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Abstract
We study the thermodynamic performance of a finite-time non-regenerative quantum Stirling-like
cycle used as a heat engine. We consider specifically the case in which the working substance (WS)
is a two-level system (TLS). The Stirling cycle is made of two isochoric transformations separated
by a compression and an expansion stroke during which the WS is in contact with a thermal
reservoir. To describe these two strokes we derive a non-Markovian master equation which allows
to study the real-time dynamics of a driven open quantum system with arbitrary fast driving.
Following the real-time dynamics of the WS using this master equation, the endpoints of the
isotherms can deviate from the equilibrium thermal states. The role of this deviation in the
performance of the heat engine is addressed. We found that the finite-time dynamics and
thermodynamics of the cycle depend non-trivially on the different time scales at play. In particular,
driving the WS at a time scale comparable to the resonance time of the bath enhances the
performance of the cycle and allows for an efficiency higher than the efficiency of the quasistatic
cycle, but still below the Carnot bound. However, by adding thermalization of the WS with the
baths at the end of compression/expansion processes one recovers the conventional scenario in
which efficiency decreases by speeding up the processes. In addition, the performance of the cycle
is dependent on the compression/expansion speeds asymmetrically, which suggests new freedom
in optimizing quantum heat engines. The maximum output power and the maximum efficiency
are obtained almost simultaneously when the real-time endpoints of the compression/expansion
processes are considered instead of the equilibrium thermal endpoint states. However, the net
extractable work always declines by speeding up the drive.

1. Introduction

A flourishing research activity has developed recently around the understanding of the thermodynamic
properties of quantum systems [1–4]. Special attention has been devoted to quantum heat engines and
refrigerators triggered by both new theoretical questions and technological advancements in dynamical
control of microscopic systems [5–16]. From the theoretical point of view a natural question is whether the
quantumness of the working substance (WS) can be exploited to achieve better performances over the
classical systems. The role of quantum effects has been investigated for example in [17–23]. It has been also
ascertained that the creation of coherence between energy levels leads to inner friction and reduction of the
extractable work [24–30]. Thus, the sole use of a quantum WS does not in general guarantee superiority
over the classical counterparts [31]. The study of quantum thermal machines has relied mostly on the
Markovian (Lindblad) description of open system dynamics, which guarantees non-negative entropy
production rate and consistency with the second law of thermodynamics [5]. It has been shown that
non-Markovian dynamics could lead to negative entropy production for the open system reduced state,
however, the sum of the entropy change of the bath and the open system together is positive [32]. Besides
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these studies, non-Markovianity has been found to influence the performance of the quantum heat engines
[33], and, importantly, may also enhance the output power [34].

The usual four-stroke thermodynamic cycles between two thermal baths at temperatures Th and Tc are
composed of four strokes that connect the four fixed endpoints of the cycle. Depending on the physical
settings, a cycle may work either as a heat to work transformer (engine) or a refrigerator. Considering a heat
engine, it is well-known that the maximum efficiency for heat to work transformation is obtained when the
cycle is quasistatic and the processes are reversible. The Carnot efficiency ηC = 1 − Tc/Th sets an upper
bound on the achievable efficiency of an engine working between two thermal baths at the corresponding
temperatures. Achieving the maximum efficiency with a quasistatic cycle carries the cost of losing the
output power. Therefore, a trade-off between the power and the efficiency is usually found for a cycle
running at finite times. Curzon and Ahlborn [35] reported that the efficiency at maximum power for a
Carnot cycle is given by the simple expression ηCA = 1 −

√
Tc/Th. The authors in reference [36] have

derived an upper bound and a lower bound for the efficiency at maximum power of low-dissipation Carnot
heat engines and showed that one recovers the Curzon–Ahlborn efficiency when the cycle includes
symmetric dissipations during the two isotherms. A universal constraint for the power and efficiency of the
low-dissipation Carnot heat engines is derived in reference [37] and the optimal cycle is introduced in [38].
In addition, geometric approaches to the trade-off between power and efficiency and optimization of the
cycles is considered, e.g. in references [39, 40]. The engineering of finite-time processes have been also
studied. For the finite-time coherent driving of the isolated WS the shortcut-to-adiabaticity approach
provides a way to mimic the adiabatic process [41, 42]. This technique has been recently demonstrated
experimentally with superconducting circuits [43, 44] and it was generalized to the case of driven open
quantum systems [45]. The shortcut-to-adiabaticity has been employed, for example, to boost the
performance of an Otto refrigerator [46] and an Otto heat engine [47]. The Otto cycle with a quantum WS
has been extensively studied in the adiabatic as well as in the non-adiabatic case [12, 13, 16, 19, 21, 28,
34, 47].

Dealing with finite-time isothermal processes is more complicated, in comparison with finite-time
adiabatic processes, due to the simultaneous driving of the WS and its coupling to the heat bath. Usually, to
obtain the real-time dynamics of the WS during a finite-time isotherm a slow drive whose effect falls within
the validity of the adiabatic limit is assumed, allowing one to ignore the non-adiabatic effects [48–50]. This
assumption is relaxed in the derivation of a time-dependent Markovian master equation to capture
non-adiabatic effects but retaining the assumption that the time scales of the external drive and the ones of
the coupling to the bath are still well-separated [51]. Using this master equation, it has been proposed to
reverse-engineer the thermalization to find a corresponding driving protocol which provides a shortcut to
equilibration [52]. Alternatively, manipulating the coupling between the WS and the bath is also shown to
speed-up isothermal strokes [53].

Carnot and Stirling cycles both include isothermal processes. Although finite-time Carnot cycle has been
studied extensively to address the trade-off between power and efficiency, Stirling cycle has received much
less attention. Stirling cycle has been studied in the ideal adiabatic regime [54, 55] and only very recently a
finite-time scenario in an optomechanical implementation has been studied [56]. In particular, most of the
previous studies dealing with both Carnot and Stirling cycles running in finite times are limited to
phenomenological approaches and when the real-time dynamics of the WS is considered, they have been
usually limited to the slow-driving or low-dissipation regime. In addition, it is assumed that all the four
endpoints of the cycles are fixed, e.g. during an isotherm the WS can be driven out of the equilibrium but at
the end of the process it will be eventually brought back to the fixed endpoint corresponding to the
equilibrium state at the end of the protocol. But what should we except if we follow the real-time dynamics
of the WS even at the end of the protocol, i.e. the endpoint of the isotherm be dependent on the real-time
dynamics of the WS? In this case, the term ‘isothermal’ does not mean anymore that the WS has the same
temperature at the beginning and at the end of the process. It would rather refer to the driving of the WS
while it is connected to a thermal bath at a fixed temperature. In this work, we address the role of this
deviation from the conventional endpoints of the isotherms in the performance of a finite-time Stirling
cycle working as a heat engine with a qubit as the WS. Unlike the previous studies, here we consider the
real-time dynamics of the WS beyond the slow-driving approximation using a non-Markovian master
equation that allows for arbitrary fast driving.

We observe that the efficiency of the cycle depends on the interplay between the driving time, the
correlation times of the baths and the resonance times of the baths. Interestingly, the efficiency exceeds that
of a quasistatic cycle if we drive the WS at a time scale comparable to the resonance time of the baths.
However, by forcing the WS to reach the thermal equilibrium at the end of the isotherms (having a
conventional Stirling cycle with all four endpoints fixed), we recover the well-known behavior in which the
efficiency always decreases by speeding up the processes. Interestingly, the average output power gets its
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maximum almost at the same time scale of the driving at which the efficiency is maximum. This is however
not true for the extractable work, which decreases as we speed up the drive. Our results also show that the
performance of the cycle is non-trivially dependent on the durations of the compression and expansion
strokes in an asymmetric way.

The paper is organized as follows: in section 2 we introduce the master equation, followed by the
presentation of the Stirling engine in section 3. The calculation of work and heat for the Stirling engine is
done in section 3. Section 4 deals with the evaluation of the thermodynamic performance of the engine.
Finally, section 6 is devoted to concluding remarks.

2. The master equation

To study the dynamics of a driven WS in contact with a thermal bath we employ a non-Markovian master
equation obtained by applying the approach developed in references [57, 58]. Assuming weak coupling to
the baths and the Born approximation, a general time-convolutionless non-Markovian master equation is
derived using the Nakajima–Zwanzig method. Such a master equation is valid for any characteristic time
scale of the drive, e.g. the period in a periodic drive or the ramping time in the case of a switching. The
master equation retains both rotating and counter-rotating contributions, where the latter is especially
non-negligible at fast driving speeds. Here we introduce the operatorial form of the master equation and
discuss its main features, leaving more details on the numerical implementation and how to recast the
master equation in the adiabatic basis in appendix A.

Let us consider a quantum system subject to an external coherent driving field and weakly coupled to a
thermal bath at an inverse temperature β. The total Hamiltonian reads (� = 1)

Ĥ(t) = ĤS(t) + ĤI(t) + ĤB, (1)

where ĤS(t) and ĤB(t) are the bare Hamiltonian of the open system and the bath respectively. We write the
interacting Hamiltonian in the form

ĤI(t) = Ŝ(t) ⊗ B̂, (2)

with Ŝ(t) being a time-dependent operator acting on the open system, and B̂ an operator acting on the bath.
The non-Markovian master equation reads [57]

Lt[ρ̂(t)] = −i[ĤS(t), ρ̂(t)] +

∫ t

0
dτ

[
Φ(t − τ)[ˆ̃S(t, τ)ρ̂(t), Ŝ(t)] + h.c

]
, (3)

where

ˆ̃S(t, τ) = Û(t, τ)Ŝ(τ)Û(t, τ)†, (4)

Û(t, τ) = T e−i
∫ t
τ dsĤS(s), (5)

Φ(t) = 〈eiĤBt B̂ e−iĤBt B̂〉ρB . (6)

Here Φ(t) is the correlation function of the bath and ρB denotes the equilibrium state of the bath at an
inverse temperature β. The correlation function is related to the bath’s coupling spectrum Gβ(ω) via the

Fourier transform Gβ(ω) =
∫ +∞
−∞ ds Φ(s)eiωs.

By decomposing the operators in the master equation w.r.t. the instantaneous eigenvectors of ĤS(t),
denoted by {|εi(t)〉}, we get (see appendix A for more details)

Lt[ρ̂(t)] = −i
[
Ĥeff(t), ρ̂(t)

]
+D(R)

t [ρ̂(t)] +D(CR)
t [ρ̂(t)]. (7)

where Ĥeff(t) = ĤS(t) + Ĥ(R)
L (t) + Ĥ(CR)

L (t) with Ĥ(α)
L (t) with α = R, CR is the rotating/counter-rotating

Lamb shift in the energy levels of the system generated by the coupling to the bath. Also the non-unitary
dissipators D(R)

t [·] and D(CR)
t [·] account for the exchange of energy with the bath and/or decoherence.

Note that the dissipators accounting for two different baths are additive by construction if one assumes
that the baths are initially uncorrelated. Naturally, the specific expressions of the different terms appearing
on the rhs of equation (7) depend on the choice of the free Hamiltonian of the system and more
importantly on the coupling Hamiltonian ĤI(t).
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Figure 1. The quantum Stirling heat cycle and its implementation using superconducting circuits. The β–ω and n–ω diagrams
of the Stirling cycle working between inverse temperatures βc and βh are respectively shown in panel (a) and (b), where
n(t) = tr[ĤS(t)ρ̂(t)]/ω(t) is the instantaneous polarization of the TLS. Panel (c) shows the coupling spectra of the hot and cold
baths, respectively plotted in dashed red and solid blue. Coupling spectra of the both baths are peaked at the frequency ωr, while
the level separation of the TLS would change within the range [ω1,ω2] due to the external drive. Panel (d) shows the piece-wise
continuous coupling to the heat baths and the level separation change of the TLS as a function of time during a full cycle.

3. Quantum Stirling heat engine

The Stirling cycle is composed of two isothermal strokes and two isochoric thermalizations. Classically it is
common to supplement the cycle with two extra steps which involve the interaction of WS with the
so-called regenerator. The latter is typically some substance with a very high heat capacity whose task is to
absorb heat from the WS during the cooling isochoric stroke and transfer this heat back to the WS during
the heating isochor to improve the overall efficiency and minimize the waste heat. In this work we do not
consider a regenerative setup, i.e. the WS interacts directly with the heat baths instead of the regenerator.
Considering a quasistatic Stirling cycle working as a heat engine that has four fixed endpoints a, b, c, and d,
the diagrams for temperature and polarization versus level separation are depicted respectively in the panels
(a) and (b) in figure 1, where the polarization is given by n(t) = tr[ĤS(t)ρ̂(t)]/ω(t). Assuming a two-level
system (TLS) as the WS, the cycle is composed of four strokes:

(a) Isothermal compression, process a → b, with duration τ ab: the level separation of the TLS reduces from
ω2 to ω1 while it is coupled to the hot bath at an inverse temperature βh.

(b) Isochoric thermalization, process b → c, with duration τ bc: the TLS is disconnected from the hot bath
and is brought to contact with the cold bath at an inverse temperature βc, with which it thermalizes
while the external drive is off.

(c) Isothermal expansion, process c → d, with duration τ cd: the level separation of the TLS increases from
ω1 back to ω2 while it is still coupled to the cold bath.

(d) Isochoric thermalization, process d → a, with duration τ da: the TLS is disconnected from the cold bath
and is brought back to contact with the hot bath. The TLS thermalizes while driving is off.

Note that the durations of isothermal processes 1 and 3, denoted respectively by τ ab and τ cd, are very
large when the cycle is quasistatic. Slow processes allow the WS to maintain the isothermal trajectories
depicted in the panels (a) and (b) in figure 1. However, in a finite-time cycle the processes have finite
nonzero speeds and the total duration of a full cycle is then T = τ ab + τ bc + τ cd + τ da. Depending on the
speed of processes 1 and 3, the trajectory of the WS may deviate from the isothermal ones. In particular,
this deviation leads the WS to end up at different endpoints rather than the equilibrium points b and d
depicted in the panels (a) and (b) of figure 1. Usually, it is assumed that at the end of isotherms the WS is
eventually brought back to the equilibrium states (points b and d) to fulfill the isothermal constraint that
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Table 1. Definitions and values of the relevant physical parameters used in this work.
Note that ω0 is the reference energy scale of the TLS, with respect to which we normalize
all other frequencies and time scales. (� = 1, kB = 1).

Parameter Definition Value

τR Relaxation time of the TLS 1/Gβi gi (ωr)
τB Resonance time of the bath 2π/ωr

τC Correlation time of the bath Controlled by f
βh Inverse temperature of the hot bath 2/ω0

βc Inverse temperature of the cold bath 5/ω0

(gc, gh) Set of TLS-bath coupling amplitudes g1 = (0.2, 0.17) or g2 =
√

2 × g1

ωr Resonance frequency of the baths 0.6 × ω0

ω1 Minimum frequency of the TLS 0.49 × ω0

ω2 Maximum frequency of the TLS 0.78 × ω0

f Quality factor of the bath’s resonators 2 or 3
τD Unit of driving duration τR(g1)
τ th Duration of the isochoric strokes 6 × τR(g1)
Δ Static part of the TLS Hamiltonian 0.12

the WS has at least the same temperatures at the beginning and at the end of the process. Here, we let the
WS keep its real-time endpoint at the end of the isotherms, so we skip the conventional isothermal
constraint. In what follows we present a Hamiltonian model to implement the aforementioned cycle. Using
the derived master equation we obtain the real-time dynamics of the WS and investigate the role of the
deviation from the equilibrium endpoints in the performance of the Stirling cycle.

3.1. The model
We present here the Hamiltonian model used in this work and give more details about a possible
implementation of this model using superconducting circuits in appendix B. The free Hamiltonian of the
TLS and the TLS-bath coupling Hamiltonian are respectively denoted by ĤS(t) and ĤI,α(t), given by

ĤS(t) = ω0[q(t)σ̂z +Δσ̂x], ĤI,α(t) = λα(t)σ̂y ⊗ B̂α. (8)

Here ω0 denotes a reference energy scale for the non-driven qubit. The operator B̂α acts on the cold/hot
bath, with α = c, h, and incorporates the coupling amplitudes between the WS and the corresponding bath.
It is worth mentioning that without loss of generality of the results, one can also consider the coupling to
the baths along σ̂x.

As depicted in the panel (d) of figure 1, we choose the driving protocol q(t) such that the instantaneous
level separation ω(t) = 2ω0

√
q(t)2 +Δ2 of the TLS changes linearly with time within the interval [ω1,ω2]

with a given constant speed. This requirement fixes unambiguously q(t) =
√
ω(t)2/4 −Δ2. A relevant

coupling spectrum for the baths regarding the setup considered in this work is shown in the panel (c) of
figure 1 and takes a specific expression given by [46]

Gβi,gi (ω � 0) =
g2

i

1 + f 2
i

(
ω
ωi
− ωi

ω

)2 × ω

1 − e−βiω
. (9)

With i = c, h denoting again the cold and hot baths, the coupling strengths to the baths are described by gi,
the resonance frequencies of the baths are denoted by ωi, and fi are the quality factors of the baths
resonators which, determine the width of the spectra of the baths. We assume identical resonance frequency
for the two baths denoted by ωr and set the values of coupling strengths gc and gh such that the
corresponding spectra have the same amplitudes at ωr (see panel (c) of figure 1). All the relevant physical
parameters and their values used in this work are reported in table 1.

3.2. Real-time dynamics
With the specific Hamiltonian given in equation (8), the instantaneous energy basis of the TLS reads

|εe(t)〉 = cos θt |e〉+ sin θt |g〉 , (10)∣∣εg(t)
〉
= sin θt |e〉 − cos θt |g〉 , (11)

with θt = (1/2)cot−1(q(t)/Δ) and |e(g)〉 as the eigenbasis of σ̂z Pauli operator. By defining the transition
operator L̂(t) =

∣∣εg(t)
〉
〈εe(t)| between the instantaneous energy basis of the TLS, the master equation in

5
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Figure 2. Values of the rates of the master equation in equation (12) as a function of time and for three different values of τ ab,cd.
The red(blue) lines corresponds to the coupling to the hot(cold) bath. The two upper panels show the instantaneous transition
rates between the adiabatic energy levels of the TLS plotted using the solid curves, while the dashed lines are the asymptotic
Markovian limit of the rates which equal 2πG(±ω(t)). In the two lower panels the rotating and counter-rotating Lamb shift
contributions are plotted as a function of time. Note that values of the rates are normalized by [10−2]. In calculating the rates we
have set f = 2 and (gc, gh) = g1.

equation (7) takes the form

Lt[ρ̂(t)] = −i
[(

1 + δ(R)
L (t)

)
ĤS(t) + δ(CR)

L (t)
(
Δσ̂z − q(t)σ̂x

)
, ρ̂(t)

]

+ γ(↓)(t)

[
L̂(t)ρ̂(t)L̂†(t) − 1

2
{L̂†(t)L̂(t), ρ̂(t)}

]

+ γ(↑)(t)

[
L̂†(t)ρ̂(t)L̂(t) − 1

2
{L̂(t)L̂†(t), ρ̂(t)}

]
+D(CR)

t [ρ̂(t)]. (12)

Here the Lamb shift contributions in the unitary part of the evolution are given by

Ĥ(R)
L (t) = δ(R)

L (t)ĤS(t), Ĥ(CR)
L (t) = δ(CR)

L (t)
(
Δσ̂z − q(t)σ̂x

)
, (13)

and the rotating part of the dissipator (D(R)
t ) is in the Lindblad form, with the time-dependent transition

rates γ↑(t), γ↓(t) and the operator L(t). Derivation of the energy shifts δ(i)
L (t) and also the transition rates

γ↑(t), γ↓(t) are given in appendix A.2. An analytic expression for the counter-rotating dissipator D(CR)
t [·] is,

however, too cumbersome to be included. According to expressions in equation (13), the rotating Lamb
shift contribution is proportional to ĤS(t), whereas, the counter-rotating one does not commute with
ĤS(t). Temporal behavior of the transition rates γ↑(t), γ↓(t) and also the Lamb shifts are shown in figure 2
for different compression and expansion speeds during the isothermal branches. Note that in this figure,
and also the rest of the paper, we consider a scale for the driving duration denoted by τD. Recalling that the
amplitude of the spectra of the cold and hot baths are set to be identical at the resonance frequency ωr, the
value of τD is fixed to the relaxation time of the TLS when the coupling amplitudes are
(gc = 0.2, gh = 0.17), thus τD := τR(g1). In addition, the durations of the isochoric branches are always
fixed at τ th = 6 × τR(g1). The temporal behavior of counter-rotating Lamb shift is presented in the lower
panel of figure 2. We observe that the amplitude of the counter-rotating shifts decrease by slowing down the
processes. In the two upper panels of figure 2, we have plotted the amplitude of the transition rates
γ↑(t), γ↓(t) as a function of time and using solid lines. The dashed lines, represent the Markovian limit of
the rates given by 2πGβ(±ω(t)) [58]. One sees that it is only for the asymptotic slow driving (adiabatic
limit) that the rates γ(↑)(t) and γ(↓)(t) approach to their Markovian limits.

In this work, we include all the terms in equation (12) to calculate the evolution of the TLS. However, it
is worth discussing how the evolution behaves if we only take the rotating terms into account (excluding
D(CR)

t and Ĥ(CR)
L in equation (12)). In this case, we get a time-dependent master equation in the Linblad

form, with respect to the operator L̂(t), which we denote by L(R)
t [ρ̂(t)]. This master equation contains the

non-adiabatic contributions (due to the memory kernel) and allows one to realize what is missed by
assuming an adiabatic Markovian master equation. Consider L(R)

t at a given fixed time t = τ denoted by
L(R)
τ , which means all the rates, Hamiltonian, and jump operators are set to their configuration at t = τ and

6
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remain unchanged for t > τ . We define the invariant state of this generator by ρ̂(R)
eq (τ), such that

L(R)
τ [ρ̂(R)

eq (τ)] = 0. It is straightforward to check that the invariant state is given by

ρ̂(R)
eq (τ) = Γ(τ)−1

[
γ(↑)(τ) |εe(τ)〉 〈εe(τ)|+ γ(↓)(τ)

∣∣εg(τ)
〉 〈

εg(τ)
∣∣] , (14)

with Γ(τ ) = γ(↑)(τ) + γ(↓)(τ). We stress that due to the explicit time dependency of the decay rates, ρ̂(R)
eq (τ)

is not necessarily identical to a Gibbs state at the same temperature of the heat bath. Only for the
asymptotic slow driving (adiabatic limit) the decay rates γ(↑)(τ) and γ(↓)(τ) approach to their Markovian
limits 2πGβ(±ω(τ)) and one consequently gets the equilibrium state ρ̂eq(β, τ) = exp(−ĤS(τ)β)/
tr[exp(−ĤS(τ)β)], where β is the inverse temperature of the bath with whom the TLS interacts. The
asymptotic state of the evolution due to the full generator Lt —which includes the counter-rotating
terms—is, however, more complicated and does not depend solely on the rates γ(↑/↓)(t). Consider the full
generator at a given fixed time t = τ denoted by Lτ . We define its asymptotic state formally by
ρ̂∗τ = limt→∞

[
exp(tLτ )ρ̂i

]
, where ρ̂i is some initial input state. We now proceed to utilize these tools to

characterize the Stirling cycle used as a heat engine.
The periodicity of the cycle requires that both the state of the WS and the generator of the open

dynamics at the end of a period reset to their initial configurations, i.e. ρ̂(t + nT) = ρ̂(t) and Lt+nT = Lt .
According to the numerical results in this work, by excluding the first cycle with 0 � t < T we meet this
constraint. Moreover, the duration of isochoric strokes are set sufficiently large (τ bc = τ da = 6 × τR(g1))
such that the TLS can reach its asymptotic equilibrium states at the end of b → c and d → a branches.
Accordingly, the two points a and c are always fixed in our analysis, as shown in the panel (a) of figure 3.
Nonetheless, we consider arbitrary duration for the isothermal strokes. If the driving is sufficiently slow, the
WS remains in an instantaneous equilibrium state with the bath during the whole process. This ideal case
corresponds to the ab and cd trajectories in the panel (a) of figure 3. However, a faster drive kicks the WS
out of the manifold of equilibrium states and, consequently, its trajectory deviates from the ideal isothermal
(quasistatic) ones. The opposite regime is when the drive is so fast that the dynamics of the WS is essentially
diabatic and its state remains unchanged during the process. Therefore, at the end of the diabatic process we
end up at the point b̄(d̄), instead of equilibrium endpoints b(d). Let us now define the real-time target
points of the WS at the end of the compression and expansion processes with some arbitrary speeds,
respectively by b′ and d′. The corresponding points of the asymptotic (equilibrium) states ρ̂∗tb and ρ̂∗td of the
WS at the end of the processes are also denoted by b∗ and d∗. Therefore, as it is shown in the panels (b)–(d)
of figure 3, by increasing the speed of driving one changes the trajectory of the WS within the two areas ab̄b
and cd̄d, moving from the isothermal trajectories towards the diabatic ones. Within this general picture, we
now study in detail how different speeds affect the thermodynamic performance of the Stirling heat engine.

4. Thermodynamic performance

Studying the performance of the heat engine requires to calculate the work done as well as the energy
exchanged with the baths during each stroke of a full cycle. To do so, we have two options here: using the
bare Hamiltonian HS(t) in equation (8) or the effective Hamiltonian given by

Ĥeff(t) = ĤS(t) +
∑
α=c,h

[
δ(R,α)

L (t)ĤS(t) + δ(CR,α)
L (t)

(
Δσ̂z − q(t)σ̂x

)]
, (15)

where the summation is over the terms corresponding to the hot and the cold baths. On the one hand,
using the effective Hamiltonian allows for making a full separation between the energies that are locally
accessible to the WS and the baths [59] and, on the other hand, one may argue that since we only have
control on the external field, so the energies should be calculated using the bare Hamiltonian. In what
follows we present some of our results considering both of the two cases to show the possible contribution
of the Lamb shifts. The full dissipator acting on the WS has two parts each corresponding to one of the
baths:

Dt[·] = D(c)
t [·] +D(h)

t [·], (16)

Let us for the sake of simplicity of the notations denote the Hamiltonian of the WS, whether the bare
Hamiltonian or the effective one, by HS(t).

Having the Hamiltonian and the dissipator of the dynamics, we can calculate the average of work and
heat transferred. For the average work done on the WS in the time interval [t1, t2] one has (considering ω0

for the unit of energy)

〈W(t1, t2)〉 =
∫ t2

t1

ds tr

[(
d

dt
ĤS(t)|t=s

)
ρ̂(s)

]
, (17)

7
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Figure 3. Polarization–frequency diagram of the Stirling cycle. In panel (a) an ideal slow cycle is plotted using the dashed grey
lines which follows the isothermal trajectories ab and cd, whereas the fast diabatic trajectories are depicted by ab̄ and cd̄ in dashed
red. In the rest of the panels ab′ and cd′ denote the real-time trajectories with finite time compression and expansion and
considering three different duration. Also, ab∗ and cd∗ trajectories plotted in dashed orange denote the asymptotic steady state of
the dynamics.

which relates to the average output power P(t1, t2) during this time interval via

P(t1, t2) = (t2 − t1)−1〈W(t1, t2)〉. (18)

We notice that using the effective Hamiltonian has non-trivial consequences. Specifically, if the Lamb shifts
vary in time (which indeed happens here due to presence of a memory kernel in the master equation) it is
possible to have non-zero work even when the external drive is off. Furthermore, the average heat
transferred into the WS in the time interval [t1, t2] is given by

〈Q(t1, t2)〉 =
∫ t2

t1

ds Tr
[
ĤS(s)Ds[ρ̂(s)]

]
. (19)

By denoting 〈W〉net as the average net extractable work during a full cycle, according to the first law of
thermodynamics one has 〈W〉net = −〈Q〉net, where 〈Q〉net is the net average heat transferred. Consider the
net positive heat transferred into the WS labeled by 〈Q〉h, then the efficiency of the cycle is determined by

η =
〈W〉net

〈Q〉h
. (20)

Remark 1: let us recall that in a regenerative Stirling heat engine the heat transferred during the
isochoric branch d → a is not included in calculating the efficiency, since the regenerator is an internal
component of the engine. However, here we let the WS interact directly with the hot bath during the stroke.
Therefore, the net positive heat transferred into the WS has contributions both from the a → b and d → a
branches.

Remark 2: before presenting our numerical results, we note that by considering the bare Hamiltonian
ĤS(t) (excluding the Lamb shifts) one can provide analytic expressions of the efficiency regarding four
limiting cases. As depicted in the panel (a) of figure 3, these case are: (abcda) trajectory corresponding to
the ideal quasistatic processes—(ab̄cd̄a) trajectory which follows the diabatic passage—(abcd̄a) trajectory
corresponding to the quasistatic compression and diabatic expansion processes—and finally (abcd̄a)
trajectory which follows the diabatic compression and quasistatic expansion processes. We call these cases
respectively (ss), ( ff ), (sf), (fs), with s and f denoting slow and fast, respectively. The analytic analysis of
efficiency for these cases is presented in appendix B. Our aim is to examine the performance of the heat
cycle for the situations between these four limiting cases and by considering the real-time evolution of the
WS in finite times.

8
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Figure 4. Efficiency when the real-time trajectories are followed and the endpoints ‘b’ and ‘d’ are reached (left panel) and when
just the real-time trajectories are followed (right panel) as a function of the duration of the compression/expansion processes.
The solid curve correspond to the symmetric driving with τ ab = τ cd . The asymmetric cases are plotted with the large dashing red
and small dashing blue, corresponding respectively to (1): when τ ab = τD is fixed and τ cd changes and (2): when τ cd = τD is
fixed and τ ab changes. The dashed black line shows the efficiency of the quasistatic cycle. Here the coupling strength are
(gc, gh) = g1 and f = 2 and the corresponding Carnot and Curzon–Ahlborn efficiencies are ηC = 1 − 2/5 = 0.6 and
ηCA = 1 −

√
2/5 = 0.367. Note that the origin of the horizontal axes are not zero but 0.25 × τD.

Figure 5. Efficiency and output power as a function of τ ab,cd, respectively plotted in the upper and lower panels for different
values of f and (gc, gh). Regarding the efficiency, the solid curves correspond to the symmetric driving with τ ab = τ cd. The
asymmetric cases are plotted with the large dashing red and small dashing blue, corresponding respectively to (1): when
τ ab = τD is fixed and τ cd changes and (2): when τ cd = τD is fixed and τ ab changes. In the upper panel, the thick curves indicate
the efficiency calculated w.r.t. the effective Hamiltonian and the thin lines correspond to the calculations considering the bare
Hamiltonian. The corresponding Carnot and Curzon–Ahlborn efficiencies are ηC = 1 − 2/5 = 0.6 and
ηCA = 1 −

√
2/5 = 0.367. Note that we choose to plot the power calculated only w.r.t. the bare Hamiltonian in here since one

may argue that we only have control on the external field, so the work done by the coherent drive is relevant. The efficiency of the
asymptotic cases discussed in the appendix C are also marked, specifically the efficiency of the ideally slow cycle (ss) is plotted
using the dotted black line. Note that the unit of power is ω0/τD.

4.1. Comparing two situations: (i) following the real-time trajectories plus enforcing the equilibrium
endpoints ‘b’ and ‘d’, (ii) following real-time trajectories only
We first discuss the usual situation in which at the end of the isotherms the TLS is brought back to the
equilibrium state with the baths (considering the bare Hamiltonian of the TLS). At the end of the a → b′

process the TLS is at the state ρ̂b′ := ρ̂(tb), whereas the fixed endpoint b corresponds to the Gibbs state
ρ̂b := e−βhĤ(tb)/Tr[e−βhĤ(tb)]. Also, at the end of the c → d′ process the TLS is at the state ρ̂d′ := ρ̂(td),

9
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Figure 6. The average heat and the average work during each stroke of the cycle and the net average work of a full cycle as a
function of τ ab,cd. Here we set f = 2 and (gc, gh) = g1. The left panel shows the quantities calculated w.r.t. the effective
Hamiltonian and the right panel with respect to the bare Hamiltonian. The thick dashed red curves correspond to a → b process,
the thin solid blue curves to b → c process, the thin dashed blue to c → d process and the thick red curve to d → a process.

whereas the fixed endpoint d corresponds to the Gibbs state ρ̂d := e−βcĤ(td)/Tr[e−βcĤ(td)]. Therefore, at the
end of the compression process we need to apply the extra step b′ → b to let the TLS thermalize with the
hot bath. This means that the extra heat Qb′→b = Tr[ĤS(tb) (ρ̂b − ρ̂b′)] has to be absorbed from the hot
bath. On the other hand, since the TLS is now at the point b, when connected to the cold bath the same
amount of heat has to be dissipated into the cold bath in order to go back to the point b′. The same
situation also happens for the expansion process: the amount of heat Qd′→d = Tr[ĤS(td) (ρ̂d − ρ̂d′)] has to
be dissipated into the cold bath to reach the fixed endpoint d and the same amount of heat has to be
absorbed from the hot bath later to reach the point d′ again. Considering this situation, the network and the
heat absorbed from the hot bath during the cycle a → b′ → b → c → d′ → d → a are given by

〈W〉∗net = −(Qa→b′ + Qb′→b + Qb→b′ + Qb′→c + Qc→d′ + Qd′→d + Qd→d′ + Qd′→a), (21)

〈Q〉∗h = Qa→b′ + Qb′→b + Qd′→a − Qd′→d. (22)

However, without including the extra thermalization steps the work and the heat absorbed will be given by

〈W〉net = −(Qa→b′ + Qb′→c + Qc→d′ + Qd′→a), (23)

〈Q〉h = Qa→b′ + Qd′→a. (24)

Since Qb′→b = −Qb→b′ and Qd′→d = −Qd→d′ , one has 〈W〉∗net ≡ 〈W〉net. Therefore, enforcing thermal
equilibrium at the end of the isotherms does not have an effect on the amount of extractable work.
Nonetheless, the efficiency will be different. Considering the real-time dynamics of TLS, the efficiency reads

η =
〈W〉net

Qa→b′ + Qd′→a
, (25)

whereas, when we enforce thermalization at the end of isotherms the efficiency is

η∗ =
〈W〉net

Qa→b′ + Qb′→b + Qd′→a − Qd′→d
. (26)

To compare η and η∗ one should find the sign of the quantity ΔQ = Qb′→b − Qd′→d. The two quantities η∗

and η are plotted respectively in the left and right panels of figure 4 versus the duration of the processes and
regarding both identical speeds of compression and expansion and the asymmetric cases with different
speeds. The efficiency η∗ shows a familiar behavior: it goes down by speeding up the processes, while it
approaches the maximum value when the cycle is quasistatic. Interestingly, we see that the efficiency for the
two asymmetric cases is not the same. It is worth mentioning that such an asymmetric behavior is also
reported for the efficiency of the Carnot engine in the low-dissipation regime in reference [36]. On the
other hand, the efficiency η corresponding to the real-time trajectories shows a very interesting
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Figure 7. Distance between the endpoint state ρ̂b′(d′ ) and the instantaneous steady state ρ̂b∗(d∗ ) plotted in solid red(dashed blue)
in the left panel, and the corresponding distance to the equilibrium state ρ̂c(d) plotted using solid blue(dashed red) lines in the
right panel. Here we set f = 2 and (gc, gh) = g1.

advantageous at faster driving speeds. We note that for quasistatic scenario the difference between η∗ and η

vanishes because the real-time endpoints b′ and d′ approaches to the equilibrium endpoints b and d.
Nonetheless, our main result is that for finite-time driving speeds the station is different and one may have
ΔQ > 0, thus η > η∗. The interesting observation is a peak in η at some specific time scale of driving. In
the next part we discuss this advantageous in the performance of the engine in more detail.

4.2. Performance of the cycle with real-time endpoints
We first consider the situation in which the speed of compression and expansion processes are identical, i.e.
τ ab = τ cd, which corresponds to the situations shown in the panels (b)–(d) of figure 3. Efficiency of the
cycle is plotted as a function of τ ab,cd using the solid curves in the upper panel of figure 5. We have plotted
the efficiency calculated using both the effective Hamiltonian Ĥeff (thick green curves) and the bare
Hamiltonian ĤS (thin green curves). The most striking observation is a peak in the efficiency at some values
of τ ab(cd) which exceeds the efficiency of the quasistatic cycle shown by the dotted black line. To realize the
relation between the observed efficiency enhancement and different physical time scales involved in the
dynamics of the WS, to say relaxation time τR, bath correlation time τC, and bath resonance time scale τB,
we have plotted the efficiency for four different cases. These are considering two different values of the
relaxation time, τR(g1) and τR(g2) = τR(g1)/2, and two different values of the bath correlation time,
τC(f = 2) and τC(f = 3) = 1.43 × τC(f = 2). Moreover, we set the value of τB fixed for all the four
mentioned cases. Looking at figure 5, it is clear that the relevant parameter for the observed peak in the
efficiency is the bath resonance time τB, such that when τ ab(cd) are close to τB we observe the enhancement
in the efficiency. On the contrary, it is clear that when the time scale of the drive is close to the bath
correlation time τC the efficiency decreases. The output power of the cycle for the same settings is also
plotted as a function of τ ab,cd in the lower panel of figure 5. We note that since we are interested in the work
done by the external drive, on which one has control, the output power is only plotted with respect to the
bare Hamiltonian. Nonetheless, we notice that the difference between the power calculated using the
effective Hamiltonian and the bare Hamiltonian was too small to be plotted together here. Interestingly, the
average output power benefits from enhancement when τ ab,cd  τB as well. However, the peak in the power
is happening at a slightly larger time scale than those for the efficiency. As expected, the output power
decreases by increasing τ ab,cd. The same behavior also holds for very short time scales, when the extractable
work diminishes at ultra-fast driving due to an increase in the irreversibility.

Studying the energy flow from or into the WS is essential to comprehend the observed boost in
efficiency and power. Without loss of generality, we present the energetic results only for the case with f = 2
and (gc, gh) = g1. The average heat transferred, average work and the net average work are plotted in
figure 6 considering the effective Hamiltonian Ĥeff in the left panel, and the bare Hamiltonian ĤS in the
right panel. Using the effective Hamiltonian to calculate the energy terms leads to some non-zero amount of
average work for the isochoric strokes due to the time-dependent Lamb shifts. The corresponding terms are
absent when we use the bare Hamiltonian as the drive is off during the isochoric strokes. Moreover, the
average work in the expansion stroke is higher when we consider the effective Hamiltonian, which shows up
also in the net extractable average work and consequently results into a higher efficiency in comparison to
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Figure 8. The net average work and the net heat transferred into the WS as a function of τ ab,cd. The solid green curves
correspond to the symmetric case with τ ab = τ cd , the large dashed red represents the asymmetric case (a), and the small dashed
blue to the asymmetric case (b) discussed in the main text. Here we set f = 2 and (gc, gh) = g1.

the case of using the bare Hamiltonian (see figure 5). This behavior is again due to the non-zero Lamb shift
terms and the fact that by including them the effective frequency span of the WS is higher than the bare
frequency span Δω = ω2 − ω1, specifically for c → d process. The average network approaches to its
maximum value corresponding to a quasistatic cycle as we increase τ ab,cd and decreases by speeding up the
drive. One can see that the average heat transferred during the compression and expansion processes goes to
zero as we decrease τ ab,cd, because the WS does not have enough time to exchange energy with the baths.
Moreover, the heat transferred during the isochoric strokes reaches its non-zero minimum by approaching
the diabatic limit (points b̄ and d̄ in figure 3).

Besides these asymptotic scenarios, we observe a dip in the heat transferred and the net average work at
some values of τ ab,cd coinciding with the peak in the efficiency. The dip especially indicates some extent of
suppression of heat transferred to the cold bath. With a given amount of heat absorbed from the hot bath, if
the WS dissipates less to the cold bath it means that the work done is higher and thereby the efficiency as
well. This may suggest that a faster a → b′ process in figure 3 is in general beneficial, as the state at the
endpoint b′ gets closer to the equilibrium state at the point c and there would be less dissipated heat to the
cold bath. However, the faster the a → b′ process, the less amount of heat is absorbed from the hot bath,
which restricts the amount of extractable work too. Note that a similar situation also happens for the c → d′

process considering the heat dissipated during the expansion and the heat absorbed during the
thermalization d′ → a. Therefore, there must be some trade-off giving us the optimum efficiency in the
intermediate situation.

To shed some light on the points discussed above, we consider the distance between the states at some
endpoints in figure 3. First, the distance between real-time endpoints b′(d′) and fixed equilibrium endpoints
b(d) allows us to quantify how far we are from the equilibrium at the end of the compression and expansion
processes. Second, the distance between the states at b′(d′) and c(d) indicates how far the WS is from the
thermal states at the endpoints of the isochoric strokes. To measure the distance between two states ρ1 and
ρ2 we use the relative entropy between them defined by

S(ρ̂1‖ρ̂2) = tr[ρ̂1 log(ρ̂1)] − tr[ρ̂1 log(ρ̂2)]. (27)

Looking at the left panel of figure 7, the distance between the endpoint state ρ̂b′(d′) and the equilibrium
states ρ̂b(d) decreases as we increase the driving duration. An observation in the left panel of this figure is
that the two curves cross (the distance between b′ and c is equal to the distance between d′ and d) when
duration of the processes is around τC. Note that this coincides with the local minimum in the curve of
efficiency. Looking at the right panel of figure 7, we realize the existence of a dip at τ ab,cd  τB that
coincides with the peak in the efficiency.

Now we consider the asymmetric driving scenario where the speeds of compression and expansion
differ. In particular we assume two different situations: (a) setting τ ab = τD fixed while changing τ cd and
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(b) setting τ cd = τD fixed while varying τ ab. The efficiency and the average output power of these cases are
plotted in figure 5 using large dashing red and small dashing blue lines, respectively. Again the thick curves
correspond to calculating the energies w.r.t. the effective Hamiltonian and the thin curves to the bare
Hamiltonian. Interestingly, efficiency of the asymmetric cycles is always higher than the symmetric ones.
However, superiority of the two asymmetric cases with respect to each other depends non-trivially on the
time scale of the driving. Let us also examine the energetic of the asymmetric cycles in comparison to the
symmetric ones depicted in figure 8. We note that the amount of network is dependent on the total time of
the expansion and compression process, τ tot = τ ab + τ cd, and in general decreases by decreasing τ tot due to
irreversibility. However, within the two asymmetric cycles with the same value of τ tot, we notice slightly
different values for the net average work, indicating again the importance of the finite-time effects in the
performance of the heat engines.

5. Conclusions

In conclusion, we have studied the performances of a Stirling cycle when operated as a finite-time quantum
heat engine. We first derived a non-Markovian master equation which allows us to study the dynamics of an
open quantum system without making any distinction between the time scales of the system and of the
environments. Thanks to this, we have been able to study the effect of the competing time scales, such as the
typical time scale of the drive and the bath correlation/resonance time, on the performances of the heat
engine. The main motivation of this work was to explore the role of the deviation of the real-time endpoints
of the compression/expansion processes from the conventional fixed equilibrium endpoints in the
performance of the engine. We found that enforcing the WS to come back to the equilibrium states (having
conventional isotherms) results in the common intuition that efficiency decreases by speeding up the
processes. However, skipping thermalization with the baths and instead following the real-time trajectories
of the WS may lead to a higher efficiency. Interestingly, we found that driving the WS at a time scale
comparable to the resonance time of the bath, in addition to a boost in the output power, let us get an
efficiency that is higher than the efficiency of the quasistatic cycle. One should note, however, that the net
extractable work decreases by speeding up the cycle due to higher degree of irreversibility. The other
important finding in this work was the non-trivial dependency of the performance of the heat engine on the
individual speed of the compression and expansion processes. Interestingly, one may achieve better
performances by applying asymmetric compression and expansion speeds rather than a symmetric one. The
latter opens new possibilities to optimize the performance of the quantum heat engines. As an outlook of
our work, it would important to explore how finite-time effects influence the operating range and
performance of the quantum Stirling cycle working as a refrigerator. In addition, our results motivate for
further studies aiming at optimization of quantum thermodynamic cycles with finite-time driving
protocols, especially from an application point of view. We stress that in an experimental implementation of
the thermodynamic cycles it might be quite likely to miss the isothermal constraint (having equilibrium
state at the end of the compression/expansion process), so analyzing the performance of the cycle with a
real-time dynamical point of view, as we did in the current work, proves necessary.
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Appendix A. Master equation

A.1. Calculating the transition rates
Here we briefly elaborate our approach to calculate the transition rates of the master equation
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Lt[ρ̂(t)] = −i[ĤS(t), ρ̂(t)] +

∫ t

0
dτΦ(t − τ)[ˆ̃S(t, τ)ρ̂(t), Ŝ(t)] + h.c. . (A.1)

The unitary propagator Û(t, 0) = T exp
(
−i

∫ t
0 dτ ĤS(τ)

)
can be calculated numerically in a time interval

[0, tmax] by solving the Schrödinger equation

d

dt
Û(t, 0) = −iĤS(t)Û(t, 0). (A.2)

Then owing to the divisibility of the unitary propagator we get

Û(t, τ) = Û(t, 0)Û(τ , 0)†, 0 � τ < t � tmax (A.3)

Inserting this solution in ˆ̃S(t, τ) = Û(t, τ)Ŝ(τ)Û(t, τ)† and decomposing the operators with respect to Pauli
operator basis {σ̂0 = Î, σ̂x, σ̂y, σ̂z} we get

ˆ̃S(t, τ) =
∑

i

s̃i(t, τ)σ̂i. (A.4)

By introducing a similar decomposition for the operator Ŝ(t) given by Ŝ(t) = Σjζj(t)σ̂j, the second term on
the rhs of equation (A.1) will be rewritten as∑

i,j

Rij(t)[σ̂iρ̂(t), σ̂j] + h.c., (A.5)

with the time-dependent rates

Rij(t) = ζj(t)

∫ t

0
dτΦ(t − τ )̃si(t, τ). (A.6)

A.2. ME decomposed with respect to the instantaneous energy basis of the open quantum system
Consider an instantaneous eigenvector of ĤS(t) denoted by |εi(t)〉 corresponding to the instantaneous

energy eigenvalue εi(t). By defining Ênm(t) = |εn(t)〉 〈εm(t)|, one can decompose Ŝ and ˆ̃S as

ˆ̃S(t, τ) =
∑
n,m

ξ̃nm(t, τ)Ênm(t), (A.7)

Ŝ(t) =
∑
n,m

ηnm(t)Ênm(t). (A.8)

By inserting these expressions in equation (A.1), the second term on the rhs takes a form given by

∑
n,m

∑
r,s

{
R(↓)

nm,rs(t)
[
Ênm(t)ρ̂(t)Êrs(t) − Êrs(t)Ênm(t)ρ̂(t)

]
+ R(↑)

nm,rs(t)
[
Êrs(t)ρ̂(t)Ênm(t) − ρ̂(t)Ênm(t)Êrs(t)

]}
, (A.9)

with

R(↓)
nm,rs(t) =

∫ t

0
dτΦ(t − τ)ξ̃nm(t, τ)ηnm(t), (A.10)

R(↑)
nm,rs(t) =

∫ t

0
dτΦ(t − τ)∗ξ̃nm(t, τ)ηnm(t). (A.11)

One can further arrange equation (A.9) into rotating (R) and counter-rotating (CR) parts with respect to
the instantaneous energy basis. The rotating part takes the form

L(R)
t [ρ̂(t)] =

∑
n �=m

{
R(↓)

nm,mn(t)
[
Ênm(t)ρ̂(t)Êmn(t) − Êmn(t)Ênm(t)ρ̂(t)

]

+ R(↑)
nm,mn(t)

[
Êmn(t)ρ̂(t)Ênm(t) − ρ̂(t)Ênm(t)Êmn(t)

]}
, (A.12)

while the counter-rotating part L(CR)
t includes all the remaining terms.
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We focus now on the specific model considered in this paper given by the Hamiltonian in equation (8),
and instantaneous energy basis labeled by |εe(t)〉 and

∣∣εg(t)
〉

. Having Ŝ(t) = λ(t)σ̂y, and the expression for
the energy basis given in equations (10) and (11), we get

Ŝ(t) = λ(t)
(
−iÊeg (t) + iÊge(t)

)
. (A.13)

Considering the numerical solution in equation (A.4), a decomposition for ˆ̃S =
∑

n,m=e,g s̃nm(t, τ)Ênm(t) in
the energy basis is given by

ˆ̃S(t, τ) =

(
s̃0 +

s̃xΔ+ s̃zq(t)√
q(t)2 +Δ2

)
Êee(t) +

(
s̃0 −

s̃xΔ+ s̃zq(t)√
q(t)2 +Δ2

)
Êgg(t)

+

(
−ĩsy +

s̃xq(t) − s̃zΔ√
q(t)2 +Δ2

)
Êeg(t) +

(
ĩsy +

s̃xq(t) − s̃zΔ√
q(t)2 +Δ2

)
Êge(t), (A.14)

where s̃i ≡ s̃i(t, τ). Note that one has R(↓)
eg,ge(t) = R(↑)

ge,eg (t)∗ and R(↓)
ge,eg (t) = R(↑)

eg,ge(t)∗. Moreover, since

s̃0(t, τ) ≡ 0 and all other s̃i are real valued, we also have R(↓)
ee,ge(t) = −R(↓)

gg,eg (t)∗ and R(↑)
ee,eg (t) = −R(↑)

gg,ge(t)∗.

Accordingly, the rotating part L(R)
t reads

L(R)
t [ρ̂(t)] = −i

[
δ(R)

L (t)ĤS(t), ρ̂(t)
]

+ γ(↓)(t)

[
L̂(t)ρ̂(t)L̂†(t) − 1

2
{L̂†(t)L̂(t), ρ̂(t)}

]

+ γ(↑)(t)

[
L̂†(t)ρ̂(t)L̂(t) − 1

2
{L̂(t)L̂†(t), ρ̂(t)}

]
, (A.15)

where L̂(t) = Êge(t). The explicit expressions for the rates are γ(↓)(t) = 2Re[R(↓)
ge,eg(t)],

γ(↑)(t) = 2Re[R(↑)
ge,eg (t)∗], and δ(R)

L (t) = (Im[R(↓)
ge,eg(t)] + Im[R(↑)

ge,eg (t)∗])/2. In addition the counter-rotating

Lamb shift is given by δ(CR)
L (t) = Im[R(↓)

ee,eg (t)]. However, the expression for the counter-rotating dissipator is
so lengthy that does not fit here.

Appendix B. A possible implementation using superconducting circuits

We specifically consider a setup implementable with a superconducting circuit schematically shown in
figure B1. It is worth mentioning that a related design has been also put forward in references [46, 60]. In
order to realize the connection and disconnection from the baths required at steps b and d in the cycle, a
tunable coupling element between the TLS and the resistor is required. Several types of tunable couplers
have been proposed and studied, e.g. based on dressed states [61], additional qubits [62], additional single
Josephson junctions with current bias [63]. Here we propose using a SQUID junction whose effective
inductance is modulated by a bias magnetic field [64, 65]. However, for the sake of simplicity, we assume an
ideal connection/disconnection protocol described by a piece-wise continuous function λα(t), as shown in
the panel (d) of figure 1. According to this setup, the resonance frequency of the baths resonators are given
by ωi = 1/

√
LiCi, and their quality factors by fi = R−1

i

√
Li/Ci.

Appendix C. Analytic considerations for the asymptotic Stirling cycles

Apart from the dynamical approach of the paper, we provide some analytic analysis of the energy
transferred for some asymptotic cases. Assume that at the end of the isochoric strokes b → c and d → a the
TLS relaxes to the corresponding thermal states

ρ̂c =
e−βcĤS(tc)

tr[e−βcĤS(tc)]
, ρ̂a =

e−βhĤS(ta)

tr[e−βhĤS(ta)]
. (C.1)

With this assumption and by considering the bare Hamiltonian of the TLS, one can analyze the energetic of
the quantum Stirling cycle with regards to the four asymptotic cases listed below.

C.1. The (ss) cycle: ideally slow compression and slow expansion
In this extreme, both the compression and the expansion processes are ideally slow, i.e. the qubit follows a
trajectory on which it is always at thermal equilibrium with the bath. The heat transfer during the four
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Figure B1. A scheme of the proposed circuit to implement the cycle is presented. We propose using a superconducting charge
qubit driven via capacitive coupling to the external field. This gives the time-dependent part of the qubit Hamiltonian along σ̂z

and the static part along σ̂y . We consider inductive coupling of the qubit to two RLC resonators, playing the role of the cold and
the hot baths. Consequently, the coupling Hamiltonian to the baths is along σ̂x. Therefore, a π/2 rotation around the z-axes gives
us the Hamiltonian given in equation (8). To implement the switching of the coupling of the qubit to the hot/cold bath we
propose using SQUID junctions whose effective inductance are modulated by bias magnetic fields.

strokes then is calculated by [54](� = 1, kB = 1)

〈Qab〉 = β−1
h

∫ b

a
dS = β−1

h [S(ρ̂tb) − S(ρ̂ta )], (C.2)

〈Qbc〉 = Tr[ĤS(tc)ρ̂tc ] − Tr[ĤS(tb)ρ̂tb ], (C.3)

〈Qcd〉 = β−1
c

∫ d

c
dS = β−1

c [S(ρ̂td ) − S(ρ̂tc )], (C.4)

〈Qda〉 = Tr[ĤS(td)ρ̂td ] − Tr[ĤS(ta)ρ̂ta ], (C.5)

where S(ρ̂) is the von Neumann entropy of a given state ρ̂. For a TLS with the level populations ρee and ρgg

one has
S(ρ̂) = −(ρee log[ρee] + ρgg log[ρgg]). (C.6)

Then according to the first law of thermodynamics we get the net average work done on the qubit by
〈W〉net = −(〈Qab〉+ 〈Qbc〉+ 〈Qcd〉+ 〈Qda〉).

C.2. The (fs) cycle: ideally fast compression and slow expansion
In this extreme, a → b process is done in a finite but very fast time scale, such that the process is diabatic.
For a sufficiency fast process, TLS does not have time to exchange heat with the hot bath and 〈Qab〉 = 0.
Nonetheless, there is some non-zero average work done on the TLS that can be obtained by the change in its
internal energy. Since the process is diabatic, state of the TLS remains at its initial configuration at time ta,
therefore

〈Wab〉 = tr
[
(ĤS(tb) − ĤS(ta))ρ̂ta

]
. (C.7)

The remaining energy terms can be calculated similar to the (ss) case.

C.3. The (sf) cycle: ideally slow compression and fast expansion
This is the opposite situation of the (fs) cycle, such that 〈Qcd〉 = 0 and

〈Wcd〉 = tr
[
(ĤS(td) − ĤS(tc))ρ̂tc

]
. (C.8)

C.4. The (ff) cycle: ideally fast compression and fast expansion
Finally when both the processes are diabatic, one has 〈Qab〉 = 〈Qcd〉 = 0 and the amounts of average work
can be obtained as discuss in the two previous cases.
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