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Abstract 
The Internet of Things (IoT) is widely used in advanced logistic systems. Safety and security of such 

systems are utmost important to guarantee the quality of their services. However, such systems are 

vulnerable to cyber-attacks. Development of lightweight anomaly based intrusion detection systems 

(IDS) is one of the key measures to tackle this problem. In this paper, we present a new distributed and 

lightweight IDS based on an Artificial Immune System (AIS). The IDS is distributed in a three-layered 

IoT structure including the cloud, fog and edge layers. In the cloud layer, the IDS clusters primary 

network traffic and trains its detectors. In the fog layer, we take advantage of a smart data concept to 

analyze the intrusion alerts. In the edge layer, we deploy our detectors in edge devices. Smart data is a 

very promising approach for enabling lightweight and efficient intrusion detection, providing a path 

for detection of silent attacks such as botnet attacks in IoT-based systems.  
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1.  Introduction 
 

International commerce is developing all the time, which puts pressure on the whole supply chain. 

Logistics is one of the main factors in a supply chain, and assuring the safety of logistic systems has 

become one of the critical challenges at the national, European and global levels. Especially, food 

safety and security has become one of the major concerns for manufacturers and end users. China is 

utilizing a system for its national food industry that enables a citizen to track the whole supply chain of 

food and drinks. The European Commission also envisions an integrated approach to food safety 

aiming to ensure a high level of food safety within the European Union through coherent farm-to-table 

measures and adequate monitoring [1]. Moreover, food and beverages industries are keen to prove the 

quality and authenticity of their products from farmland to a dining table. In Figure 1 a holistic view of 

the supply chain is shown. The safety of the transportation needs to be guaranteed throughout the entire 

supply chain. Thus, having a system that is capable of protecting the supply chain is of utmost concern 

- particularly in international markets. 

Along with the ever-increasing demand for technological solutions for supply chain management 

systems, Internet of Things (IoT) has been identified as a promising technology to ease the 

management and monitoring of the system. On the other hand, such technologies increase cyber 

security concerns for supply chain and logistic systems. Furthermore, the usage of commercially 

available off-the-shelf (COTS) components or just-in-time (JIT) manufacturing processes increases the 

security threats as most of them originate from unsecured foreign facilities. A single failure in a 

logistics system may result in significant consequences for the shipping materials or human being. A 

failure can be caused by adversaries who try to compromise the functionality of a system by disrupting 

software, hardware, physical environment or its connectivity. The attack model for cyber-physical 

systems comprises short and long term attacks. In short term attacks, adversary immediately tries to 

disrupt the system and cause a failure. The second type is more sophisticated and difficult to detect as 

the adversary tries not to leave any footprint by disturbing the system’s functionality, before fully 
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intruding to several components to launch a distributed attack. An intrusion detection system (IDS) is 

required to tackle cyber threats in logistic systems. 

In IoT applications such as cyber-physical systems, safety and security of monitoring a physical 

environment is a critical issue that is underestimated in recent and current studies. First, unlike in 

typical computer systems, in IoT systems the physical environment can be affected through IoT 

actuators. Second, attackers can affect a cyber-physical system by manipulating the physical 

environment.  Moreover, as we are dealing with resource constrained devices in IoT, lightweight 

approaches need to be undertaken to ensure the quality of service and feasibility of such security 

measures. 

The remainder of the paper is organized as follows. In Section 2 we briefly review the IoT and fog 

computing technologies. In Section 3 we discuss IDS systems. In Section 4 we present a new 

promising approach for lightweight IDS called Smart Data. Section 5 presents the proposed Artificial 

Immune System (AIS) based IDS. In Section 6, the experimental results of the proposed architecture 

are presented and, finally, we end with some concluding remarks in Section 7. 

 

 
Figure 1. Food supply chain 

 

2. Internet of Things and Fog Computing 
 

The last decade has witnessed the wide deployment of IoT technology in various application 

domains, and its pervasive role will continue to strengthen in the future. IoT is a concept that realizes 

communication and control among a very large set of different devices [2]. By connecting the devices, 

such as sensors, communication devices and data processing units, IoT allows distributed, autonomous 

decision making and intelligent data processing and analysis [3]. The cloud computing is being 

recognized as a success factor for IoT, providing ubiquity, reliability, high-performance and scalability 

[4]. However, because of its geographically centralized nature and communication implications, cloud 

computing based IoT fails in applications that require very low and predictable latency and which are 

geographically distributed, fast mobile, or large-scale distributed control systems [5]. Fog computing 

provides a promising technology to tackle the low-latency and geographical distribution required by 

IoT devices.  

Fog computing is a paradigm extending cloud computing and its services to the edge of the network 

as shown in Figure 2. Fog is distinguished from the cloud in its proximity to end-users/nodes, dense 

geographical distribution, support for mobility, heterogeneity, interoperability and pre-processing. Fog 

computing does not replace cloud computing. On the contrary, it complements cloud computing and 

aims to provide a computing and storage platform physically closer to the end nodes, provisioning a 

new breed of applications and services with an efficient interplay with the cloud layer [5]. The 

expected benefit is a better quality of service for applications that require low latency. Lower latency is 

obtained by performing data analysis already at the fog layer.  This data analysis is lightweight, and 

therefore more advanced analyses and processing will be done at the cloud layer. Naturally, some 

applications do not require real-time computation, or they need high processing power, and therefore 

they are performed at the cloud layer. Fog devices, located at the fog layer, are heterogeneous in 

nature, ranging from end-user devices and access points to edge routers and switches allowing their use 

in a wide variety of environments.  



The fog layer embodies software modules in the form of fog services and embedded operating 

systems. At the fog layer, it is also possible to analyze gathered data obtained from the sensor layer and 

thus make decisions locally. Local decision making is a key to reduce latency, and thus to provide 

quick responses to unusual behaviors, for example, in the case of security and safety breaches. Such 

local processing requires lightweight, energy efficient algorithms and applications that can be 

performed nearby the source of data. 

In a systematic view, fog computing is composed of distributed and heterogeneous resources that 

are deployed based on a hierarchal model. In this model, the fog nodes constitute a virtualized and 

hierarchical topology and provide a distributed computing platform. Each physical node is composed 

of computing and storage components and has interfaces for communication with neighboring fog 

nodes at the same, one step higher, or one step lower level of the hierarchy. Figure 3 illustrates a 

hierarchical architecture of physical fog computing nodes at different levels [4]. 

The fog computing platform shown in Figure 2 gathers data from different sensors via a wireless 

communication module using wireless communication protocols such as Wi-Fi, 6LoWPAN and 

Bluetooth Low Power depending on the used application. The gateway uses the data in the analysis to 

anticipate and spot any abnormal behavior in the system. In the case of food transport, the intelligent 

gateway gathers the food quality data from several sensor nodes. The raw food quality information can 

be transformed into information (structured data) by developing fog computing services. Naturally, the 

priority of the safety services is higher that of the other services to ensure prompt action for all threats.  

 

 

Figure 2: Fog computing platform 

 

 

Figure 3. Hierarchical architecture of fog computing. 

IoT is not only applied to consumer electronics such as wearables and sport gadgets but also, in the 

industry in various applications including building/home automation, smart cities, smart manufacturing 

and smart logistics. In logistics, safety is essential given the mission-critical deployments of logistic 

systems. ISO 60601 defines safety as “the avoidance of hazards to the physical environment due to the 

operation of a device under normal or single fault condition.” 

 



3. Intrusion Detection Systems 
 

Detection of silent attacks requires constant monitoring and behavioral analysis of the system’s 

components and communication. Therefore, precise and swift safety monitoring and intrusion detection 

are of utmost importance in IoT-based logistic systems. An Intrusion Detection System (IDS) with 

local decision making will prevent failures caused by adversaries and decide proper alert to prevent 

intrusion or to mitigate the impact of an intrusion. Anomaly-based IDS have been broadly studied as 

defensive techniques to address the detection of unknown or zero-day attacks. Unlike misuse-based or 

signature-based types of IDS, which take advantage of the predetermined signature of known attacks, 

an anomaly-based IDS deals with the detection of new types of attacks that are unknown to the system 

[6]. This process is done by detecting variation in the systems' behavior from a previously defined 

normal system profile.  

The artificial immune system (AIS) comprises promising techniques in the form of biologically 

inspired computing that are applied for solving various problems in the field of information security 

including IDS. The AIS is inspired by the human immune system (HIS), which has the ability to 

distinguish internal cells and molecules of the body from foreign pathogens, so called self and non-self 

respectively, and to protect the body against diseases [7]. Like HIS protection against foreign 

pathogens in the human body, the AIS suggests a multi-layered protection structure for protecting 

computer networks against attacks [8]. This protection is accomplished through the Innate or Adaptive 

mechanisms. The innate immune response is immediate and the first line of defense for the HIS and 

provides a non-specific protection. Therefore, it has no prior knowledge of specific outsiders. The 

adaptive immune response, on the other hand, is antigen-specific and trained using a pre-defined 

profile of specific attacks [9]. This is done through specific autoimmune cells called antibodies which 

act as agents of HIS in the body. The adaptive immune system also includes a “memory” that makes 

future responses against a specific antigen more efficient [10]. Likewise, the AIS is also proposed as a 

distributed agent-based system [11]–[13] that is composed of a set of detectors generated as a result of 

a self-training phase in its main engine. We presented an architectural design of a distributed AIS 

system in [14]. The AIS comprises three main parts: 

1) A training engine that has the responsibility of learning from an initial learning data set and 

training its detectors. Such processes are complex and require powerful processing units to 

enable a real-time monitoring of the system. Hence, a cloud computing at the center of the 

network is the best option to set up the training engine. Training the detectors is an intensive 

task that is done at the initialization phase of the AIS at the center of the network. Hence, it 

does not need much communication with the nodes at the edge of the network at this phase. 

The training process is done through a negative selection algorithm which we presented in our 

previous work [15]. In the analyzing phase, in turn, the AIS requires more communication 

between the infected nodes and the main engine.  

2) An analyzer engine has the responsibility of analyzing anomalies detected by the detectors to 

come up with an intrusion alert or to reject the false positive signals. To increase the detection 

precision, an optimized detector that is called a memory cell detector is generated. Based on 

our previous works [15], [16], we have utilized genetic algorithms to generate the most 

optimized memory cell detectors based on the profile of the reported attack and also the 

triggered detectors. Since the analyzer engine requires more communication with the edge 

devices, we deploy the analyzer engine on the fog layer 

3) A set of detector sensors that are accommodated in each node executing the monitoring task. 

The detectors are distributed in the network providing an intelligent and collaborative 

monitoring of the network and the computing nodes. Because each type of attack could be 

carried out in various forms, to increase the precision of the detection, at the learning phase, a 

number of different detectors are generated for each attack, and the best detectors, which have 

more affinity with the targeted attack profile, are selected. So, each type of attack could be 

detected by a number of detectors. Once an anomaly occurred in a node, a number of detectors 

will be triggered by the anomaly. If the number of the triggered detectors is more than a 

threshold, then the anomaly will be reported to the analyzer engine for further analyses. In this 

case, based on the result provided by the analyzer engine, a more accurate intrusion alert will 

be given. 



Like other anomaly-based detection techniques, the AIS also takes advantage of monitoring 

variations of the system's behavior as an adaptive immune response, according to a pre-defined normal 

activity profile. This is done through a learning phase in which a data set containing these profiles is 

utilized for this purpose. Hence, the efficiency of anomaly detection in the AIS depends heavily on the 

learning data set. Substantial studies have been conducted so far for improvement and utilization of 

AIS-based IDS, the majority of which have utilized a pre-defined and offline data set as the learning 

data for training the IDS. This will reduce the efficiency of the IDS and limit the knowledge base to 

that particular learning data set. Moreover, it is extremely difficult to create a data set of self-samples 

with all variations. To cope with this problem, we proposed an online self-training method for our AIS 

based IDS in [16] using unsupervised machine learning methods, which act as an innate immune 

response. The innate immune system provides an online and dynamic categorization of network flows 

into self and non-self flows, which is then used by the adaptive immune system to generate attack-

specific detectors. 

In integrating the AIS technology in IoT and fog computing systems, a challenging task is building 

a lightweight smart agent system that is computing and energy efficient and also requires less 

communication to save the network bandwidth. To this end, we take advantage of the smart data 

approach, which we presented in [17].  

 

4. Smart Data 
 

Smart data is an active and intelligent data structure using a fog computing system, which facilitates 

the management of Big Data in IoT-based applications. Such a data cell is initially very simple and 

light-weight, but it evolves (grows) when traveling through the hierarchical fog computing system 

towards the cloud, merging with other cells or vice-versa, if the data moves from the cloud towards the 

actuators.  

Figure 4 illustrates the general structure of a smart data cell. The smart data is composed of three 

main parts: payload data, metadata, and virtual machine. The payload contains the main data collected 

from the sensors. It undergoes a series of processing or pre-processing steps and is thereby converted 

into more meaningful information. The metadata part of smart data contains key information such as 

the source of data (sensors), the destination of data, the physical entity which data belongs to, 

timestamps, current status and logs as well as rules for accessing, fusing or diffusing, and processing 

data, for example. The virtual machine part, in turn, acts as a platform which enables and manages the 

execution of the rules specified in the metadata part. The VM at the very beginning stage contains only 

basic application codes. Then, it evolves by adding other code modules of the application when they 

are needed. Each code module provides specific functionalities and services to the smart data. The 

modular structure of the VM component makes smart data extendable, allowing it to manage the 

overhead of carrying the code by removing unnecessary code modules and adding the required 

modules only when they are needed. To enable this, we consider a remote code repository node which 

contains all necessary code modules as plugins. Whenever a smart data cell requires a specific code 

module, it communicates with the code repository node and requests for the required code module. To 

minimize the communication involved in downloading the plugins, the most recently downloaded 

plugins are also cached in the physical fog nodes for some period of time. So, if the requested code 

module does not exist in the local fog node, it will be downloaded from the remote code repository 

node. We have presented a detailed design and specification of our smart data in [17]. 

Indeed, the smart data acts as a software agent that is able to travel through a fog computing and IoT 

network, monitor, gather data, and process/pre-process them. The main objective of encapsulating a set 

of data already at the sensor level, instead of constantly sending discrete data, is to reduce the 

communication overheads in a very resource constrained environment as well as to reduce the data 

velocity in the Big Data context. To enable lightweight intrusion detection through the AIS system in a 

fog computing based IoT environment, we utilized the smart data as a package of suspected anomaly 

which is needed to be processed and determine if a real intrusion happens. 

 



 
Figure 4. Structure of Smart Data 

 

5. Proposed Intrusion Detection System 
 

As discussed earlier, the training phase in the AIS main engine involves more intensive processes 

without a significant need for communicating with the distributed nodes at the edge of the network. 

Hence, the cloud computing at the center of the network is the proper computing platform to run such 

computations. In contrast, detection by the trained detectors requires less computing and a higher 

amount of communication compared to processes in the main engine. According to this strategy, we 

have developed our IDS architecture based on the three-layered structure of fog-based IoT systems 

(Figure 5). Based on this architecture, the cloud computing accommodates the IDS main engine which 

is composed of two sub-engines called a clustering engine and a training engine. The clustering engine, 

using unsupervised clustering methods, divides the primary network traffic into self (normal) and non-

self (intrusion) packets which are used as the online training data set for our AIS based IDS. The 

training engine, in turn, trains a set of detectors based on the learning data obtained from the clustering 

engine by using a negative selection algorithm. These detectors are called primary detectors. The 

primary detectors, after the training phase, are stored in a detector repository database at the cloud and 

also distributed to the devices at the edge of the network.   

 

Figure 5. Proposed IDS architecture. 



The primary detectors at the edge of the network act as sensors for our IDS which monitor the 

behaviour of the edge devices. If an anomaly is detected by any of these sensors, they initiate a process 

for investigating the anomaly by producing a smart data cell. Such smart data contains the information 

about the suspected connection in its payload and the triggered primary detector in its metadata. In 

order to increase the precision and avoid false alarms, the smart data is sent to the fog layer for 

investigation only if the number of triggered detectors exceeds a threshold. Based on our previous work 

[16], we set this threshold to three. The smart data in the fog layer will fetch the required code modules 

to build an optimized detector called a memory cell detector for detecting that particular type of 

attacks. The memory cell detector will be sent to the detector repository in the cloud and from there it 

will be distributed to all the other devices at the edge.   

In this case, the connections that do not trigger a sufficient number of detector sensors will be 

omitted. So, the IDS will not be able to monitor the trend of the system and detect the long-term or 

silent attacks. The silent attacks, unlike the short-term attacks, are launched over a longer period of 

time and from distributed nodes, while keeping the system’s functionality as normal as possible to 

make it difficult and more sophisticated to detect. To cope with this problem, we take advantage of the 

smart data concept. Smart data has the ability to store and encapsulate the sensory data (profile of a 

suspected connection detected by any of detector sensors) over a time. We introduce the time 

dimension to enable the IDS to detect the long-term attacks. If the number of triggered detector sensors 

is more than a predefined threshold, the smart data cell will be sent to the fog computing platform for 

further analysis.  Otherwise, if the number of triggered detector sensors is less than the threshold, the 

information of a suspected attack will be stored in a smart data cell. In this case, after a particular time 

interval, the smart data cell will be sent to the fog computing. In the upper level, the smart data cell will 

be aggregated with other smart data cells coming from other devices. So, if the similar anomaly had 

occurred in another device, the aggregated smart data will include the profile of suspected connections 

collected from a larger amount of devices over time. In a similar way, smart data will be aggregated at 

the higher levels of the fog hierarchy (Figure 3) with other smart data collected from a larger 

geographical area. In this case, the smart data become mature which means it contains the information 

of suspected connections from a larger amount of distributed devices over a longer period. Hence, the 

silent attacks will become more visible. Once the number of similar attacks that are aggregated and 

collected by smart data becomes larger than a threshold, the smart data will fetch the code module for 

analyzing the attack. In this phase, if the attack pattern is similar in all suspected anomalies then the 

system will alert an intrusion.   

In the following subsections the detailed functionalities of each component are discussed: 

 

5.1. Clustering Engine 
 

To detect unseen intrusions without using any previous knowledge (training by labeled traffic or 

signature), we introduce a clustering engine as an innate immune response. The clustering engine 

employs the DBSCAN clustering technique to classify the real network traffic into clusters and count 

them as self, while behaviors outside of the clusters will be deemed as noise or non-self. For this 

purpose, the engine continuously compares the number of network flows in different network 

resolutions (subnets of /0, /8, /16, /24), with a threshold which is dynamically computed by our 

suggested network measurement formula in Table 2. Since high-speed networks have a higher amount 

of traffic, there is a notable probability of missing the sign of network attacks. To overcome this issue, 

the system will also control the behavior of the network in small resolutions to minimize the possibility 

of fading the attacks in the regular traffic.  

To obtain a precise threshold, the system requires determining the past behavior of the network. It is 

probable that small attacks to be fade with the existence of large attacks, thus we have applied 

standardization on the number of network flows by using logarithm (Log) to increase the probability of 

detecting small attacks during the existence of large attacks. To determine changes in the network 

traffic, the system will calculate the “standard deviation” of the number of network flows in different 

windows from last minute of the traffic. As shown in Table 1 the previous 60 seconds of traffic is 

broken into four 15 seconds windows. For instance, δ1 is the standard deviation of the number of 

network flows in the first window which is from the last 65 seconds to the last 50 seconds of the 

previous network traffic. As it has been seen in so many datasets, it takes 2 to 3 seconds from starting 

time of the network attacks (such as DOS/DDOS attacks) till its own peak. To reduce the impact of 



initial traffic of the attacks on the threshold, the network measurement formula considers a 5 seconds 

gap between every one minute of traffic to calculate the threshold for the current traffic. The sum of the 

highest standard deviations (from δ1 to δ4) and the heaviest traffic from the last minute of traffic can 

determine the highest traffic which could be accepted as normal. The following equation represents the 

network measurement formula which calculates the network traffic threshold “Tnt”: 

 

𝑇𝑛𝑡  =  (𝑀𝑎𝑥 {𝛿𝑖|𝑖 = 1 ⋯ 4}  + 𝑀𝑎𝑥 {𝑋𝑗 log 𝑋𝑗 |𝑗 = 1 ⋯ 60} )  ×  𝛾 

 

Where δi is standard deviation of number of network flows in ith window and Xj is number of 

network fellow in jth second of last minute’s traffic. And γ is a coefficient value which can be set to 

determine the final threshold. 

 

 

Table1. Elements of network measurement formula 

Last Minute Traffic Gap Current Traffic 

Window 1 Window 2 Window 3 Window 4  
 

 

𝑇𝑛𝑡 𝛿1 𝛿2 𝛿3 𝛿4  

65-50 50-35 35-20 20-5 5-0 

𝑋𝑗 log 𝑋𝑗  

 

The DBSCAN algorithm requires two parameters:  the maximum radius of the neighborhood (β) 

and the minimum number of samples required to form a cluster (α). The real network contains traffic 

from different classes of users such as normal users, busy users, and servers.  In general, the number of 

busy users and servers is smaller than α thus they may not form a cluster in DBSCAN. Since the 

proposed model in our previous work [16] considers all of the network behavior (in the clean traffic 

windows) as normal, this will increase the acceptable distance β for DBSCAN by a high value of Δ to 

include all of the points inside the nearest cluster. Clustering the data with a high value of acceptable 

distance increases the false negative rate (FNR) in certain cases.  To overcome this issue, we will 

propose a new method which compares the previous behavior of outliers to distinguish normal high 

traffic users from intrusions. 

 Similar to the proposed model in our previous work [16], whenever the volume of network flows 

passes the threshold, the cluster engine uses the DBSCAN to cluster the in-bounded and out-bounded 

network flows for each machine to find the attacker/s.  

During the training phase, DBSCAN will obtain the most accurate α and β from the most recent 

clean network traffic. In our proposed model, the network traffic can be considered “clean” if it occurs 

before the threshold (Tnt) raise the alarm. Technically, the normal users will form into clusters while 

the density of busy users or servers may not reach the required level. Nevertheless, since training phase 

uses the clean network traffic the proposed model will consider outliers as busy machines with normal 

profiles. 

Afterward, to find the anomalous outliers which caused the high volume of network traffic, the 

clustering engine clusters the suspicious network traffic window. The outliers’ IP addresses from 

detection phase will be compared to their previous profile. If the distance of current behaviors and the 

previously seen behavior does not exceed the acceptable distance β, the clustering engine will mark it 

as normal high traffic machine. Otherwise, if the new behaviors of outliers IP exceed the distance it 

will consider the behavior of that machine as abnormal. It is important to note that if the outlier IP 

addresses do not have any profile from the training phase, the clustering engine will mark it as 

abnormal. 

 

5.2. Training Engine 
 

The training engine has the responsibility of training the primary detectors of the IDS.  As discussed 

earlier, because training of the detectors does not require much communication with the edge of the 



network, this component is located in cloud computing at the center of the network. The training 

engine first transforms the network flow information into binary strings with a total 112-bit length as a 

flow profile (Table 2). Then, utilizing a negative selection algorithm, it trains and creates the primary 

detectors. The negative selection algorithm first creates some random detectors (immature detectors) 

and then trains them with samples of marked flows from the cluster engine. If any immature detector 

matches with any self-sample of the data set, then the system will drop it and create another in its 

place. After checking all of the immature detectors with all self-samples, the remaining immature 

detectors undergo the next step of the negative selection algorithm and become mature detectors. Each 

mature detector will be checked with all non-self samples of labeled flows. If a mature detector fails to 

match with some non-self samples, the system will discard this detector; otherwise, this detector will 

be added to the final detector set. This process will continue until all non-self packets are matched with 

at least three mature detectors. 

The negative section algorithm utilizes the r-Contiguous matching bit role proposed in [18] to check 

the matching between two strings. In this method, two strings are matched if they have at least r 

contiguous identical bits. Finally, the output of the negative selection algorithm is a set of primary 

detectors, which are archived and synchronized in a detector set repository in the cloud and then 

distributed to the edge devices. These detectors are analogous to primary immune response in the HIS. 

 

Table 2. Depiction of fields in flows profile strings 

Name of the Field Minimum and Maximum Value Binary Strings Length (bits) 

Destination IP Address 0.0.0.0 - 255.255.255.255 32 

Source IP Address 0.0.0.0 - 255.255.255.255 32 

Destination  Port No 0 – 65535 16 

Duration 0 – 65535 12 

Protocol 0 – 65535 4 

Source Port No 0 – 65535 16 

 

5.3. Analyzer Engine 

 
The analyzer engine has the responsibility of analyzing detected anomalies and giving intrusion 

alert. It employs the proposed genetic algorithm in [19] to evolve the highly fit detectors activated 

when an anomaly has been encountered.  The analyzer engine requires more communication with the 

edge devices so we deploy the analyzer engine in the distributed fog computing at the edge of the 

network. In order to save the deployment cost of the analyzer engine in the fog computing, we take the 

advantage of the modular structure of the smart data cells. Indeed, we deploy the analyzer engine in 

code repositories in fog computing. If a smart data which is sent to the fog computing needs the 

processes of this engine, it fetches the required code module from the nearest code repository.  The 

smart data contains 1) the suspected flow reported from the hosts, 2) profile of the activated detectors, 

and 3) their affinity with reported flow. It utilizes the fetched code modules to analyze the anomaly and 

generates an optimized detector, called memory cell detector. A memory cell detector is a high-affinity 

and attack-specific detector with a higher detection ability and analogous to secondary immune 

response in the HIS [10]. The following operations are carried out in this case: 

A selection operation is undertaken on activated detectors to select the detectors with the highest 

affinity for cloning and formation of primary population for genetic algorithm. Those detectors having 

a fitness value greater than or equal to cloning threshold undergo cloning. The cloning threshold is set 

as follows. 

Cloning Threshold =  
∑ Fitness of detectors𝑛

𝑖=0

𝑛
 

Where “n” is the total number of activated detectors. 

Winner detectors that consist of the cloned detectors and remaining activated detectors are subjected 

to the genetic operators of Mutation, Crossover, and Reproduction, which facilitates the evolution of 

these detectors. This process is repeated and continued for a few generations until a detector with a 

fitness value higher than all the winner detectors is generated. The optimized detector from the genetic 

algorithm is treated as a memory cell.  



5.4. Host Side Detectors 

 
The detectors are distributed to the edge devices. Figure 6 illustrates the architecture of edge devices 

that comprises of sensors, actuators, connection platforms, and processing units. The IDS detectors in 

the edge devices act as sensors for our IDS. All inbound and outbound network flows are checked 

using these sensors. In each device, we consider two detectors as follows.  

Primary Detectors: comprise a set of trained detectors that have the ability to discriminate between 

self and non-self flows. These detectors are non-specific and responsible for the primary immune 

response for anomalies that occur for the first time. If a flow matches a detector with an effective 

affinity, that detector is considered an activated detector and the flow is suspected as an intrusion. To 

improve the accuracy of detection and reduce the false-positive errors in IDS, we have defined an 

intrusion threshold (Ti). If the number of activated detectors by a suspected flow is more than T i, the 

flow is detected as an intrusion.  

Memory cell detectors: composed of a set of optimized detectors generated by the analyzer engine. 

As the secondary response of the AIS, memory cells have more accurate intrusion detection abilities. 

Hence, any flow that activates any of these detectors is treated as an intrusion. 

 

 
Figure 6. Architecture of Edge Devices 

 

6. Experimental Result 

 
To evaluate the efficiency of two popular clustering algorithms, we utilized KDD-Cup 99 data set, 

which is extracted from DARPA-98 traffic network. In addition, we have tested our model on SSH 

Brute Force from ISCX dataset [20]. Since today most of the servers with SSH protocol limit the 

number of user attempt, we have changed the SSH Brute Force attack in ISCX to a distributed model, 

which a various number of bots have participated in it. Figure 7 show the network’s behavior during 

the attack. As shown in Figure 7 (A) the ratio of outbound flows to the threshold is below one because 

the number of attackers is high. However, in Figure 7 (B) the threshold for inbounded traffic raise 

alarm since all of the traffic goes to the limited number of machines.   

 

(A) 

 

(B) 

Figure 7. Network’s Behaviour during Distributed SSH Brute Force Attack 



Figure 8 shows the self-training phase during distributed SSH Brute Force attack. As mentioned 

before the clustering engine marks the IP addresses of the machines which were located inside the 

clusters as normal. However, the IP addresses of outliers will be profiled as busy users or servers. As 

shown in Figure 9 during the comparison phase all of the outliers will be compared to their previous 

history. If the distance does not exceed the threshold, the cluster engine will mark them as normal 

devices (with high traffic). Otherwise, if the device exceeds its traffic abnormally, the clustering engine 

will mark it as the abnormal device. Figure 10 shows the final decision of clustering engine. 

 
Figure 8. Self-Training Phase During Distributed SSH Brute Force Attack. 

 

Table 3 shows the comparison of average performances of the new proposed model and our 

previous work. To evaluate the performance of “different behavioral classes” feature in the new 

proposed model we have added traffic from busy users and servers during the occurrence of an 

intrusion. Since the proposed model compares the behavior of outliers with their previous history, the 

overall performance was higher than our previous proposed model [16]. 

 
Figure 9. Comparison Phase During Distributed SSH Brute Force Attack. 

 
Figure 10. Detection Phase During Distributed SSH Brute Force Attack. 

 



Table 3. Performance Evaluation. 

 New proposed model Previous Proposed model [16] 

False positive rate 3.51% 4.53% 

True negative rate 96.49 95.47% 

Accuracy 98.35% 96.23% 

Recall 100% 95.37% 

Precision 97.83% 91.21% 

 
To examine the effectiveness of the AIS engine and thus the proposed model, in our test, we set the 

fitness value of “rc” for R-Contiguous matching bit algorithm to 13 and the threshold “Ti” to 3. 

Furthermore, with experimenting the genetic algorithm for the formation of memory cells, in different 

circumstances, the values for the probability of genetic operations of Crossover, Mutation, and 

Reproduction have been set to 30%, 40% and 30% respectively. The system is examined in both 

centralized and distributed mode. Figure 11 corresponds the self-improvement rate of AIS based IDS in 

the central and distributed forms.  According to this chart, the self-improvement rate in distributed 

mode is better than centralized mode and it reaches to its steady maximum amount after only 6 cycles, 

while this happens after 10 cycles in centralized mode. This is due to the dynamic distribution and 

synchronization of recently created memory cells to each device. 

 

 

Figure 11. Comparison of self-improvement rate in distributed and centralized mode. 

 

7. Conclusion 
 

Development of lightweight intrusion detection systems is critical for the safety and security of 

advanced IoT-based logistics systems. In this paper, we presented a new lightweight architecture for an 

AIS based IDS for IoT systems. This paper extends our previous work [16], into a three-layered 

structure of IoT systems including the cloud, fog and edge layers. We utilized our proposed smart data 

approach to develop a lightweight and efficient analyzing engine in fog computing platform for our 

IDS. Smart data is a very promising framework for enabling lightweight and efficient intrusion 

detection providing also a path for detection of silent attacks such as botnet attacks in IoT-based 

systems. We also presented a new approach for clustering the primary network connections which is 

more efficient method than the one used in our previous work. Our future work will mainly focus on 

detection of potential botnet attacks using the smart data technology.  
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