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Tolerant Location Detection in Sensor Networks
∗

Ville Junnila†and Tero Laihonen

Department of Mathematics and Statistics

University of Turku, FI-20014 Turku, Finland

viljun@utu.fi and terolai@utu.fi

Abstract

Location detection in sensor networks can be handled with so called identifying codes.

For an identifying code to work properly, it is required that no sensors are malfunctioning.

Previously, malfunctioning sensors have been typically coped with robust identifying codes.

However, they are rather large and, hence, imply high signal interference and energy consump-

tion. To overcome these issues, collections of disjoint identifying codes have been proposed for

coping with malfunctioning sensors. However, these collections have some problems regarding

detection of malfunctioning sensors and, moreover, it seems unnecessary to restrict oneself

to disjoint codes. In this paper, we discuss a certain type of identifying codes, for which the

detection of malfunctioning sensors is easy, and based on these codes we design a collection

of codes tolerant against malfunctions. We present some results on general graphs as well as

optimal constructions in rook’s graphs and binary Hamming spaces.

Keywords: Identifying code; location detection; sensor network; malfunctioning sensor; covering
design; Hamming space; rook’s graph

1 Introduction

Sensor networks are systems designed for environmental monitoring. Various location detection
systems are interesting applications regarding sensor networks. As an example of such a location
detection system, consider an observer travelling in the network trying to determine her location.
Here, a sensor, which can be turned on or off, can be placed in each location of the network. The
sensor transmits a signal (unique to that sensor) to each location in its (closed) neighbourhood.
Based on the received signals, the observer attempts to determine her location by considering the
group of sensors from which signals are received. Usually, the aim is to minimize the number of
sensors in the network or the number of sensors simultaneously turned on. The former setting
is desirable if the sensors are expensive. However, even if the sensors are relatively cheap, min-
imizing the number of sensors simultaneously turned on reduces signal interference and energy
consumption of the sensors (see [14, 16]). In this paper, we assume that the sensors are relatively
cheap and, hence, interest is in the number of sensors simultaneously turned on. More explanation
regarding location detection in sensor networks can be found in [3, 14, 16].

A sensor network can be modeled as a finite, simple and undirected graph G = (V,E) as
follows: the set of vertices V of the graph represent the locations of the network and the edge set
E of the graph represent the neighbours of the locations. In other words, a sensor can be placed
in each vertex of the graph and the sensor placed in the vertex u transmits a signal to u itself
and the vertices neighbouring u. In what follows, we present some basic terminology and notation
regarding graphs. The open neighbourhood of u ∈ V consists of the vertices adjacent to u and it
is denoted by N(u). The closed neighbourhood of u is defined as N [u] = {u}∪N(u). A nonempty

∗The paper has been presented in part in the Bordeaux Graph Workshop 2016 (BGW 2016) and an extended
abstract [12] of the paper has been published in the conference proceedings of the BGW 2016.
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Figure 1: The black vertices form an identifying code.

subset C of V is called a code and the elements of the code are called codewords. In this paper,
the code C (usually) represents the set of sensors which are simultaneously turned on. For the set
of sensors from which a vertex u ∈ V receives signals, we use the following notation:

I(u) = I(C;u) = N [u] ∩ C.

We call I(u) the identifying set of u.
Notice that if the sensors in the code C are located in such places that I(C;u) are nonempty

and unique for all u ∈ V , then the sought location in the network can be determined by comparing
I(C;u) to identifying sets of other vertices. This leads to the following definition of identifying
codes, which were first introduced by Karpovsky et al. in [13]. For recent developments regarding
identification, we refer to the papers [4, 6, 11]. For various other papers on the subject, see the
online bibliography [15].

Definition 1. A code C ⊆ V is identifying in G if I(C;u) 6= ∅ for all u ∈ V and for all distinct
u, v ∈ V we have

I(C;u) 6= I(C; v).

An identifying code C in G with the smallest cardinality is called optimal.

The previous definition of identifying codes is illustrated in the following example.

Example 2. Consider the Petersen graph P illustrated in Figure 1. Let C = {v2, v5, v8, v9} be
a code in P . By considering I(C;u) for all u ∈ P , it is straightforward to verify that C is an
identifying code in P . Indeed, for example, if a signal is received only from the sensor in v5, then
the sought location is v5 as I(C; v5) = {v5}. Moreover, any identifying code in P has at least 4
codewords since using less than 4 codewords implies that at most 23 − 1 = 7 different, nonempty
identifying sets can be formed. Hence, C is an optimal identifying code in P .

Remark 3. As we have seen above, identifying codes work rather well for location detection.
However, they have a couple of issues with them:

• In order for an observer to determine her location after receiving the set of signaling sensors,
some comparison of the identifying sets I(u) has to be done. For instance, in Example 2, if
a signal is received only from the sensor in v5, then we immediately know that the observer
is in N [v5] = {v1, v4, v5, v10} and then by comparing the sets I(v1), I(v4), I(v5) and I(v10)
we can deduce that the observer has to be in v5 as I(v5) = {v5}.

• Identifying codes have no tolerance against malfunctioning sensors. (Here we assume that
a sensor is malfunctioning if it does not transmit signals.) In particular, if a sensor fails
to transmit signals to its closed neighbourhood, then a location might be incorrectly deter-
mined and, moreover, there is no indicator that a sensor is malfunctioning. For instance, in
Example 2, if the sensor in v8 is malfunctioning and the observer is in v10, then a signal is
received only from the sensor in v5 and (as above) we deduce that the sought location is in
v5. Hence, an incorrect location is determined and we have no knowledge that it is wrong.
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Figure 2: The black vertices form a self-identifying code.

In this paper, we address the problems of Remark 3 using self-identifying codes and their
suitable collections. The self-identifying codes are introduced in Section 2. The collections of
them, called tolerant identifying collections, are considered in Section 3, where we study the
relation between our approach and robust identifying codes (cf. [7, 9, 10, 16]) as well. We also
discuss the connection to collections of disjoint identifying codes presented in [14]. In Section 4,
we give some existence results on tolerant identifying collections in a graph as well as present
some bounds on the sizes of the collections. In Sections 5 and 6, we consider tolerant identifying
collections in the rook’s graphs and in the binary Hamming spaces, respectively. In both cases, we
provide tolerant identifying collections of optimal self-identifying codes with the smallest number
of codes.

2 Self-identifying codes

In this section, we introduce the self-identifying codes. We also discuss how these codes are related
to Remark 3 and show their connection to a class of codes presented in [8].

Definition 4. A code C ⊆ V is self-identifying in G if for all u ∈ V we have I(C;u) 6= ∅ and

⋂

c∈I(C;u)

N [c] = {u}. (1)

A self-identifying code C is called minimal if C \ {u} is not self-identifying for any u ∈ C. In
a finite graph G, the smallest cardinality of a self-identifying code in G is denoted by γ+(G).
Moreover, a self-identifying code C with γ+(G) codewords is called optimal.

The previous definition of self-identifying codes is illustrated in the following example.

Example 5. Consider the Petersen graph P illustrated in Figure 2. Let C1 = V \ {v1, v6}. The
code C1 is self-identifying. Indeed, for every vertex x ∈ V there are (at least) two codewords
c1, c2 ∈ I(x) \ {x}, and because the girth of P is five, we obtain N [c1]∩N [c2] = {x}. This implies
that

⋂

c∈I(x)

N [c] = {x}.

The code C1 is also minimal. If we remove the vertex v2 from C1 (denote the code by C′),
then I(C′; v1) = {v5} and ∩c∈I(C′;v1)N [c] = {v1, v4, v5, v10} which violates (1) for v1. Similarly,
no other codeword can be removed from C without violating (1). Hence the code is minimal.
Furthermore, it can also be shown that the code is optimal, i.e., γ+(P) = 8.

Consider the issues discussed in Remark 3 with identifying codes in comparison to self-identifying
codes. Let C ⊆ V be a self-identifying code in G. Then, for location detection, no comparison to
other identifying sets needs to be done since the intersection (1) immediately gives the (unique)
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location of the observer. For instance, in Example 5, if signals are received from the sensors in the
locations v2 and v5, then the observer is in the unique vertex v1 of the intersection N [v2]∩N [v5].

Let us then consider more closely the ability to detect malfunctioning sensors. Denote by S
the set of sensors from which signals are received. If the set S is empty, then it is immediately
deduced that some of the sensors are malfunctioning; indeed, a signal from some sensor should
always be received. On the other hand, if S 6= ∅, then the intersection

⋂

c∈S N [c] is formed.
Now, if the intersection contains more than one vertex, then we again know that some sensors
are malfunctioning. For instance, in Example 5, if the sensor in v7 is malfunctioning and the
observer is in v2, then signals are received from v2 and v3 and we can deduce that some sensors
are malfunctioning since N [v2]∩N [v3] = {v2, v3}. On the other hand, if the intersection contains
exactly one vertex, then the location is correctly determined. Notice that the intersection might
consists of a single vertex although some of the sensors are malfunctioning (but the obtained
unique vertex is always the correct one). For instance, in Example 5, if the sensor in v8 is
malfunctioning and the observer is in v3, then signals are received from v2, v3 and v4 and we
obtain that N [v2] ∩ N [v3] ∩ N [v4] = {v3}. Hence, the location is uniquely determined and the
malfunctioning of the sensor v8 stays unnoticed.

Previously, in [8], so called (1,≤ 1)+-identifying codes have been designed for locating a single
observer and detecting several ones in a sensor network. A code C ⊆ V is defined to be (1,≤ 1)+-
identifying if the set I(C;u) \ I(C; v) 6= ∅ for all distinct u, v ∈ V . In the following theorem, it is
shown that the definitions of self-identifying and (1,≤ 1)+-identifying codes are equivalent.

Theorem 6. Let C ⊆ V be a code. Then the following two conditions are equivalent:

(i) The code C is self-identifying.

(ii) I(C;u) \ I(C; v) 6= ∅ for all distinct u, v ∈ V .

Proof. Assume first that the code C is self-identifying, that is, (1) holds. Assume to the contrary
that for some distinct vertices u, v ∈ V

I(C;u) \ I(C; v) = ∅.

This implies that I(C;u) ⊆ I(C; v) and, hence, both u and v belong to the set ∩c∈I(C;u)N [c] which
is a contradiction with (1).

Conversely, assume that the condition (ii) is valid for C ⊆ V . We check whether (1) is satisfied.
Assume to the contrary that for some u ∈ V the set ∩c∈I(C;u)N [c] contains at least two vertices
u and v. But this gives that I(C;u) ⊆ I(C; v) which contradicts (ii).

3 Collections of codes

We have seen above that identifying and self-identifying codes are useful for location detection in
sensor networks. However, problems occur (recall Remark 3) if some of the sensors are malfunc-
tioning. In the case of identifying codes, we have a risk of outputting an incorrect (or unknown)
location. Moreover, using self-identifying codes, an imprecise location might be outputted but
then we at least know that something is wrong with the current code.

Previously, in the literature, the possible malfunctioning of sensors has been handled using
robust identifying codes; for different variants, see [7, 9, 10, 16]. Observe that C ⊆ V is an
identifying code in G if and only if I(u) 6= ∅ for all u ∈ V and (I(u) \ I(v)) ∪ (I(v) \ I(u)) 6= ∅
for all distinct u, v ∈ V . Therefore, if s sensors are malfunctioning in the network, then a code
C ⊆ V satisfying

|I(u)| ≥ s+ 1 and |(I(u) \ I(v)) ∪ (I(v) \ I(u))| ≥ s+ 1 (2)

for all distinct u, v ∈ V can still correctly determine the location of an observer in the network.
However, albeit these codes are tolerant against s malfunctioning sensors, they are rather large
and, therefore, imply signal interference and unnecessary energy consumption according to [14, 16].
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For robust location detection taking into account signal interference and energy consumption,
Laifenfeld and Trachtenberg [14] proposed a collection of disjoint identifying codes. In this setting,
only the sensors corresponding to some disjoint identifying code are turned on simultaneously and
the code is discarded if it is observed that some of the sensors in the code are malfunctioning.
Hence, the system is tolerant against some malfunctions of the sensors. Previously, we have
described that there is no built-in way to determine if an identifying code in the collection is
not working properly. Therefore, in this setting, we need a separate mechanism for detecting
malfunctioning sensors. Moreover, the restriction to disjoint codes also seems unnecessary.

In order to overcome the previous disadvantages, we introduce collections of self-identifying
codes in the following definition.

Definition 7. Let s be a positive integer. A collection of codes L = {C1, C2, . . . , Ch} is called an
s-tolerant identifying collection in G = (V,E) if

(i) Ci ⊆ V is minimal self-identifying code for all i = 1, . . . , h and

(ii) for any S ⊆ V of size at most s we have

S ∩ Ci = ∅ for at least one i = 1, . . . , h. (3)

In the previous definition, the usage of self-identifying codes guarantees that the sought location
can always be determined and a possible malfunctioning of sensors can be detected. The minimality
of the self-identifying codes is motivated by the efforts to minimize signal interference and energy
consumption. Moreover, the condition (3) guarantees that there always exists a code without
malfunctioning vertices (or sensors), i.e., for any S ⊆ V with |S| ≤ s there exists C ∈ L such
that S ∩ C = ∅. Naturally, we prefer a collection with as few codes as possible and also strive
for as small self-identifying codes as possible (often using optimal codes). Notice also that we do
not restrict ourselves to disjoint self-identifying codes since in this way we can cope with larger
number of malfunctioning sensors (for an example, see Remark 16). Moreover, the benefits of
collections of codes over single larger codes regarding signal interference and energy consumption
are discussed in Remark 17.

Let L be an s-tolerant identifying collection in G. Then the s-tolerant identifying collection L
is used as follows:

• A code C ∈ L is used as long as some signals from the sensors are received and the intersection

⋂

c∈I(C;u)

N [c]

consists of a unique vertex, i.e., the observer can determine her location uniquely.

• If a non-unique location is outputted or no signals are received, then the code C is discarded
and a new one is chosen. By (3), there exists a new correctly working code C′ such that
C′ ∩ S = ∅, where S is the set of malfunctioning sensors with at most s vertices.

The definition of s-tolerant identifying collections is illustrated in the following example.

Example 8. Let us consider the Petersen graph again. Denote the ‘rotations’ of the code C1 by
C2 = V \ {v2, v7}, C3 = V \ {v3, v8}, C4 = V \ {v4, v9} and C0 = V \ {v5, v10}. These codes are
all self-identifying and minimal (even optimal). The collection

L = {C1, C2, C3, C4, C0}

is 1-tolerant identifying, since the condition (3) is satisfied. Indeed, now S consists of a single
vertex S = {vi} (or it is empty) and S ∩Cj = ∅ for j such that j ≡ i (mod 5).
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4 On existence of the collection

Observe that by Theorem 6 there exists a self-identifying code in a graph G = (V,E) if and only if
N [x] \N [y] 6= ∅ for all distinct x, y ∈ V . In the following theorem, we present an existence result
for the s-tolerant identifying collections in a graph.

Theorem 9. There always exists an s-tolerant identifying collection L with |L| ≤
(

|V |
s

)

for any s
in a graph G = (V,E) provided that

s < min
x 6=y

|N [x] \N [y]|.

Moreover, if s ≥ minx 6=y |N [x] \N [y]|, then no s-tolerant identifying collection exists.

Proof. Let first s ≥ minx 6=y |N [x] \ N [y]| and the pair a, b ∈ V be such that |N [a] \ N [b]| =
minx 6=y |N [x]\N [y]|. Let us choose S = N [a]\N [b]. Now |S| ≤ s. The condition of Theorem 6(ii)
implies that any self-identifying code must contain a codeword in S. However, this means that
there cannot be any self-identifying code satisfying the condition (3).

Suppose then that s < minx 6=y |N [x]\N [y]|. Let the collection L′ consist of all the subsets of V
of size |V |− s. Any member of the collection L′ forms a self-identifying code due to Theorem 6(ii)
and the choice of s. In order to make a self-identifying code C ∈ L′ minimal we label its codewords
as c1, c2, . . . , c|C|. We start from the codeword c1 and see if it can be removed from C and still
maintain the property of self-identification. We continue this way in the given order with the
other codewords. Consequently, a collection of size at most

(

|V |
s

)

of minimal self-identifying codes
is obtained which satisfies (3).

Let v, k and t be positive integers such that t ≤ k ≤ v. A (v, k, t) covering design is a family
of k-subsets, called blocks, chosen from a set of v elements, such that each t-subset is contained
in at least one of the blocks. The minimum size of such covering design is denoted by C(v, k, t).
More about covering designs can be read in [2, pp. 365–373].

In the following theorem, we present a lower bound on the size of an s-tolerant identifying
collection.

Theorem 10. Let s be a positive integer. If L is an s-tolerant identifying collection in G = (V,E),
then

|L| ≥ C(|V |, |V | − γ+(G), s).

Proof. Let L = {C1, C2, . . . , C|L|} be an s-tolerant identifying collection in a graph G = (V,E).
Let further V = {v1, v2, . . . , v|V |}. We define a |L| × |V |-matrix M = (aij) whose entry

aij =

{

1 if vj ∈ Ci

0 otherwise

for i = 1, . . . , |L| and j = 1, . . . , |V |. Since L is an s-tolerant identifying collection, we know by (3)
that for any s columns of the matrix M there is a row such that the entries corresponding to the
s columns are all 0’s, i.e., non-codewords. This fact remains true if we change in a row any 1 to 0
in order to make the rows have the same number |V | − γ+(G) of 0’s in them. If some of the rows
coincide, we prune them away from the matrix. Consequently, the remaining rows of the altered
matrix now correspond to the blocks in a (|V |, |V | − γ+(G), s) covering design. Consequently, we
have

|L| ≥ C(|V |, |V | − γ+(G), s)

as claimed.

In the following example, we show that the lower bound of the previous theorem can be
attained. Another case of the optimality of the bound is given later in Example 20.
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Example 11. Since in the Petersen graph P the value |N [x] \ N [y]| equals either two or three,
there does not exist, by Theorem 9, an s-tolerant identifying collection for s ≥ 2. For s = 1 the
collection L = {C1, C2, C3, C4, C0} is of optimal size due to the previous theorem, since γ+(P) = 8
and C(10, 2, 1) ≥ 5. Indeed, we need at least 5 blocks of size 2 for covering all the elements of a
set of size 10.

5 Smallest collections in the rook’s graphs

Let us consider s-tolerant identifying collections in the Cartesian product Kn�Km, where Kn and
Km are complete graphs of order n and m, respectively. The graph Kn�Km is also known as the
rook’s graph. Notice that the rook’s graph can be viewed as a chess board with n columns and
m rows, and the neighbourhood of a vertex is determined by the movement of a rook. Previously,
identification and related problems in the rook’s graphs have been considered, for example, in
[4, 5]. In the following theorem, we give a characterization for self-identifying codes in Kn�Km

as well as determine the sizes of optimal codes. Let us denote Kn = {v1, v2, . . . , vn} and Km =
{w1, w2, . . . , wm}. By the k-th row (resp. h-th column) of the graph Kn�Km, we mean the set
of vertices Rk = {(vi, wk) | i = 1, . . . , n} (resp. Ph = {(vh, wj) | j = 1, . . . ,m}).

Theorem 12. Let n ≥ 2 and m ≥ 2 be integers. Then a code C is self-identifying in Kn�Km if
and only if there exist at least two codewords in each row and column of the graph. Moreover, we
have the following result for the size of an optimal self-identifying code in the graph:

γ+(Kn�Km) = 2 ·max{m,n}.

Proof. For any vertex x = (vi, wj) of Kn�Km, we have

N [x] = {(va, wb) | a = i or b = j}.

Let C be a self-identifying code in Kn�Km. In what follows, we show that there must be at least
two codewords of C in each row and column. Suppose to the contrary that there is at most one
codeword in the row Rk (the argument for the columns is analogous). Let z be the codeword if
it exists and if there is no codeword in the row Rk let z be any vertex from that row. Denote
z = (vi, wk). Now all the codewords in I(z) belong to the column Pi. But this implies that

Pi ⊆
⋂

c∈I(z)

N [c]

which is a contradiction with (1). The fact that there are at least two codewords in every row and
column yields the claim

γ+(Kn�Km) ≥ 2 ·max{m,n}.

Now suppose that the code C is such that all the columns and rows contain at least two
codewords of C. We will show that C is then self-identifying. Let x = (vi, wj) be any vertex
of Kn�Km. By the assumption, there exist two codewords c1 and c2 in the same row as x and,
obviously, c1 and c2 belong to I(x). Then we clearly have N [c1] ∩ N [c2] = Rj . Since there are
also two codewords in the same column as x, there exists c3 = (vi, wk) ∈ C such that c3 6= x, i.e.,
k 6= j. This implies that (N [c1]∩N [c2])∩N [c3] = Rj ∩N [(vi, wk)] = {(vi, wj)} = {x}. Therefore,
we have

⋂

c∈I(C;x)

N [c] = {x}

and the code C is self-identifying.

In what follows, we show that there always exists a self-identifying code in Kn�Km with
2 ·max{m,n} codewords. Without loss of generality, we may assume that n ≥ m. First we define
an auxiliary function f : {1, 2, . . . , n} × {1, 2, . . . ,m} → {1, 2, . . . ,m}, f(i, j) = k, where k is an
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integer such that k ∈ {1, 2, . . . ,m} and k ≡ j + (i − 1) (mod m). Then taking any two distinct
vertices (v1, wj1) and (v1, wj2) from the first column of the graph, we construct a code C as follows:

C =

n
⋃

i=1

{(vi, wf(i,j1)), (vi, wf(i,j2))}. (4)

In other words, the code C is formed from the first column by doing a cyclic shift (of one position)
upwards to obtain the codewords in the next column. It is immediate by the construction that
each column contains exactly two codewords and, hence, |C| = 2n. It is also easy to check that
each row contains at least two codewords since n ≥ m and the function f(i, j) obtains all the values
of the target set {1, 2, . . . ,m} for any j when i goes through the values 1, 2, . . . , n. Therefore, as
discussed above, C is a self-identifying code. Thus,

γ+(Kn�Km) ≤ 2 ·max{m,n}.

and we have verified the claims of the theorem.

Considering the last paragraph of the previous proof, we can construct a self-identifying code
in the rook’s graph from any two codewords in the first column. Hence, we can actually form

(

m

2

)

different self-identifying codes. This technique proves to be useful in the proof of the following
theorem, where we determine the smallest number of codes in an s-tolerant identifying collection
in the rook’s graph Kn�Km, when 1 ≤ s ≤ min{m,n} − 2. By Theorem 9, it is immediate that
no s-tolerant identifying collection exists if s ≥ min{m,n} − 1.

Theorem 13. Let n, m and s be integers such that n,m ≥ 2, n ≥ m and 1 ≤ s ≤ m − 2. Now
the following statements hold:

(i) There exists an s-tolerant identifying collection in Kn�Km with C(m,m − 2, s) optimal
self-identifying codes.

(ii) Any s-tolerant identifying collection has at least C(m,m−2, s) minimal self-identifying codes.

Proof. (i) Consider the first column P1 of Kn�Km, which is of size m. Let B be a minimum
(m,m − 2, s) covering design of P1. In other words, B is a collection of C(m,m − 2, s) (m − 2)-
blocks of P1 such that every s-subset of P1 is contained in at least one block. From each block,
we construct a self-identifying code as follows: Take a block B from B and designate P1 \ B as
codewords (now |P1\B| = 2). Then construct a self-identifying code based on these two codewords
of the first column as in (4). As observed previously, the constructed codes are optimal. Thus,
we have obtained a collection L of optimal self-identifying codes with C(m,m− 2, s) members. In
what follows, we show that for any S ⊆ Kn�Km with |S| ≤ s there always exists C ∈ L such that
S ∩ C = ∅; hence, concluding that L is an s-tolerant identifying collection.

In order to show the previous claim, we define an auxiliary function f ′ : {1, 2, . . . , n} ×
{1, 2, . . . ,m} → {1, 2, . . . ,m}, f ′(i, j) = k, where k is an integer such that k ∈ {1, 2, . . . ,m}
and j − (i − 1) ≡ k (mod m). Observe first that for any i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}
we have j = f ′(i, f(i, j)), where the function f is defined as in the proof of Theorem 12. Hence,
based on the construction of the codes in L, we observe that for each C ∈ L the vertex (vi, wj)
belongs to C if and only if (v1, wf ′(i,j)) belongs to C. Let then S ⊆ Kn�Km be an arbitrary set
of (malfunctioning) vertices with at most s elements. Due to the previous observation, we may
without loss of generality assume that all the vertices in S belong to the first column P1 of the
graph. Since B is an (m,m − 2, s) covering design of P1, there exists a block B ∈ B such that
S ⊆ B. Therefore, the self-identifying code C constructed from the block B is such that S∩C = ∅.
This concludes the first part of the proof.

(ii) Let L be an s-tolerant identifying collection. Suppose that S ⊆ P1 is a set of s (malfunc-
tioning) vertices. Then, as L is an s-tolerant identifying collection, there exists a code C ∈ L such
that S ∩ C = ∅, i.e., S ⊆ P1 \ C. Form a collection of subsets of P1 by taking P1 \ (C ∩ P1) for
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all codes C ∈ L. Each subset of the collection contains at most m − 2 vertices (as each column
contains at least two codewords). By the previous observation any s-subset of P1 is contained
in some subset of the formed collection. Thus, the formed collection is almost an (m,m − 2, s)
covering design with the exception that some of the blocks may be of size smaller than m − 2.
However, this can be easily fixed by adding some redundant vertices to each subset with less than
m − 2 vertices. Hence, we have a (m,m − 2, s) covering design with |L| blocks. Thus, it follows
that |L| ≥ C(m,m− 2, s).

6 Smallest collections in the Hamming spaces

In this section, we consider s-tolerant identifying collections in binary Hamming spaces (or hy-
percubes) of length n. The binary Hamming space of length n is a graph with the vertex set
F
n = {0, 1}n and two vertices of Fn are adjacent if they differ in exactly one coordinate place.

Hence, the distance of x, y ∈ F
n is the number of coordinate places, where x and y differ, and

the distance is denoted by d(x, y). The vertices of Fn are also called words. The all-zero word
of length n is denoted by 0 = (0, 0, . . . , 0) ∈ F

n, and ei denotes the word of length n, where the
ith coordinate is 1 and all the other coordinates are 0. The weight w(x) of a word x ∈ F

n is the
number coordinates equal to 1, i.e., w(x) = d(x,0).

Let C be a code in F
n. The sum of the code C and a word x ∈ F

n is defined as follows:

x+ C = {x+ c | c ∈ C}.

We say that a code C is a µ-fold 1-covering in F
n if |I(C;x)| = |N [x] ∩ C| ≥ µ for all x ∈ F

n.
Moreover, a µ-fold 1-covering is said to be perfect if |I(C;x)| = µ for all x ∈ F

n. It is immediate
that Fn is a vector space under the usual addition of vectors and multiplication with scalars. We
say that the code C is linear if C is a subspace of Fn.

Now we are ready to present a characterization of self-identifying codes in F
n. In [8], it has

been shown that a code C ⊆ F
n is (1,≤ 1)+-identifying (or self-identifying using our terminology)

if and only if each word of Fn is 1-covered by at least 3 codewords of C, i.e., C is a 3-fold 1-covering.
This characterization is reformulated in the following theorem.

Theorem 14. Let n ≥ 2 be an integer and C be a code in F
n. Then C is a self-identifying code

in F
n if and only if C is a 3-fold 1-covering, i.e., |I(x)| = |N [x] ∩ C| ≥ 3 for all x ∈ F

n.

In the definition of s-tolerant identifying collections, we are interested in minimal self-identifying
codes and, especially, in optimal ones. In general, the optimal 3-fold 1-coverings, i.e., the smallest
possible coverings, are not well-known (see, for example, [1]). However, in [1], it has been shown
that there exists a perfect 3-fold 1-covering C in F

n, when r is positive integer and n = 2r+1−1 or
n = 3 · 2r − 1, and furthermore that no perfect 3-fold 1-coverings exist for other lengths. Observe
that a perfect 3-fold 1-covering in F

n is an optimal self-identifying code in F
n. In what follows,

we are going to concentrate on the lengths when perfect 3-fold 1-coverings exist.
Let us first assume that n = 2r − 1, where r ≥ 2 is an integer. In what follows, we present

some relevant properties of binary Hamming codes Hn ⊆ F
n. More detailed coverage of the codes

Hn can be found, for example, in [1]. Recall that a binary Hamming code Hn ⊆ F
n is a perfect

1-covering, i.e., a code such that |I(x)| = |N [x] ∩ Hn| = 1 for all x ∈ F
n. Moreover, the binary

Hamming code Hn is linear. Hence, Hn is a subgroup of Fn under the addition of vectors and we
may consider the cosets of Hn. Thus, a 3-fold 1-covering in F

n can be formed as a union of three
cosets of Hn. In the following theorem, we show that a suitable collection of such codes is an
s-tolerant identifying collection — even with smallest possible number of codes. By Theorem 9,
it is immediate that no s-tolerant identifying collection exists if s ≥ n− 1. Hence, in the theorem,
we may assume that 1 ≤ s ≤ n− 2.

Theorem 15. Let r and s be integers such that r ≥ 2, 1 ≤ s ≤ n− 2 and n = 2r − 1. Now the
following statements hold:
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(i) There exists an s-tolerant identifying collection in F
n with C(n + 1, n − 2, s) optimal self-

identifying codes.

(ii) Any s-tolerant identifying collection has at least C(n + 1, n− 2, s) minimal self-identifying
codes.

Proof. Let Hn be a binary Hamming code of length n = 2r − 1. Then all the cosets of Hn are Hn

itself and ei +Hn, where i = 1, 2, . . . n, and they form a partition of Fn. In the proof, we use the
notation [n+ 1] for the set {1, 2, . . . , n+ 1}.

(i) Let B be a minimum (n + 1, n − 2, s) covering design of [n + 1]. In other words, B is a
collection of C(n + 1, n − 2, s) (n − 2)-blocks of [n + 1] such that every s-subset of [n + 1] is
contained in at least one block. From each block, we construct a self-identifying code as follows.
Assuming B is a block of B, consider the set [n+1]\B containing three elements. Each element of
[n+1]\B corresponds to a coset of Hn as follows: n+1 corresponds to Hn and each other element
i corresponds to ei +Hn. Then the union of these three cosets forms an optimal self-identifying
code in F

n by the observation above. Denote by L the collection of self-identifying codes obtained
in the previous manner. In what follows, we show that for any S ⊆ F

n with |S| ≤ s there always
exists C ∈ L such that S ∩C = ∅; hence, concluding that L is an s-tolerant identifying collection.

Let S be a subset of Fn with at most s elements. Observe that each element of S belongs
to some coset of Hn. Therefore, S is included in a union of at most s cosets. By the previous
correspondence of a coset and an integer of [n+ 1], these cosets correspond to a set S′ ⊆ [n+ 1]
such that |S′| ≤ s. Hence, as B is an (n + 1, n − 2, s) covering design, there exists B ∈ B such
that S′ ⊆ B. Therefore, the self-identifying code C ∈ L obtained from the block B is such that
C ∩ S = ∅. Thus, in conclusion, L is an s-tolerant identifying collection with C(n + 1, n − 2, s)
codes.

(ii) Assume then that L is an s-tolerant identifying collection. Recall first that N [0] =
{0, e1, e2, . . . , en}. Observe then that |N [0] \ C| ≤ n − 2 for each C ∈ L since C is a self-
identifying code and, therefore, |C ∩N [0]| ≥ 3. Let S be a subset of N [0] with exactly s words.
Then there exists a self-identifying code C ∈ L such that S ⊆ N [0] \C. Thus, as C goes through
all the self-identifying codes in the collection L, the sets N [0] \ C form a collection B′ such that
each S ⊆ N [0] with s elements is contained in one of the sets in B′. Hence, B′ is almost an
(n + 1, n − 2, s) covering design with the exception that some of the sets/blocks might have less
than n − 2 elements. However, this can be overcome by adding some additional dummy words
into the sets/blocks with less than n− 2 elements. Thus, we have constructed an (n+ 1, n− 2, s)
covering design with |L| blocks from the s-tolerant identifying collection L. Therefore, the claim
immediately follows.

In the following remark, we discuss the benefits of not using only disjoint self-identifying codes.

Remark 16. Recall that previously, in [14], collections of disjoint identifying codes have been
studied. In our model, we do not restrict ourselves to collections of disjoint codes. This has
the benefit that we can handle greater values s of malfunctioning sensors. Indeed, if we consider
binary hypercubes with n = 2r − 1 and r ≥ 2, then using disjoint collections of self-identifying
codes the maximum number of malfunctioning sensors that can be handled is s ≤ ⌊(n+1)/3⌋. By
Theorem 15, in our model, we can handle up to s ≤ n− 2 malfunctioning sensors.

As described in Section 3, tolerance against malfunctioning sensors can be handled with col-
lections of codes or larger codes satisfying (2). In the following remark, we discuss the benefits of
collections of self-identifying codes over the single larger codes.

Remark 17. Previously, so called robust identifying codes have been designed to handle possible
malfunctioning sensors (see [7, 9, 10, 16]). As stated earlier in (2), a single identifying code C is
robust against s malfunctions if for all distinct x, y ∈ V we have |I(x)| ≥ s+1 and |(I(x) \ I(y))∪
(I(y) \ I(x))| ≥ s+1. This implies that, for example in F

n, we have the following lower bound for
identifying codes robust against s = n− 2 malfunctions:

|C| ≥
n− 1

n+ 1
· 2n =

(

1−
2

n+ 1

)

2n
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This further means that almost all the sensors have to be on; hence, implying high signal inter-
ference and energy consumption. However, in our model, if n = 2r − 1, the size of (optimal)
self-identifying code is only γ+(Fn) = 3 · 2n/(n+ 1). Thus, albeit we have to be ready to switch
the set of operating sensors if errors occur, the number of sensor simultaneously turned on is much
smaller.

Let us then assume that n = 3 · 2r − 1, where r is a positive integer. By [1], there exists a
linear perfect 3-fold 1-covering C in F

n, i.e., an optimal linear self-identifying code in F
n. Hence,

the cosets of C form a partition of Fn. Based on these disjoint 3-fold 1-coverings, the following
simple theorem is obtained.

Theorem 18. Let r and s be positive integers such that n = 3 · 2r − 1 and s ≤ 2r − 1. Then
there exists an s-tolerant identifying collection in F

n with s+ 1 codes. Conversely, any s-tolerant
identifying collection has at least s+ 1 minimal self-identifying codes.

Proof. Let C be a linear perfect 3-fold 1-covering in F
n. The number of cosets of C is (n+1)/3 = 2r.

Hence, there exist 2r disjoint self-identifying codes in F
n. Since s ≤ 2r−1, an s-tolerant identifying

collection L can be formed by taking s + 1 (disjoint) cosets of C. Indeed, for any S ⊆ F
n with

|S| ≤ s, there exists a self-identifying code C′ ∈ L such that C′ ∩S = ∅. Moreover, it is clear that
no s-tolerant identifying collection with less than s+ 1 codes exists. Thus, the claim follows.

Above, we have presented constructions for s-tolerant identifying collections for some specific
lengths n. In what follows, we present a couple of results by which we can construct new s-tolerant
identifying collections from known ones. The construction in the first theorem is based on a direct
sum (see, for example, [1]). Recall that the direct sum of codes in F

n is defined as follows: if n1

and n2 are positive integers, and C1 ⊆ F
n1 and C2 ⊆ F

n2 are codes, then the direct sum of C1

and C2 is defined as
C1 ⊕ C2 = {(x, y) |x ∈ C1, y ∈ C2}.

Theorem 19. Let n ≥ 3 be an integer and L be an s-tolerant identifying collection in F
n. Then

there also exists an s-tolerant identifying collection in F
n+1 of size at most |L|.

Proof. Let C be a self-identifying code. By Theorem 14, the code C is a 3-fold 1-covering. There-
fore, it is clear that

C′ = C ⊕ F = {(x, y) |x ∈ C, y ∈ F} ⊆ F
n+1

is also 3-fold 1-covering. Hence, by Theorem 14, the code C′ is self-identifying. Let then L =
{C1, C2, . . . , C|L|} be an s-tolerant identifying collection in F

n, where all Ci are minimal self-
identifying codes. Construct then a collection L′ of self-identifying codes in F

n+1 as follows:

L′ = {C1 ⊕ F, C2 ⊕ F, . . . , C|L| ⊕ F}.

Notice that some of the self-identifying codes in L′ might not be minimal. However, we can
get a minimal self-identifying code from any such code by deleting vertices as long as the code
stays self-identifying. Thus, without loss of generality, we may assume that L′ is a collection of
minimal self-identifying codes. In what follows, we show that L′ also meets the condition (3) of
the definition.

Let S′ be a subset of Fn+1 with k words, where k ≤ s. Clearly, we can write S′ = {(x1, y1),
(x2, y2), . . . , (xk, yk)}, where xi ∈ F

n and yi ∈ F. Considering the set S = {x1, x2, . . . , xk} ⊆ F
n

(having at most k different elements), we immediately obtain that there exists a self-identifying
code C in L such that C ∩ S = ∅. Therefore, there also exists a self-identifying code C′ = C ⊕ F

in L′ such that C′ ∩ S′ = ∅. Thus, L′ is an s-tolerant identifying collection in F
n+1 with |L|

elements.

In the following example, we illustrate the direct sum construction of the previous theorem
and the construction of Theorem 18.
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Example 20. Let us construct a 3-tolerant identifying collection in F
11. By [2, p. 369], the size of a

minimum (8,5,3) covering design is 8, i.e., C(8, 5, 3) = 8. Hence, by Theorem 15, we get a 3-tolerant
identifying collection of size 8. By applying Theorem 19 (four times), we obtain a 3-tolerant
identifying collection of size eight in F

11. On the other hand, using Theorem 18 with r = 2, we
get a 3-tolerant identifying collection of size four and no smaller collection exists. Notice that the
collection with 4 codes also attains the lower bound C(211, 211−3·211/12, 3) = C(2048, 1536, 3)≥ 4
of Theorem 10. Indeed, a (2048, 1536, 3) covering design has more than 3 blocks as otherwise a
3-subset not belonging to any of these block could be formed by taking an element for each block
such that the element does not belong to the block (a contradiction).

The second construction is based on the (π(u), u, u + v)-construction (used, for example, in
[1]). For further considerations, let π : Fn → F be a mapping defined as follows:

π(u) =

{

0, if w(u) is even;
1, if w(u) is odd.

By [1, Theorem 14.4.3], it is known that if C is a µ-fold 1-covering in F
n, then

C′ = {(π(u), u, u+ v) |u ∈ F
n, v ∈ C}

is a µ-fold 1-covering in F
2n+1 with 2n|C| words. In the following theorem, we present a refinement

of this result reformulated in the terminology of self-identifying codes.

Theorem 21. Let n ≥ 2 be an integer. If C is a minimal self-identifying code in F
n, then

C′ = {(π(u), u, u+ v) |u ∈ F
n, v ∈ C} (5)

and
C′′ = {(π(u) + 1, u, u+ v) |u ∈ F

n, v ∈ C} (6)

are both minimal self-identifying codes in F
2n+1 with 2n|C| words.

Proof. Let C be a minimal self-identifying code in F
n. By Theorem 14, C is a 3-fold 1-covering

in F
n. Therefore, by the result above, C′ is a 3-fold 1-covering in F

2n+1 with 2n|C| codewords.
Hence, by Theorem 14, C′ is a self-identifying code in F

2n+1. Thus, it remains to be shown that
C′ is also minimal.

Let c′ = (π(u), u, u + c1) be a codeword of C′, where c1 ∈ C. Since C is a minimal self-
identifying code, there exists a word w ∈ N [c1] such that I(C;w) = {c1, c2, c3} for some c2, c3 ∈ C.
Considering the word w′ = (π(u), u, u+w), we obtain that for i = 1, 2, . . . , n+1 the word w′+ei /∈
C′ since the parity of the first bit of the word is not suitable for a codeword of C′. Therefore,
as I(C;w) = {c1, c2, c3}, we have I(C′;w′) = {(π(u), u, u+ c1), (π(u), u, u+ c2), (π(u), u, u+ c3)}.
Hence, if c′ is removed from the code C′, then the code is not self-identifying anymore. Thus, the
code C′ is a minimal self-identifying code.

The proof for the code C′′ is similar as C′′ = e1 + C′. Thus, the claim follows.

In the following theorem, based on the previous result, we present a method for constructing a
new (2s+1)-tolerant identifying collection in F

2n+1 from a known s-tolerant identifying collection
in F

n. Compare this result to the direct sum construction of Theorem 19, where the number of
malfunctioning sensors that can be coped with is not increased.

Theorem 22. Let n and s be integers such that n ≥ 2 and s ≥ 1. Let L be an s-tolerant identifying
collection in F

n. Then form a collection L′ of self-identifying codes in F
2n+1 as follows: for all

C ∈ L add the self-identifying codes C′ ⊆ F
2n+1 of (5) and C′′ ⊆ F

2n+1 of (6) to the collection
L′. The obtained collection L′ is a (2s+1)-tolerant identifying collection in F

2n+1 with 2|L| codes.

Proof. Notice first that all the codes C′ ⊆ F
2n+1 and C′′ ⊆ F

2n+1 of L′ are minimal self-identifying
codes by Theorem 21. Observe also that each word of F2n+1 can be written either as (π(u1), u1, u2)
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or (π(u1) + 1, u1, u2), where u1 and u2 belong to F
n. In other words, the Hamming space F

2n+1

can be partitioned into two separate subsets based on whether the first bit is π(u1) or π(u1) + 1.
Let then S be a subset of F2n+1 with at most 2s + 1 words. By the previous observation,

there are at most s words of the form (π(u1), u1, u2) or (π(u1) + 1, u1, u2) in S. Without loss of
generality, we may assume that there are at most s words of the form (π(u1), u1, u2). In what
follows, we show that there exists a code C′ ∈ L′ of type (5) such that S ∩ C′ = ∅. Observe first
that all the codewords of C′ are of the form (π(u1), u1, u2) and, therefore, we may concentrate
only on the at most s words of S of the form (π(u1), u1, u2), denoted by S′. By the construction
of C′, we notice that (π(u1), u1, u2) ∈ C′ if and only if u2 = u1 + v, where v ∈ C. Furthermore,
this is equivalent to saying that u1 + u2 ∈ C. Considering the at most s words of the form
u1 + u2, we obtain that there exists a code C ∈ L avoiding all such words as L is an s-tolerant
identifying collection. Therefore, the self-identifying code C′ in F

2n+1 corresponding to C is such
that C′ ∩ S′ = ∅ and, hence, C′ ∩ S = ∅. Thus, as |L′| = 2|L|, the claim immediately follows.

7 Conclusion

In this paper, we considered a location problem in sensor networks when sensors can be malfunc-
tioning. We noticed that malfunctioning poses challenges to usual identifying codes. One way to
address this problem is to use larger codes, that is, robust identifying codes. However, as pointed
out by Laifenfeld and Trachtenberg [14], one can also use collections of disjoint identifying codes
to address the problem. We introduced the tolerant identifying collections which are an improve-
ment on the collections of disjoint identifying codes. We studied the smallest tolerant identifying
collections in the rook’s graphs and the binary Hamming spaces. In light of Section 4, it would be
interesting to find out the smallest tolerant identifying collections also in other families of graphs.
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