, a marked increase of lithocholic acid, and accelerated insulitis. Our
findings suggest that PFAS exposure during pregnancy contributes to risk and pathogenesis of T1D in offspring.

1. Introduction

T1D is an autoimmune disease caused by destruction of insulin-se-
creting pancreatic beta-cells (Atkinson et al. 2014). The strongest ge-
netic risk factors for T1D are found within the human leukocyte antigen
(HLA) gene complex, yet only 3–10% of individuals carrying HLA-
conferred disease susceptibility develop T1D (Achenbach et al. 2005).
The role of environmental factors in T1D pathogenesis is thus obvious

(Knip et al. 2005). We, and others, previously observed that children
progressing to T1D-associated islet autoantibody positivity, or to overt
T1D later in life, have a distinct lipidomic profile characterized by
decreased blood phospholipid levels, including sphingomyelins (SMs),
within the first months of life, preceding the onset of islet auto-
immunity (Johnson et al. 2019; Orešič et al. 2008) and occurring even
as early as at birth (Oresic et al. 2013). The cause of these metabolic
changes is currently poorly understood. The gut microbiome is known
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to affect host lipid metabolism (Velagapudi et al. 2010) and is asso-
ciated with progression to T1D (Kostic et al. 2015; Vatanen et al. 2018),
particularly in the period after islet autoantibody seroconversion, but
current data does not offer an explanation for the earlier changes in
phospholipid levels (Kostic et al. 2015).

The incidence of T1D has been increasing over the last decades in
many industrialized countries (Patterson et al. 2009). However, for
unknown reasons, this has stabilized in the last decade, particularly in
the Nordic countries (Harjutsalo et al. 2013). Environmental triggers
and specific co-morbidities are often implicated in T1D, such as en-
terovirus infection, diet, and obesity (Knip et al. 2005), yet these factors
do not explain this decrease in prevalence. Obesity, for example, has
not shown a concomitant decrease since 2005 (Kaikkonen et al. 2012),
and the number of severe enterovirus infections in Finland 2006–2010
increased, in fact, by 10 fold (Harjutsalo et al. 2013).

Notably, the time trend of human exposure levels to two widely-
used industrial chemicals, namely, perfluorooctane sulfonate and per-
fluorooctanoic acid (PFOS and PFOA), does coincide with this trend in
T1D incidence rate (Harjutsalo et al. 2013). These two compounds
belong to the group of per- and poly-fluoroalkyl substances (PFAS)
which are widely-used in food packaging materials, paper and textile
coatings, and fire-fighting foams. The use of PFOS and PFOA has in-
creased substantially since production started in the 1950 s until the
main, global manufacturer phased out its production of PFOS, PFOS-

related substances and PFOA between 2000 and 2002. In the European
Union, all uses of PFOS are now prohibited under Directive (2006/122/
EC) which came into force in 2008 due to concerns regarding persistent
effects in the environment and both the bioaccumulative and toxic ef-
fects in humans. PFOA is still manufactured, and a large number of
other PFAS compounds remain in use. With a biological half-life of up
to five years for PFOS and two to four years for PFOA in humans,
concentrations of PFOS and PFOA started to decrease in man only after
ca. 2005, with the levels of many other PFAS still showing increasing
trends (Bjerregaard-Olesen et al. 2016). The main sources of exposure
to PFAS in the general population are food and drinking water, with
lesser sources including house dust and air. PFAS are transferred from
mother to fetus via the placenta and to breast-fed infants via maternal
milk (Croes et al. 2012).

Structurally, most PFAS resemble endogenous fatty acids, with
fluorine substituted in place of hydrogen. Functionally, PFAS share
some common features with bile acids, which are key metabolites in-
volved in the digestion and absorption of lipids in the small intestine as
well as in the maintenance of lipid and glucose homeostasis. Bile acids
are excreted into the small intestine and subsequently reabsorbed, and
similar enterohepatic circulation has been suggested for PFOS and
PFOA (Zhao et al. 2015). It has been estimated that over 90% of PFOS
and PFOA must be reabsorbed in order to explain the long half-life of
these compounds in humans (Fujii et al. 2015). Bile acids can therefore

Fig. 1. Overview of the workflow integrating prenatal PFAS exposure assessment, serum metabolomics and risk of type 1 diabetes. The main study included a
mother-infant cohort (EDIA), a clinical validation cohort (DIABIMMUNE) and mouse models for verification (NOD). We determined PFAS levels and metabolomic
profiles of pregnant mothers (EDIA study), and metabolomics was performed on cord serum from newborn infants. We then studied the associations between
maternal prenatal PFAS exposures and metabolomes, addressing the first research question (RQ1). To address the second research question (RQ2), we further studied
the associations between maternal PFAS exposure and islet autoimmunity in the offspring. The findings from these analyses were subsequently verified in two
exposure studies in non-obese diabetic (NOD) mice, where metabolic profiles, including bile acids, were determined. We then further investigated the key findings in
a second clinical cohort (DIABIMMUNE), where PFOS and lithocholic acid were measured. In order to further pursue our second research question, we used the T1D-
predictive lipids from the previously-reported DIPP study, both at the cluster variable level as well as at the level of individual lipids (Oresic et al. 2013), and
compared these to the corresponding data from the EDIA cohort and from the exposure studies in NOD mice.
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potentially act as mediators, linking PFAS exposures and altered lipid
metabolism.

There is a dearth of knowledge regarding PFAS as possible con-
tributors to T1D risk/pathogenesis, although a contribution to the de-
velopment of T1D has been proposed via impaired beta/immune-cell
function and immunomodulation (Bodin et al. 2015). It has also been
reported that PFOA and PFOS disrupt generation of human pancreatic
progenitor cells (Liu et al. 2018). Prenatal and early-life exposure to
perfluoroundecanoic acid (PFUnDA) aggravated insulitis development
in NOD mice (Bodin et al. 2016). Recently, elevated levels of PFOS were
reported in children at the time of diagnosis of T1D (Predieri et al.
2015).

Here we hypothesized that PFAS exposure in utero affects the
phospholipid profile of newborn infants (research question 1), which
may contribute to increased T1D risk (research question 2). In a mo-
ther-infant cohort study, we (i) analyzed metabolite profiles of pregnant
mothers and their offspring at birth, (ii) quantified selected PFAS in
maternal samples during pregnancy, and (iii) examined prenatal PFAS
exposures in relation to neonatal metabolite profiles and progression to
T1D-associated islet autoantibody positivity (AAb+) during follow-up.
We then further experimentally examined the impact of PFAS exposure
on both lipidomic and bile acid profiles as well as the development of
insulitis/autoimmune diabetes in NOD mice, and finally verified our
key findings in a prospective birth cohort study comprising children at
risk for T1D.

2. Materials and methods

2.1. Experimental design

The study setting is shown in Fig. 1. Associations between prenatal
PFAS exposure and metabolomes were first studied in the mother–child
cohort (EDIA study). PFAS levels and metabolomic profiles were de-
termined from pregnant mothers, and metabolomics performed on cord
serum from newborn infants. Next, changes in lipid profiles brought on
by exposure to a single PFAS compound or mixture of persistent organic
pollutants (containing 6 PFAS, brominated flame retardants, PCBs and
pesticides, respectively, were examined from two studies in non-obese
diabetic (NOD) mice (experimental model of autoimmune diabetes).
We also compared cord serum lipid changes due to prenatal PFAS ex-
posure from the EDIA study to previously-reported, lipid-related dif-
ferences between newborn infants who progressed to T1D later in life
vs. those that remained healthy (Oresic et al. 2013). We then compared
the similarities of lipid profiles across the four studies. Finally, the key
findings from the study were verified in the DIABIMMUNE birth cohort.

2.2. Mother-infant cohort

Pregnant women were recruited from January 28, 2013 to February
26, 2015, in the context of the EDIA (Early Dietary Intervention and
Later Signs of Beta-Cell Autoimmunity: Potential Mechanisms) study,
which is a small-scale intervention trial comparing weaning infants
onto an extensively-hydrolyzed milk formula vs. a conventional cow’s
milk-based formula. Families were contacted at the time of the fetal
ultrasonography visit, which is arranged for all pregnant women in
Finland around gestational week 20. Written, informed consent was
signed by the parents to permit analysis of their HLA genotype to ex-
clude infants without HLA-conferred susceptibility to T1D. At this
point, 68% of the infants to be born were excluded. Separate informed
consent was obtained from eligible parents at the beginning of the third
trimester to analyze the offspring’s genotype and to continue in the
intervention study.

The cord blood from 309 newborn infants was screened to de-
termine the HLA genotype, as previously described (Hermann et al.
2003). The degree of HLA susceptibility to T1D was divided into six
categories (high-risk, moderate-risk, low-risk, neutral, protective and

strongly protective genotypes), as earlier defined (Ilonen et al. 2016).
Blood samples were collected from the mothers at two time points
during pregnancy, and one after giving birth. Cord blood was collected
from the infants. Due to the limitations in sample volumes available, we
could perform full chemical analyses (molecular lipids, polar metabo-
lites, PFAS) in 260 mother–child pairs in the current study. Of the
original 309 pairs, a subgroup was chosen for a follow-up study: total of
89 infants were eligible for participation in the intervention study (not
covered in the current study), carrying high-risk and moderate-risk
genotypes and 73 remained in follow-up until the age of 12 months.
This subgroup had more detailed data collected and this subgroup was
utilized in the analysis of the interaction of the genetic risk factors and
PFAS exposure. For the current study, the HLA risk categories were
combined into two classes; the increased risk genotypes and the low-
risk genotypes. Genotypes where HLA-(DR3)-DQA1*05-DQB*02 and/or
DRB1*04:01/2/4/5-DQA1*03-DQB1*03:02 were present with each
other, homozygous or heterozygous with a neutral haplotype were
classified as increased risk and all other genotypes as low risk. Maternal
diet during pregnancy was assessed by validated, semiquantitative food
frequency questionnaire (Erkkola et al. 2001). Food and individual
nutrient intakes were calculated using the national food composition
database, Fineli (https://fineli.fi/fineli/en/index). We had access to
329 maternal serum samples collected at the beginning of the third
trimester and 274 samples taken at delivery. We had, altogether, 300
cord blood samples. By pairing maternal and cord blood samples we
obtained 264 paired mother-infant samples.

2.3. DIABIMMUNE study

The DIABIMMUNE study recruited 832 families in Finland (Espoo),
Estonia (Tartu), and Russia (Petrozavodsk) with infants carrying HLA
alleles that conferred risk for autoimmunity. The subjects involved in
the current study were chosen from the subset (n = 52) of international
DIABIMMUNE study children who progressed to multiple islet auto-
antibodies (n = 14) and controls (CTR, n = 38) who remained AAb
negative in a longitudinal series of samples collected at 3, 6, 12, 18, 24
and 36 months from each child (Kostic et al. 2015). The study groups
were matched by HLA-associated diabetes risk, sex, country and period
of birth. This study was conducted according to the guidelines in the
Declaration of Helsinki. The Ethics and Research Committee of the
participating Universities and Hospitals approved the study protocol.
All families provided written informed consent prior to sample collec-
tion.

2.4. NOD mouse study – Summary

The study setting of the two NOD mouse studies mice was reported
previously (Berntsen et al. 2018; Bodin et al. 2016). In short, NOD/
ShiLtJ mice from the Jackson Laboratory (Maine, USA) were used for
breeding at 8 and 10 weeks of age and randomly allocated to the ex-
posure groups. Female offspring were, in both studies, exposed at
mating, through gestation and early life until 11–12 weeks of age when
the serum samples were collected, with 4–5 mice kept per cage and 5–8
mice per exposure group. The intake was calculated based on the
weight of the mice, and there was no difference in the weight of the
mice.

The exposure in the first study (n = 5 per exposure group) was to a
mixture of persistent organic pollutants in feed, with a high and a low
dose mixture (chemical composition based on human intake (Berntsen
et al. 2017; Berntsen et al. 2018)). The mixture contained the following
compounds: PFDA, PFHxS, PFNA, PFOA, PFOS, PFUnDA BDE 100, BDE
153, BDE 154, BDE 209, PBDE 47, PBDE99, PCB 101, PCB 118, PCB
138, PCB 153, PCB 180, PCB 28, PCB 52, p,ṕ-DDE, Dieldrin, HBCD,
HCB, α, β, γ-HCH, α, oxy and trans- chlordane. The total intake of PFAS
was 0.14 μg/day and 2.8 μg/day in the (1) low and (2) high dose
groups, respectively, corresponding to (1) 1–50 times human serum
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levels of PFAS and (2) 20–1000 times the human serum levels (Berntsen
et al. 2017). In both studies, the mice had ad libitum access to food and
water (Harlan Teklad 2919 irradiated, Madison, WI) and had a 12 h
light/12 h dark cycle with 35–75% humidity. The exposure in the
second study was to PFUnDA in the drinking water (n = 8 per group)
(0, 3, 30 and 300 µg/L, corresponding to 0.417, 4.17 and 41.7 μg/kg
bw/day). The lowest exposure level of PFUnDA is about five times
higher than the maximal calculated intake of PFOA in human infants.

All experiments were performed in conformity with the laws and
regulations for experiments with live animals in Norway and were ap-
proved by the local representative of the Norwegian Animal Research
Authority. In the NOD mouse model, insulitis is the most prominent
feature preceding diabetes onset, with impaired macrophage phagocy-
tosis being associated with seroconversion. Insulitis was assessed by
grading of hematoxylin and eosin-stained pancreatic tissue sections.
Early signs of insulitis included an increased number of apoptotic cells,
a decreased number of tissue-resident macrophages in pancreatic islets
and reduced phagocytic function of macrophages isolated from the
peritoneum.

2.5. Analysis of PFAS

Sample preparation and analysis for PFAS was carried out as de-
scribed previously (Salihovic et al. 2013). In short, 450 µL acetonitrile
with 1% formic acid, and internal standards were added to 150 µL
serum and samples subsequently treated with Ostro Protein Precipita-
tion and Phospholipid Removal 96-well plate (Waters Corporation,
Milford, USA). The analysis of PFAS was performed using automated
column-switching ultra-performance liquid chromatography-tandem
mass spectrometry (UPLC-MS/MS) (Waters, Milford, USA) using an
ACQUITY C18 BEH 2.1 × 100 mm × 1.7 µm column and a gradient
with 30% methanol in 2 mM NH4Ac water and 2 mM NH4Ac in me-
thanol with a flow rate of 0.3 mL/min. Quantitative analysis of the
selected analytes was performed using the isotope dilution method; all
standards (i.e., internal standards, recovery standards, and native cali-
bration standards) were purchased from Wellington Laboratories
(Guelph, Ontario, Canada). The method’s detection limits ranged be-
tween 0.02 and 0.19 ng/mL, depending on the analyte. NIST SRM-1957
reference serum as well as in-house pooled plasma samples were used in
quality control, and the results agreed well with the reference values.
The sum of total PFAS was calculated in ng/ml.

2.6. Analysis of bile acids

The bile acids were measured in NOD mice and in human serum as
described recently (Salihovic et al. 2019), with some modifications in
the sample preparation. After randomization of the samples, 100 μL of
acetonitrile and 10 μL of PFAS internal standard mixture (c = 200 μg/
mL in methanol) and 20 μL of BA internal standard mixture
(c = 440–670 μg/mL in methanol) and 50 μL NOD serum respectively
were mixed, the samples were centrifuged and the organic phase was
collected, evaporated to dryness after which 13C injection standards
were added (10 μL of 200 μg/mL PFAS in methanol) as was 300 μL of
2 mM NH4AC in water. For human samples, 20 μL of serum, using the
same internal standard mixtures, was filtered through a frit filter plate
(96-Well Protein Precipitation Filter Plate, Sigma Aldrich), and the ef-
fluent was collected and evaporated to dryness and the residue was
dissolved in 20 μL of a 40:60 MeOH:H2O v/v mixture containing the
same 13C-PFAS injection standards. Analyses were performed on an
ACQUITY UPLC system coupled to a triple quadrupole mass spectro-
meter (Waters Corporation, Milford, USA) with an atmospheric elec-
trospray interface operating in negative ion mode. An external cali-
bration with six calibration points (0.5–160 ng/mL), including a solvent
blank, was carried out for use in quantitation.

2.7. Analysis of molecular lipids (lipidomics) by UHPLC-QTOFMS

Serum samples were randomized and extracted using a modified
version of the previously-published Folch procedure (Nygren et al.
2011). The maternal samples were analysed as one batch and the cord
blood samples as a second batch. In short, 10 µL of 0.9% NaCl and,
120 µL of CHCl3: MeOH (2:1, v/v) containing the internal standards
(c = 2.5 µg/mL) was added to 10 µL of each serum sample. The stan-
dard solution contained the following compounds: 1,2-diheptadeca-
noyl-sn-glycero-3-phosphoethanolamine (PE(17:0/17:0)), N-heptade-
canoyl-D-erythro-sphingosylphosphorylcholine (SM(d18:1/17:0)), N-
heptadecanoyl-D-erythro-sphingosine (Cer(d18:1/17:0)), 1,2-dihepta-
decanoyl-sn-glycero-3-phosphocholine (PC(17:0/17:0)), 1-heptadeca-
noyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC(17:0)) and 1-palmi-
toyl-d31-2-oleoyl-sn-glycero-3-phosphocholine (PC(16:0/d31/18:1)),
were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA),
and, triheptadecanoylglycerol (TG(17:0/17:0/17:0)) was purchased
from Larodan AB (Solna, Sweden). The samples were vortex mixed and
incubated on ice for 30 min after which they were centrifuged
(9400 × g, 3 min). 60 µL from the lower layer of each sample was then
transferred to a glass vial with an insert and 60 µL of CHCl3: MeOH
(2:1, v/v) was added to each sample. The samples were stored at
−80 °C until analysis.

Calibration curves using 1-hexadecyl-2-(9Z-octadecenoyl)-sn-gly-
cero-3-phosphocholine (PC(16:0e/18:1(9Z))), 1-(1Z-octadecenyl)-2-
(9Z-octadecenoyl)-sn-glycero-3-phosphocholine (PC(18:0p/18:1(9Z))),
1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC(18:0)), 1-
oleoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC(18:1)), 1-palmi-
toyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (PE(16:0/18:1)), 1-
(1Z-octadecenyl)-2-docosahexaenoyl-sn-glycero-3-phosphocholine
(PC(18:0p/22:6)) and 1-stearoyl-2-linoleoyl-sn-glycerol (DG(18:0/
18:2)), 1-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine (LPE
(18:1)), N-(9Z-octadecenoyl)-sphinganine (Cer(d18:0/18:1(9Z))), 1-
hexadecyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine (PE
(16:0/18:1)) from Avanti Polar Lipids, 1-Palmitoyl-2-Hydroxy-sn-
Glycero-3-Phosphatidylcholine (LPC(16:0)), 1,2,3 trihex-
adecanoalglycerol (TG(16:0/16:0/16:0)), 1,2,3-trioctadecanoylglycerol
(TG(18:0/18:0/18:)) and 3β-hydroxy-5-cholestene-3-stearate (ChoE
(18:0)), 3β-Hydroxy-5-cholestene-3-linoleate (ChoE(18:2)) from
Larodan, were prepared to the following concentration levels: 100, 500,
1000, 1500, 2000 and 2500 ng/mL (in CHCl3:MeOH, 2:1, v/v) in-
cluding 1250 ng/mL of each internal standard.

The samples were analyzed by ultra-high-performance liquid chro-
matography quadrupole time-of-flight mass spectrometry (UHPLC-
QTOFMS). Briefly, the UHPLC system used in this work was a 1290
Infinity II system from Agilent Technologies (Santa Clara, CA, USA).
The system was equipped with a multi sampler (maintained at 10 °C), a
quaternary solvent manager and a column thermostat (maintained at
50 °C). Injection volume was 1 µL and the separations were performed
on an ACQUITY UPLC® BEH C18 column (2.1 mm × 100 mm, particle
size 1.7 µm) by Waters (Milford, MA, USA). The mass spectrometer
coupled to the UHPLC was a 6545 QTOF from Agilent Technologies
interfaced with a dual jet stream electrospray (Ddual ESI) ion source.
All analyses were performed in positive ion mode and MassHunter
B.06.01 (Agilent Technologies) was used for all data acquisition.
Quality control was performed throughout the dataset by including
blanks, pure standard samples, extracted standard samples and control
serum samples. Relative standard deviations (% RSDs) for peak areas
for lipid standards representing each lipid class in the control serum
samples (n = 12) and in the pooled serum samples (n = 77) were
calculated on average 15.9% and 13.6% (raw variation) in maternal
samples and in cord blood samples, respectively. For serum samples
from NOD mice, RSD was on average 11.9%. The lipid concentrations in
pooled control samples showed % RSDs within accepted analytical
limits at averages of 14.7% and 20.4% for the maternal and cord blood
serum samples, respectively, and 7.3% for serum samples from NOD
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mice.
Mass spectrometry data processing was performed using the open

source software package MZmine 2.18 (Pluskal et al. 2010). The fol-
lowing steps were applied in this processing: (i) Crop filtering with a m/
z range of 350 – 1200 m/z and an RT range of 2.0 to 12 min, (ii) Mass
detection with a noise level of 750, (iii) Chromatogram builder with a
minimum time span of 0.08 min, minimum height of 1000 and a m/z
tolerance of 0.006 m/z or 10.0 ppm, (iv) Chromatogram deconvolution
using the local minimum search algorithm with a 70% chromatographic
threshold, 0.05 min minimum RT range, 5% minimum relative height,
1200 minimum absolute height, a minimum ration of peak top/edge of
1.2 and a peak duration range of 0.08–5.0, (v), Isotopic peak grouper
with a m/z tolerance of 5.0 ppm, RT tolerance of 0.05 min, maximum
charge of 2 and with the most intense isotope set as the representative
isotope, (vi) Peak filter with minimum 12 data points, a FWHM be-
tween 0.0 and 0.2, tailing factor between 0.45 and 2.22 and asymmetry
factor between 0.40 and 2.50, (vii) Join aligner with a m/z tolerance of
0.009 or 10.0 ppm and a weight for of 2, a RT tolerance of 0.1 min and
a weight of 1 and with no requirement of charge state or ID and no
comparison of isotope pattern, (viii) Peak list row filter with a
minimum of 10% of the samples (ix) Gap filling using the same RT and
m/z range gap filler algorithm with an m/z tolerance of 0.009 m/z or
11.0 ppm, (x) Identification of lipids using a custom database search
with an m/z tolerance of 0.009 m/z or 10.0 ppm and a RT tolerance of
0.1 min, and (xi) Normalization using internal standards PE(17:0/
17:0), SM(d18:1/17:0), Cer(d18:1/17:0), LPC(17:0), TG(17:0/17:0/
17:0) and PC(16:0/d30/18:1)) for identified lipids and closest ISTD for
the unknown lipids followed by calculation of the concentrations based
on lipid-class concentration curves.

An aliquot of each sample was collected and pooled and used as
quality control sample, together with NIST SRM1950 reference plasma
sample, an in-house pooled serum sample.

2.8. Analysis of polar metabolites by GC-QTOFMS

Serum samples were randomized and sample preparation was car-
ried out as described previously (Castillo et al. 2011). The maternal
samples were analysed as one batch, and the cord blood samples as a
separate batch. In summary, 400 μL of MeOH containing ISTDs (hep-
tadecanoic acid, deuterium-labeled DL-valine, deuterium-labeled suc-
cinic acid, and deuterium-labeled glutamic acid, c = 1 µg/mL) was
added to 30 µL of the serum samples which were vortex mixed and
incubated on ice for 30 min after which they were centrifuged
(9400 × g, 3 min) and 350 μL of the supernatant was collected after
centrifugation. The solvent was evaporated to dryness and 25 μL of
MOX reagent was added and the sample was incubated for 60 min at
45 °C. 25 μL of MSTFA was added and after 60 min incubation at 45 °C
25 μL of the retention index standard mixture (n-alkanes, c = 10 µg/
mL) was added.

The analyses were carried out on an Agilent 7890B GC coupled to
7200 QTOF MS. Injection volume was 1 µL with 100:1 cold solvent split
on PTV at 70 °C, heating to 300 °C at 120 °C/minute. Column: Zebron
ZB-SemiVolatiles. Length: 20 m, I.D. 0.18 mm, film thickness: 0.18 µm.
With initial Helium flow 1.2 mL/min, increasing to 2.4 mL/min after 16
mins. Oven temperature program: 50 °C (5 min), then to 270 °C at
20 °C/min and then to 300 °C at 40 °C/min (5 min). EI source: 250 °C,
70 eV electron energy, 35µA emission, solvent delay 3 min. Mass range
55 to 650 amu, acquisition rate 5 spectra/s, acquisition time 200 ms/
spectrum. Quad at 150 °C, 1.5 mL/min N2 collision flow, aux-2 tem-
perature: 280 °C.

Calibration curves were constructed using alanine, citric acid, fu-
maric acid, glutamic acid, glycine, lactic acid, malic acid, 2-hydro-
xybutyric acid, 3-hydroxybutyric acid, linoleic acid, oleic acid, palmitic
acid, stearic acid, cholesterol, fructose, glutamine, indole-3-propionic
acid, isoleucine, leucine, proline, succinic acid, valine, asparagine, as-
partic acid, arachidonic acid, glycerol-3-phosphate, lysine, methionine,

ornithine, phenylalanine, serine and threonine purchased from Sigma-
Aldrich (St. Louis, MO, USA) at concentration range of 0.1 to 80 μg/mL.
An aliquot of each sample was collected and pooled and used as quality
control samples, together with a NIST SRM 1950 serum sample and an
in-house pooled serum sample. Relative standard deviations (% RSDs)
of the metabolite concentrations in control serum samples showed %
RSDs within accepted analytical limits at averages of 12.3% and 19.6%
for the maternal and cord blood serum samples, respectively, and 7.2%
for serum samples from NOD mice.

2.9. Analysis of islet autoantibodies (EDIA and DIABIMMUNE studies)

Four diabetes-associated autoantibodies were analyzed from each
serum sample with specific radiobinding assays: insulin autoantibodies
(IAA), glutamic acid decarboxylase antibodies (GADA), islet antigen-2
antibodies (IA-2A), and zinc transporter 8 antibodies (ZnT8A) as de-
scribed previously (Kostic et al. 2015). Islet cell antibodies (ICA) were
analyzed with immunofluoresence in those subjects who tested positive
for at least one of the biochemical autoantibodies. The cut-off values
were based on the 99th percentile in non-diabetic children and were
2.80 relative units (RU) for IAA, 5.36 RU for GADA, 0.78 RU for IA-2A
and 0.61 RU for ZnT8A. The detection limit in the ICA assay was 2.5
Juvenile Diabetes Foundation units (JDFU).

2.10. Statistical analysis

All analyses here were performed using the R statistical program-
ming language (https://www.r-project.org/).

For all datasets, the following preprocessing steps were carried out:

1. Missing values and values under the limit of quantification were
replaced with zeroes.

2. All zeroes were then replaced with imputed half-minimums (for
each variable, the minimum value was found, and half of this value
was used).

3. All values were log2 transformed.
4. Each variable was scaled to zero mean and unit variance (auto-

scaled).

2.10.1. Clustering of lipids and polar metabolites
All metabolomics datasets (specifically: lipids and polar metabo-

lites × mothers and offspring giving: n = 4 datasets) were then ana-
lyzed, as pre-processed, log2-transformed, autoscaled values, using the
mclust R package (version 5.4.1) to assign variables (lipids/metabolites)
from each dataset to separate clusters. Here, mclust attempts to fit
various model types and assesses their performance using the Bayesian
Information Criterion (BIC). Maximization of the BIC is a well-estab-
lished method for model selection, particularly useful in the case of
clustering of data, to choose the optimum number of clusters by way of
maximizing the likelihood of fit of the clustering model, whilst this
metric penalizes (and thereby avoids) unnecessary complexity. The BIC
is calculated at each iteration, and the optimal (maximal) BIC will occur
when the lowest number of clusters are used before the point at which
increasing the number of clusters gives a lesser return in the fitness of
the model. The highest BIC achieved by mclust for each dataset was
therefore used to determine both the model type and the number of
clusters into which the variables should be divided. The variables in
each dataset were accordingly given numbers to denote their cluster
membership.

For each sample in each dataset, cluster variables were then gen-
erated. For each dataset from which cluster variables were generated,
these numbers were processed by the mclust R package. For each da-
taset, the number of clusters k found by mclust equals the number of
cluster variables generated. Each cluster variable is calculated as the
mean value of the lipids/metabolites that make up that cluster,
meaning that samples in that dataset become represented only by
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(n = k) values. These cluster variables were given acronyms indicating
the dataset from which they were generated (Maternal blood Lipids
Cluster – MLC, Maternal polar Metabolites Cluster - MMC, Child Lipids
Cluster - CLC, Child polar Metabolites Cluster – CMC).

These cluster variable acronyms had their cluster numbers (1-k for
each dataset) appended to them to form their final labels. Assignment of
individual lipids/metabolites to each cluster variable is given for each
dataset in supplementary files.

2.10.2. Correlation analysis
With dataset dimensionality reduced to the aforementioned cluster

variables, correlation analysis was employed, taking all cluster vari-
ables into account, along with clinical variables, simultaneously.
Spearman correlations were calculated pairwise between all of the
aforementioned variables. To subsequently visualize this, the corrplot R
package (version 0.84) was used. For legibility of figures, the colors of
these plots generated by corrplot were limited to either solid orange or
blue for positive or inverse correlations respectively, with correlation
strength represented purely through the size of the filled circles for each
pairwise correlation.

2.10.3. Partial correlation network
For network analysis and representation based on the generated

partial correlations, the qpNrr function from the qpgraph R package
(version 2.16.0) was run with default parameters to estimate non-re-
jection rates (NRRs) of the aforementioned correlation matrix of all
datasets’ cluster variables and clinical features. This is a means for re-
jecting spurious correlations. The obtained NRR matrix was then fil-
tered at various thresholds (0.1 to 1, with an increment of 0.1) to select
the edges included in network representation. The distribution of NRRs
was also visualized as a histogram to assist with choosing an appro-
priate cut-off threshold for retaining plausible, and rejecting likely
spurious, correlations. Based on the distribution of NRRs and observed
network topology of the generated networks, a conservative cut-off of
0.4 was deemed appropriate.

The Rgraphviz R package (version 2.26.0) was used to generate
network topography plots. Node and edge properties for these network
graphs were generated in a custom fashion. Edges were colored by the
directionality of the relationship between the nodes that they connect.
Edge width was plotted as a function of the strength of the Spearman
correlation between the two variables that the edge connects. Nodes
were colored and shaped purely for clarity and to group like variables
(PFAS, clinical variables, cluster variables) and sample sources (mo-
thers, infants) together. Network layout is generated by the Rgraphviz
package itself, and layout was set to the “neato” parameter to balance
clarity and compactness.

For both the final correlation plot and network figure, values were
used only from those sample identifiers uniquely represented in all
involved datasets (maternal blood lipids, maternal polar metabolites,
child blood lipids, child blood polar metabolites, HLA data, demo-
graphic data), totaling (n = 226 samples, n = 54 features).

2.10.4. Univariate statistical methods
To identify any child lipid/metabolite clusters (CLCs and CMCs)

changing in value across various levels of maternal PFAS exposure, the
mothers were first assigned to four quartiles of total PFAS exposure,
defined as the sum of their raw PFAS exposures. Subsequently, an
analysis of variance (ANOVA) test was performed to assess any sig-
nificant change in the means of the CLCs/CMCs across maternal PFAS
exposure quartiles. To further identify the specific quartiles between
which any such significant changes in the CLCs/CMCs took place,
Tukey’s honest significant differences (Tukey HSDs) were calculated
with the same design, enabling intra-PFAS exposure quartile compar-
isons of CLCs/CMCs.

Multi-way analysis of variance was performed with factors HLA risk
and PFAS exposure) and their interactions in MATLAB R2017b

(Mathworks, Inc., Natick, MA, USA) using the Statistical Toolbox.
The Wilcoxon rank-sum test was used in comparing the two study

groups of samples (e.g. CTR vs.mAAb + group) in a specific age cohort.
These statistical analyses were computed in MATLAB 2017b using the
statistical toolbox. For statistical comparison, subjects with missing
peaks for the given quantified compound and children who were not
exclusively breast-fed for 30 days were excluded. The longitudinal
profiles of the PFOS in the samples obtained from children (DIABIM-
MUNE study, 6 time points/child, at ages 3–36 months) who progressed
to multiple autoantibodies and autoantibody negative controls were
compared using linear mixed-effects model with the fixed effect being
case, age, sex, and the random effect being subject-wise variation using
lme4 package in R. The fully-parametrized model was compared with a
null model using analysis of variance (ANOVA) as deployed in the lme4
R package. The locally-weighted regression plot was made using
smoothing interpolation function loess (with span = 0.85) available
from ggplot2 package in R. The individual metabolite levels were vi-
sualized as scatter plot as well as box plot using GraphPad Prism 7
(GraphPad Software, La Jolla, CA, USA).

2.10.5. Regression analysis
Linear regression (LR) with L2 regularization was performed to as-

sess the effect of individual maternal PFAS on the significantly altered
(ANOVA, Tukey's HSD test, p < 0.05) cord blood lipids, polar meta-
bolites and their cluster, between the higher (Q4) and the lower (Q1)
exposure level. Concentrations of 20 measured PFAS were regressed
against the metabolite intensities or their mean cluster profiles.
Regularized LR modelling was performed using 'glmnet' function de-
ployed in the R-package 'glmnet v2.0–18′. The hyper-parameter
'λminimum' was selected based on the minimum cross-validation (CV)
error as determined by 10-fold CV using 'cv.glmnet'. The predictors were
standardized. The LR models were adjusted for covariates such as
mothers' age and BMI. In order to get the ranks of the individual pre-
dictor, ridge-coefficients were estimated and normalized with the
maximum value. In addition, iterative step-wise LR models were de-
veloped for the selection of minimum number of model variables that
are required to maximize the outcome. The step-wise LR models with
the minimum Akaike information criterion (AIC) was considered. The
top predictors/variables of the ridge models were also selected by the
step-wise LR models.

Further, to quantify the effect of individual or combination of PFAS
as regard to the stratification of AAb+ vs. AAb− groups in a follow-up
EDIA study, we performed an iterative step-wise approach to develop
predictive logistic ridge regression (LRR) models. The regularization
strategy was adapted to avoid any issues concerning multicollinearity
among the highly-correlated predictors. The LRR models were boot-
strapped, where 80% of the mothers’ PFAS exposure samples were used
to train the model whilst 20% was used as a test data. In order to avoid
the class imbalance problem between the AAb− group (n ≫ 10) and
AAb+ group (n = 10), downsampling was performed. This was re-
peated 10,000 times. The partitioning of the data was achieved by the
'caret 6.0.84’ R package. The model with the highest mean AUC was
considered to be the best model as assessed by their receiver operating
characteristic (ROC) curve and 95% CI via the ‘pROC 1.15.3’ R package.
All the LRR models with AUC > 0.60 (with 10-fold cross-validation)
were considered. The odds ratio and CI for each predictor was esti-
mated. LRR modelling was performed using R-package 'glmnet v2.0–18’.
The hyper-parameter 'λminimum' was selected based on 10-fold CV. The
recursive step-wise feature elimination scheme guided in the optimal
selection of the PFAS that aids in the separation of AAb+ vs. AAb−
groups. The PFAS in LRR models were either incorporated or removed
in an iterative manner, starting with all 20 PFAS. LRR models were
adjusted for mothers' age and BMI. Accuracy of prediction was de-
termined by AUCs.

Further, we performed LRR modelling to determine the ranks of 20
PFAS in separation of AAb+ vs. AAb−. The ranks of the predictors
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(PFAS) were estimated as the unit absolute differences in the odd ratios,
i.e. predictors with maximum absolute differences were ranked as the
top contributors. The hyper-parameter 'λminimum' for LRR was selected
based on 10-fold CV.

3. Results

3.1. Metabolomic analyses of the mother-infant cohort

A total of 264 mother-infant dyads were included in the study
(Fig. 1, Table S1). Maternal age at delivery was between 18.5 and
45.8 years, pre-pregnancy body mass index (BMI) was between 16.9
and 45.7 kg/m2, with 62% of the mothers being normal weight (BMI
18.5–25). All babies were born after gestational week 35. Seventy-four
with HLA-conferred susceptibility for T1D were analyzed for AAb
+ during follow-up, and ten among these progressed to at least one
islet autoantibody.

Serum concentrations of 25 PFAS compounds were measured in the
mothers during pregnancy, out of which 20 were detected (Table S2).
The two most abundant PFAS were PFOS and PFOA, detected in all
subjects. Our detected levels of PFOS and PFOA were lower than re-
ported in previous studies (Bjerregaard-Olesen et al. 2016), most of
which used samples collected before 2010, and therefore before recent,
noted decreases in population blood levels of PFOS and PFOA (Land
et al. 2018).

Metabolomic analyses were performed using two analytical plat-
forms. Serum molecular lipids and polar metabolites were quantified
from the mothers during pregnancy and from newborn infants (cord
serum). Identified lipids (n = 216) and quantified polar metabolites
(n = 34) were included in the final datasets (Data file S1). To reduce
dimensional complexity and facilitate identification of global associa-
tions between metabolic profiles and maternal PFAS exposure, we first
clustered the metabolites from all datasets into cluster variables using
model-based clustering, followed by partial-correlation network ana-
lysis. The optimum number of clusters for each dataset, as assessed by
Bayesian Information Criterion, returned ten Maternal Lipid Clusters
(MLCs) and five Maternal polar Metabolite Clusters (MMCs), while the
cord serum lipidomics data yielded eight Child Lipid Clusters (CLCs)
and four Child polar Metabolite Clusters (CMCs) (Table S3).

3.2. Metabolic profiles in mothers associate with PFAS exposure

PFAS exposure appeared to impact the maternal metabolome
(Fig. 2, Fig. S1). Total PFAS, as well as several individual PFAS levels
were positively associated with MMC1 (amino acids, saturated free
fatty acids and cholesterol). No strong associations were found between
MLCs and individual PFAS exposures. For a subset of the cohort
(n = 116), detailed lifestyle data, including dietary data during preg-
nancy, were available, and this dataset was used to estimate dietary
sources of PFAS (Fig. S2). Shellfish showed the strongest correlation
with serum PFAS levels, with other food items also showing significant
associations with PFAS levels, such as fish, cereals and fruit juice. This
suggests that, to a large extent, seafood consumption drives maternal
PFAS levels.

In agreement with prior findings (Tsai et al. 2018), we observed
inverse correlations between the number of the mothers’ previous de-
liveries and levels of specific PFAS: PFOA (r = -0.44, FDR q < 0.01),
PFHpS (r = -0.39, q < 0.01), PFOS (r = -0.31, q = 0.07), total PFAS
(r = -0.26, q = 0.23, nominal p = 0.006).

3.3. Cord serum metabolic profiles in newborn infants associate with PFAS
exposure

Partial correlation network analysis revealed a marked association
between maternal PFAS exposure and the cord serum metabolome of
newborn infants (Fig. 2). Inverse associations between cord serum

lipids and PFOS, PFOA and total PFAS exposure were observed, parti-
cularly for clusters CLC2 (sphingomyelins (SMs), abundant phosphati-
dylcholines (PCs)), CLC3 (lysophosphatidylcholines (LPCs)), and CLC4
(PUFA-containing phosphatidylcholines PCs). CMC4 (mainly specific
amino acids) was positively associated with PFOS and per-
fluorodecanoic acid (PFDA) exposure.

Next, the infants were classified into four groups (quartiles) based
on total maternal PFAS exposure levels, as a sum of all individual PFAS
levels. Among the eight CLCs and four CMCs, two lipid clusters (CLC2:
ANOVA p = 0.035, CLC3: Tukey's HSD p = 0.0062) and one polar
metabolite cluster (CMC4: Tukey’s HSD p = 0.0035). These Tukey’s
HSDs show differences between the highest (Q4) and lowest (Q1) PFAS
exposure quartiles.

Linear regression (LR) with regularization was performed to de-
termine the relative effect of individual maternal PFAS on CLC2, CLC3
and CMC4. LR modelling showed that, maternal PFAS such as: PFOSA,
PFPeA, PFOA, PFNA were the top linear predictors (ridge regression
coefficients (σ) ~ 0.8) of the cord serum lipid profiles in CLC2 (SMs,
abundant PCs) and CLC3 (LPCs) (Fig. S3A–B). Moreover, it suggested
that maternal exposure to PFHxS, PFHpS, PFUnDA and PFNS might
affect cord serum lipids, however, the strength of these associations was
comparatively weaker. Regression of PFAS to CMC4 (amino acid
cluster) identified PFPeA, PFDA, PFOS as the top linear predictors
(σ > 0.8) of cord serum amino acids grouped in CMC4 (Fig. S3C).

At the individual metabolite level, (i) 39 molecular lipids, mainly
decreased LPCs, SMs and PCs (from CLC2, CLC3, and to a lesser extent,
CLC4), and (ii) 10 polar metabolites (increased amino acids from CMC1
and, mainly, CMC4), differed between higher and lower quartiles of
total maternal PFAS exposure (p < 0.05, ANOVA Tukey HSD). In order
to access the potential effect of individual maternal PFAS on cord serum
lipid and polar metabolite levels, we performed LR with the maternal
PFAS as predictors of selected representative cord serum metabolite
concentrations. Metabolites that significantly differed between higher
and lower quartiles of total maternal PFAS exposure were considered
for LR modelling. Regression analysis showed that, PFNA, PFOS, PFDA,
were the top linear predictors (σ > 0.7) of cord serum LPC (20:4)
(from CLC3) (Fig. 3A–C), whilst PFNA, PFPeA, PFOA, were the linear
predictors (σ > 0.5) of SM (d38:1) (from CLC2) (Fig. 3D–F). PFHxS
was identified as a top predictor of cord serum methionine (from
CMC4) levels, along with PFDA, PFOS, PFNA (Fig. 3G–I).

3.4. Impact of PFAS exposure on cord serum lipids associated with risk of
T1D progression

As the cord serum lipid profile associated with total maternal PFAS
exposure here proved similar to that found previously as being asso-
ciated with progression to T1D (Oresic et al. 2013), we also examined
the association between PFAS exposure and T1D-associated lipids. First,
we assigned the lipids from the present study to the same lipid clusters
(LCs) as used in our previous study, and investigated their association
with PFAS levels.

Of the ten lipid clusters used in the earlier study, four showed sig-
nificant differences between the highest and lowest exposure groups:
LC2 (ANOVA Tukey's HSD test, p = 0.003), LC3 (p = 0.001), LC6
(p = 0.011) and LC7 (p = 0.001). In our previous study, the most
significantly-changing lipid clusters associated with T1D progression
were LC2 (major PCs) and LC7 (SMs), which were down-regulated in
newborn infants who later progressed to clinical T1D. In agreement
with these results, the lipid levels from the present study in those same
clusters were also reduced in the highest (Q4) PFAS exposure group by
comparison to the lowest (Q1) exposure levels in the current study. In
addition, lipid clusters LC3 (LPCs) and LC6 (PUFA-containing phos-
pholipids) showed clear differences in the current study, with lower
lipid levels again seen in the highest exposure group. Likewise, to
identify which maternal PFAS are the key contributors to these mean
lipid changes in clusters LC2 and LC7, we performed LR modelling (Fig.
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S3D–F). Regression analysis showed that PFHxS and PFDA were the top
linear predictors (σ > 0.8) of the lipids grouped in cluster LC2 (major
PCs) and LC7 (SMs).

Given the potential impact of prenatal exposure to PFAS on cord
serum lipids associated with progression to T1D, we also examined
whether HLA-conferred risk of T1D plays a role in mediating the impact
of PFAS exposure on lipids in newborn infants. We divided the infants
into two categories according to HLA-associated T1D risk: (low vs. in-
creased; Table S1) and two categories according to prenatal total PFAS
exposure (quartiles 1 & 2 vs. 3 & 4). A multi-way ANOVA was then
performed across these groups for the 39 lipids found associated with
PFAS exposure. When examining the interaction effect between HLA
risk and PFAS exposure, we found eight lipids with a p-value < 0.05
(Table S4).

In a subset of the cohort, which included 74 children enrolled in the
clinical trial and for whom follow-up data were available, we then
compared prenatal PFAS exposure in children who progressed to islet
autoantibody positivity during the follow-up (n = 10) vs. those that did
not. We found that the children who progressed to at least one islet
autoantibody had elevated prenatal levels of several PFAS. The total
maternal PFAS levels of the children who seroconverted to at least
autoantibody (AAb + ) were significantly different (two-sample t-test,
p = 0.035) from the serum antibody negative group (AAb-, control).

In order to estimate the ranks of individual PFAS (predictors) for the
separation of the AAb+ vs. AAb− groups, we fitted a logistic ridge
regression (LRR) model (mean AUC = 0.78, 95% CI: 0.51–0.76) with
20 PFAS and estimated their ranks (absolute difference in odds ratios

from unity) based on their impact on classifying the AAb+ vs. AAb−
groups. The LRR model showed that at least five PFAS were linear
predictors of antibody positivity, with PFHxS and PFHpS having the
highest odds ratios (Fig. 4A). Next, we determined the effect of different
PFAS, either singly or in combination, on the separation of AAb+ vs.
AAb− groups, by developing stepwise LRR models. This LRR modelling
identified an optimal set of five PFAS that aided in the separation of
AAb+ vs. AAb− groups at (AUC = 0.81, 95% CI: 0.76–0.85) (Fig. 4B).

3.5. Pre- and postnatal PFAS exposure in NOD mice alters offspring lipid
profiles

Based on the lipidomics results from the mother-infant cohort, we
hypothesized that PFAS exposure during pregnancy has a contributing,
causal impact on phospholipid levels, which, in turn, associates with
increased risk of T1D. Two previous studies in NOD mice suggest that
maternal PFAS exposure accelerates insulitis development and pro-
gression to autoimmune diabetes (Berntsen et al. 2018; Bodin et al.
2016). We analyzed serum lipidomic profiles from these two studies
which exposed 11-week-old NOD mice to either (i) a mixture of per-
sistent organic pollutants (POPs) in feed (including a total PFAS intake
0 (control), 0.14 (low), or 2.8 μg/day (high)). Here the low level cor-
responds to the approximate level of PFAS in human serum and whilst
the high level representing a level 50-times higher than the level of total
PFAS in serum (Berntsen et al. 2017) (Data file S2), or to (ii) PFUnDA at
varying levels in drinking water (0, 3, 30 and 300 μg/L) (Data file S3)
(Bodin et al. 2016). Additionally, analyses of polar metabolites and bile

Fig. 2. Partial correlation network showing associations between demographic data, maternal PFAS levels and lipidome/metabolome cluster variables from mothers
and their newborn infants. All cluster variables shown here are, for each sample, the mean value of the lipids/polar metabolites assigned to a numbered cluster as
determined by the mclust R package. This reduces a large number of similarly-behaving variables (e.g., individual maternal lipids, (n = 206) down to maternal lipid
clusters (n = 10 clusters of lipids, being MLCs 1 through 10, purple ovals). Pairwise spearman correlations were then calculated between all mother/child, lipid/polar
metabolite clusters (n = 4 datasets) and clinical variables. To remove spurious correlations before constructing the network, non-rejection rates (NRRs) of these
correlations were calculated using the qpgraph R package, and a conservative cutoff of 0.4 was chosen, with all other correlations above this rejection rate being
declared likely to be spurious, and therefore removed. The network was then projected using the Rgraphviz R package (see methods). Node color/shape represents the
different datasets (as cluster variables or individual variables, see figure Key) , edge color denotes a positive (orange) or inverse (blue) association. Clinical variable
node abbreviations are: PregWk, weeks of pregnancy; HLA, HLA risk locus (1 = lower risk, 2 = higher risk); CWei, child birth weight; MBMI, maternal BMI; MAge,
maternal age. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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acids were performed in the POP mixture exposure study. It should be
noted that the levels of the other (non-PFAS) POPs were significantly
lower than those of PFAS (Berntsen et al. 2017). These exposures
commenced at the times of mating, during gestation and lactation and
until 11 weeks of age (Berntsen et al. 2018).

Marked changes were observed in the POP study, with the strongest
effects seen in the high exposure group, but with significant changes
occurring also in the low exposure group, corresponding to expected
human exposure levels. A total of 143 out of 183 identified lipid levels,
along with the levels of 16 polar metabolites out of 65, were sig-
nificantly changed. Specifically, exposure caused a marked reduction in
the levels of a large number of phospholipids, with several PUFA-con-
taining TGs being significantly down-regulated as well. We also iden-
tified significant changes in the levels of several free fatty acids, free
cholesterol, amino acids, glycerol-3-phosphate and 3-hydroxybutyric
acid, particularly in the high exposure group, with significant upregu-
lation of several TCA cycle metabolites: α-ketoglutaric acid (FC = 5.1,
p = 1.6 × 10−8), pyruvic acid (FC = 2.5, p = 0.001), fumaric acid
(FC = 1.9, p = 0.018), and succinic acid (FC = 2.0, p = 0.028). Also
citric acid and malic acid were upregulated (FC of 1.2 and 1.3, re-
spectively), but the differences were not significant.

Exposure to only a single PFAS, PFUnDA, also caused significant

changes in lipid profiles at the highest exposure level, with similar
patterns of changes found with the two lower concentrations, although
these did not reach statistical significance. A total of 32 out of 126
identified lipids were significantly different between the high exposure
and unexposed groups, with the changes mainly due to decreased levels
of PCs and SMs.

Next, we assigned the measured lipids to the same lipid clusters
(LCs) as in our previous study (Oresic et al. 2013) and investigated the
association of PFAS exposure with these known lipid clusters (Fig. 5). In
mice exposed to the POP mixture, eight of ten clusters showed sig-
nificant changes between control and high exposure groups, and two
clusters changed significantly between control and low exposure
groups. In agreement with our previous study and our mother-infant
cohort study presented here, LC2 decreased significantly with in-
creasing PFAS exposure. In addition, clusters LC4, LC9 and LC10
showed marked differences in the current study with significantly de-
creased lipid levels in the highest exposure group. These clusters con-
tained mainly minor phospholipids, major TGs and long-chain PUFA-
containing TGs. Of the ten lipid clusters, four showed significant dif-
ferences between the highest PFUnDA-exposure group and the control
mice. One lipid cluster showed a significant difference even at the
lowest level of exposure compared to control.

Fig. 3. Impact of prenatal exposure of selected PFAS on specific lipids. (A, D, G) Horizontal bar plots showing ranks of different PFAS as predictors of LPC(20:4), SM
(d38:1) and methionine levels, respectively, as measured in cord serum. These metabolites are significantly (adjusted p < 0.05) altered between the highest (Q4)
and the lowest (Q1) quartiles of total maternal PFAS levels. The PFAS are ranked and sorted by their absolute normalized regression (ridge) coefficients, i.e. the PFAS
with greater potential impacts on metabolic profile are shown at the top of the chart. (B–C, E–F, H–I) Beanplots showing levels of (B–C) LPC(20:4), (E–F) SM(d38:1)
and (H–I) methionine, measured in cord serum, which are associated with the top two contributing maternal PFAS. The levels of metabolites are plotted across
different quartiles (Q1– Q4) of the contributing maternal PFAS. Red, horizontal bars indicate population mean, black horizontal bars are group mean, and “bean”
width represents the density of samples in a group/quartile. The mean difference in the metabolite levels along different quartiles (Qs) were compared by ANOVA
and post-hoc Tukeys' HSD test. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Using the cluster assignments from the earlier study (Oresic et al.
2013), a remarkable similarity was observed when comparing the re-
sults across all four studies (Fig. 5): (i) a previously-reported study of
the cord serum lipidome in relation to progression to T1D (Oresic et al.
2013), (ii) the association between PFAS exposure and cord serum lipid
profiles in the mother-infant cohort presented here, and (iii) the effects
of PFUnDA and (iv) a PFAS-containing POP mixture on the lipid profiles
of NOD mice. Among the 15 individual lipids reported to have sig-
nificant association with the development of T1D, 11 and 10 of these
were detected also in the NOD mice, exposed to PFUnDA and the POP
mixture, respectively. Among these lipids, three showed significant
differences between control and high exposure groups in the PFUnDA
model and nine in the POP mixture exposure model. Notably, the pat-
tern of the changes in the two mouse models were very similar, and in
vitro exposure of macrophages to groups of chemicals from the POP
mixture revealed that the PFAS mixture was driving the differences also
in the POP mixture model (Berntsen et al. 2018; Bodin et al. 2016).
Strikingly, all lipid changes taking place in association with higher
PFAS exposure occurred in the same direction as reported previously in
relation to increased risk of T1D.

3.6. High exposure to PFAS associates with elevated levels of lithocholic
acid and islet autoantibody positivity

As bile acids and PFAS utilize similar enterohepatic circulation
(Zhao et al. 2015), we also examined the impact of the POP mixture on
serum bile acid levels in serum of NOD mice. Indeed, the bile acid
profiles were markedly altered, in a dose-dependent manner, on ex-
posure to the POP mixture (Table S5). A majority of the bile acids,
including the primary bile acids (CA, CDCA) were downregulated,
while lithocholic acid (LCA) was markedly upregulated in comparison
to the control group (Fig. 6A; fold changes of 2.1 and 5.9 at low and
high exposure to POP, p-values of 6.7 × 10−4 and 5.6 × 10−8, re-
spectively). Notably, there was a strong inverse association between the
levels of LCA and the levels of SMs and LPCs (two examples shown in
Fig. 6B–C). Specifically, all SMs were downregulated (median
R = −0.63, p = 0.000071–0.04) while 70% of the LPCs were sig-
nificantly inversely associated with the LCA (median R = −0.60,
p = 4.1 × 10−7–0.01), except for LPC(22:3), which was positively

correlated with LCA (R = 0.54, p = 0.007).
Next, we compared the plasma PFOS and lithocholic acid (LCA)

concentration differences between the children who progressed to
multiple islet autoantibodies (mAAb + ) vs. controls (CTR), who re-
mained AAb negative, in a previously-reported subgroup of the DIAB-
IMMUNE study (Kostic et al. 2015) (Data file S4). In line with our
findings in the mother–child cohort, we observed a higher level of
PFOS, particularly in breast-fed (≥30 days) children who progressed to
mAAb+ (n = 6) than in CTR (n = 20) at 18 months of age (p-
value < 0.05, Fig. S4A). In addition, we found that in the longitudinal
profile, PFOS remained persistently higher in the mAAb + group than
in CTR (Fig. S4B). We then sought to determine whether LCA levels
were altered with exposure. We found that children with the highest
level (Q4) of PFOS exposure tended to have increased levels of LCA
compared with children who had a low level (Q1) of PFOS exposure
(Fig. S4C). We also observed that LCA differed between the cases and
controls. Higher levels of LCA were found in children who progressed to
mAAb+ than in the CTR at 6 and 36 months of age (p-value < 0.05,
Fig. S4D–F).

4. Discussion

By integrating PFAS exposure and metabolomic data from pregnant
mothers with metabolomic data from their newborn infants, we were
able to demonstrate altered cord serum metabolic signatures associated
with high PFAS exposure during pregnancy and subsequently verify
these findings in NOD mouse models of pre- and postnatal PFAS ex-
posure. We also reported a remarkable similarity between the metabolic
signature observed in the current (EDIA) study and the known signature
associated with progression to T1D.

The composition of the cord blood metabolome reflects maternal
metabolism, placental transfer across the maternal-fetal axis as well as
fetal metabolism itself (Hart et al. 2008). We observed relatively weak
associations between metabolic profiles in maternal samples and the
corresponding cord-blood samples, and thus, the impact of maternal
metabolites in the cord blood metabolome can be assumed to be small.
The observed PFAS-associated metabolic changes seen in cord blood
were not associated with PFAS-related maternal metabolic changes.
These fetal metabolic changes are therefore likely the result of PFAS

Fig. 4. Logistic ridge regression (LRR) models showing PFAS exposure as linear predictors of autoantibody AAb+ vs. AAb−, in a follow-up EDIA study. (A) Ranks
(abs (1- OR)) of predictors (PFAS) obtained from the LRR model, adjusted by mother's age and BMI are shown. 'OR' refers to odds ratios. The greatest contributing
PFAS (predictors) that aided in the separation of AAb+ vs. AAb− (mean AUC = 0.78, 95% CI: 0.51–0.76) are shown in the top of the chart. (B) shows the receiver
operating characteristic (ROC) from stepwise – predictive LRR models (10-fold cross-validation). An optimal set of five PFAS (AUC = 0.81, 95% CI: 0.76–0.85) were
associated with AA+ vs. AAb−. The green-shaded region depicts the 95% confidence region. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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exposure itself, rather than a downstream consequence of maternal
metabolic changes. Several studies have shown that maternal levels of
PFAS are reflected in the developing fetus (Winkens et al. 2017) and
there is a strong correlation between PFAS levels in maternal and cord
blood (Kim et al. 2011). One recent study indicates that PFAS con-
centrations in first trimester fetuses represent 5% to 27% of maternal
plasma concentrations, fetal concentrations increasing with gestational
age (Mamsen et al. 2017). A comparison of transplacental transfer ef-
ficiency for different PFAS suggests an inverse relationship with the
chain-length of the perfluoroalkyl group and a somewhat lower transfer
efficiency for perfluorosulfonic acids compared to perfluorocarboxylic

acids (Winkens et al. 2017). We did not determine PFAS levels in
newborn infants due to the limited volumes of samples available for
quantification.

There is general consensus that exposure to PFOA and PFOS alters
the immune system in experimental models, with documented effects
including altered antibody and cytokine production (DeWitt et al.
2009). In our study, we observed that prenatal PFAS exposure caused
decreased levels of several phospholipids, particularly SMs and specific
PCs, which were previously found to be persistently down-regulated in
children who later progressed to islet autoimmunity (Johnson et al.
2019) and clinical T1D (Orešič et al. 2008). The importance of

Fig. 5. Comparison of lipidomic profiles across four different studies, using lipid cluster assignments from an earlier study (Oresic et al. 2013). (A) Cord serum
profiles from progressors to T1D (yellow bars) and control children (blue bars), from a previous report in the Diabetes Prediction and Prevention (DIPP) study in
Finland (Oresic et al. 2013). (B) Cord serum from mother-infant (EDIA) cohort, with high PFAS exposure (yellow) and low exposure (blue). (C) NOD mice exposed to
a high level of PFUnDA (yellow) and unexposed control mice (blue). (D) NOD mice exposed to the POP mixture at a highest dose (yellow) and unexposed mice (blue).
(E) Fold changes between the groups in A-D of lipids in cluster LC2. Statistical significance levels: *p < 0.05, **p < 0.01, ***p < 0.001. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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sphingolipid metabolism in the pathogenesis of T1D was highlighted by
a genome-wide association study which identified eight gene poly-
morphisms involved in sphingolipid metabolism which contribute to
T1D predisposition, and levels of which also correlated with the degree
of islet autoimmunity in patients with recent-onset T1D (Holm et al.
2018). Recently, altered sphingolipid metabolism was also observed in
peripheral blood mononuclear cells (PBMCs) from children who later
went on to develop overt T1D (Sen et al. 2020). Among the PFAS
measured in our study, the main implicated drivers of the observed
changes in cord serum phospholipid levels were PFOS, PFOSA, PFOA,
PFDA, and PFNA. Also, serine and palmitic acid (precursors of SMs)
were found to be down-regulated with higher PFAS exposure and cor-
related with SM levels (R > 0.4), both in newborn infants as well as in
NOD mice, where the exposure to PFAS was also associated with ac-
celerated insulitis development (Bodin et al. 2016). We conclude that
high PFAS exposure may alter sphingolipid levels during fetal devel-
opment which might then go on to play a pathogenic role in the de-
velopment of T1D later in life. The potential role of HLA-associated T1D
risk in exacerbating the effect of prenatal PFAS exposure on lipid levels
in the offspring, as suggested by our data, clearly demands further in-
vestigation.

Altered bile acid levels as observed in NOD mice exposed to POP
mixtures, and in children positive for multiple islet autoantibodies, may
explain altered lipid profiles. In animal models, LCA exposure has been
shown to cause downregulation of circulating LPCs and SMs (Matsubara
et al. 2011), which is precisely what we have observed both in previous
T1D studies (linking early lipid changes with progression to T1D later in
life) (Orešič et al. 2008) as well as in the current study in relation to
PFAS exposure. Notably, LCA and its metabolites were recently found to
control host immune responses by modulating the balance of TH17 and
Treg cells (Hang et al. 2019). LCA is also an agonist for membrane re-
ceptor TGR5 which mediates the release of glucagon-like peptide 1
(GLP-1), promoting insulin release from pancreatic beta-cells (Kumar
et al. 2012). Bile acid metabolism is closely linked with gut microbial
activity and, indeed, PFAS exposure has been shown to cause reduced
microbiome diversity in infants (Iszatt et al. 2019). In the DIABIMM-
UNE cohort, including the samples studied here, the children that
progressed to multiple islet autoantibodies later in life were found to
have decreased alpha-diversity in their gut microbiota. Decreased levels
of LCA and increased levels of SMs in stool were also associated with
relative overabundance of pathobionts, including AAb + -associated
Ruminococcus (Kostic et al. 2015). Our data presented in the current
study thus suggests that PFAS impact absorption of bile acids, which
may, in turn, affect circulating lipid levels and immune system home-
ostasis.

We also observed an inverse association between maternal levels of

specific PFAS and the number of previous deliveries, due to transfer of
PFAS to the fetus, and excretion via breast milk (i.e., breast feeding)
which is in line with earlier reports (Tsai et al. 2018). Interestingly,
pooled analysis across multiple studies suggests that increasing birth
order is associated with lower risk of T1D (Cardwell et al. 2011). Our
findings therefore support the notion that decreased maternal PFAS
levels, due to multiple pregnancies, is one possible cause of this pre-
viously unexplained phenomenon.

Taken together, we conclude that high prenatal exposure to PFAS
appears to alter lipid profiles in newborn infants, which, in turn, may
increase the risk of islet autoimmunity and T1D. Our data also highlight
a potential role for a gene-environment interaction (HLA risk genotype
and prenatal PFAS exposure), which may lead to altered lipid profiles in
newborn infants at-risk of developing T1D. Our findings may offer an
explanation for the changing trend in the incidence of T1D in certain
Western countries as well as underscore the need for investigation of
how exposure to specific PFAS and other persistent chemical pollutants
during pregnancy and early childhood affect the risk and pathogenesis
of T1D.
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