
ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

THREE-DIMENSIONAL BIN PACKING PROBLEM WITH A
STABILITY REJECTION CRITERION

Teemu Linkosaari1,2∗, Tero Urponen2, Henrik Juvonen2, Marko M. Mäkelä1 and Yury
Nikulin1

1Department of Mathematics and Statistics
20014, University of Turku

{teemu.linkosaari,marko.makela,yury.nikulin}@utu.fi

2 Kine Robot Solutions
Vallihaudankatu 10, Turku, Finland
{tero.urponen,henrik.juvonen}@kine.fi

Keywords: packing, stability, three-dimensional, genetic algorithm, global search framework

Abstract. Packing problems play an important role in transportation and supply chain man-
agement. This study aims to solve a practical three-dimensional bin packing problem, where
highly heterogeneous sized boxes are to be packed on a pallet. Without supporting walls it is
critical to ensure that the boxes are supported and stay stable. Thus, there are two goals: solu-
tion compactness and stability. This problem is a part of the task of minimizing the number of
pallets needed.

First, we use an existing bin packing algorithm based on packing indices, which converts an
arbitrary list of boxes to a packing solution. The method is extended to be able to pack boxes
from four corners instead of one corner. Moreover, a special method to check the stability of
placed boxes is devised. To make the search space a bit smaller, grouping of boxes with same
dimensions is used.

Secondly, a genetic algorithm is used to find a good permutation to the packing procedure.
To further improve the solution quality, we utilize an existing global search framework with the
concept of evolutionary gradient.

The efficiency of proposed method is tested and verified in an industrial setting. Two ori-
entations are allowed: boxes are rotated around the vertical axis only. Volume utilization is
maximized under the rejection stability criterion, i.e. we discard solutions if any packed box
happens to be unstable. Solutions obtained are more stable and packable than in the previous
studies.

1



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

1 INTRODUCTION

Packing boxes onto a pallet is an important task in the distribution industry. In order to
minimize delivery costs, each pallet should be packed efficienlty and safely. This task belongs to
the family of packing and cutting problems. In its basic form, the three-dimensional bin packing
problem consists of finding the best three-dimensional packing pattern for a set of rectangular
items onto a bin such that the volume utilization is maximized [8]. The bin dimensions are fixed
and a subset of boxes are selected. In an other variant, a large number of boxes are packed into
identical bins with the objective to minimize the number of bins used [6]. It is well-known this
type of problem is NP-hard. Thus, exact methods work only for small problems and heuristics
are needed for larger problems.

Figure 1: Stable four corner

This paper addresses the distributors’s pallet packing problem: pack heterogenous set of
boxes to the rectangular pallet without supporting walls, also studied by Schuster et al. [13].
A problem contains n different types of rectangular boxes. For each type i, the dimensions
li×wi× hi and the number of boxes ni are known. The dimensions of boxes are integer (mm).
It is assumed that boxes are placed orthogonally to the edges of a pallet and that they can be
sideways rotated by 90◦. The goal is to pack all these boxes on a pallet of a size L×W . Pallet
has also a physical height limit Hmax.

Load stability is often considered as one of the most important issues beyond volume uti-
lization [3]. With respect to load stability, one may distinguish between vertical and horizontal
stability and load bearing strength.

Vertical stability or static stability prevents boxes from falling down onto the pallet floor or
on top of other boxes. Vertical stability issues are usually approached by demanding that the
base of a box must be supported in total or partially by either the pallet floor or by an even space
provided by the top surfaces of other boxes. It may be demanded that the center of gravity of
each box must be supported by the top surface of another box or the pallet floor [9]. In our case,
we also consider the center of gravity formed by the layers beneath.

Horizontal stability or dynamic stability assures that boxes cannot shift significantly while
the pallet is being moved [2]. It refers to the capacity of the boxes to withstand the intertia of
their bodies [8]. In pallet loading in particular, shrinking foil is being used in order to prevent

2



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

loads from falling apart [3]. Usually rigid body simulations are used to determine the dynamic
stability of packing structure, see for example [12]. This iterative method is computationally
expensive, since several iterations are needed to get the results. Hence, it is not directly suitable
to be tested inside the packing procedure.

Load bearing strength refers to the maximum number of boxes that can be stacked one above
each other, or more generally, to the maximum pressure that can be applied over the top face of
a box, so as to avoid box damaging [8].

In this work, we concentrate on the vertical stability only. It is the most revelant to our work
and a starting point. The other aspects can be studied in future.

Three-dimensional bin packing problems (3D-BPP) are well studied in literature. For a
more comprehensive recent review, see Bortfeldt and Wäscher [3]. The solution techniques
for packing problems can be classified into three types: exact methods, heuristics/approximate
algorithms and meta-heuristics [6].

Exact methods are based on mathematical programming and graph theory. Chen et al. [4]
provided a mixed integer linear programming (MILP) model to solve the 3D-BPP with orien-
tation, which can solve small problems to optimality. Wu et al. [14] adopted the MILP model
presented in Chen et al. [4] and coded in GAMS, also solving small instances. Martello et al.
[10] proposed a method that can solve moderate instances for the general 3D-BPP and its robot-
packable variant. Junqueira et al. [8] presented MILP models for the container loading problem
that consider the vertacal and horizontal stability of the cargo and the load bearing strength.
Only problems of a moderate size can be handled. At the moment it is almost impossible to find
global optimum for practical problems with exact methods.

Most heuristics and approximation algorithms are based on the greedy wall- or layer-building
techniques, which easily end up local optimum. For example, Huang and He [7] proposed
a caving degree method, which tries to pack a container from eight different corners. It has
performed well with known benchmark cases.

Meta-heuristics are the present best choice. Widely used methods are genetic algorithms,
tabu search and simulated annealing. Wu et al. [14] provided a genetic algorithm for pack-
ing problem. He et al. [6] proposed a packing method, genetic algorithm and global search
framework. These papers are the basis of our work.

First, we use an existing bin packing algorithm [6] based on packing indices, which converts
an arbitrary list of boxes to a packing solution. The method is extended to be able to pack boxes
from four corners instead of one corner. Moreover, a special method to check the stability of
placed boxes is devised. To make the search space a bit smaller, grouping of boxes with same
dimensions is used.

Secondly, a genetic algorithm [6] is used to find a good permutation to the packing procedure.
To further improve the solution quality, we utilize an existing global search framework with the
concept of evolutionary gradient.

The efficiency of proposed method is tested and verified in an industrial setting. Two ori-
entations are allowed: boxes are rotated around the vertical axis only. Volume utilization is
maximized under the rejection stability criterion, i.e. we discard solutions if any packed box
happens to be unstable. Solutions obtained are more stable and packable than in the previous
studies.

This work is organized as follows: Section 2 presents the stability rejection criterion. Two
packing heuristics are described in section 3. Section 4 introduce the genetic algorithm and
the global search framework. Numerical experiments are presented in section 5. Section 6
concludes the paper.

3



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

2 STABILITY REJECTION CRITERION METHOD

When boxes are palletized with robots, we must ensure that every single insertion of a box
must stay stable. It is also important that the method must not be computationally too expensive,
since this method is used every time when we try to place a box to a candidate placement. Thus,
we propose a simple geometrical method to determine whether a placement is stable or not.
This method is inspired by [1, 11, 15]. We use the Cartesian coordinate system to use for our
fixed global coordinates. We define x as the length axis, z as the width axis and y as the height
axis. In our method, stability includes three cases: maximum overhang, edge support and the
center of gravity for every layer of boxes.

y

x

overhang so

z

x

max z

min z

max xmin x

1

2 3

1

2

3

overhang so

convex hull of supporting boxes

Figure 2: Overhang

First, the concept of overhang measures how far off the edge of a box can reach the top of
other boxes. From experimental view point, we have found that minimizing overhang between
box and its supporting boxes reduces instability. Determining overhang between two boxes
is straingforward: we take the largest overhang from x- or z-axis. If the box is supported by
more than one box, we take the convex hull of the supporting boxes and measure the maximum
overhang between the box and the convex hull. For example in figure 2, box number one is
supported by boxes numbered two and three. In x-axis, box one is over the convex hull by
amount so. When we insert a box, we need only to consider the directly supporting boxes, since
all the other boxes are checked in the previous iteration.

Secondly, the concept of edge contact support is devised. In some cases, the contact area
between two boxes is too small and too close to the edges. When boxes are packed one above
other, the pressure may deform the boxes below. Thus, we need to ensure that for every box, the
contact area near the edge is sufficient. Let se be the amount of edge support required. For a box
i, the contact surface area is defined by a rectangle (xi+se, xi+wni−se, zi+se, zi+ lni−se),
where xi and zi are the locations and wni and lni are the oriented dimensions of box. When
a box is placed to a candidate location, the supporting boxes are those that have a contact area
between this smaller rectangle. So if there is not enough contact area, the placement is unstable.
For example, in figure 3, box one is packed on top of boxes from 2 to 5. For box 3, the common
edge contact support is less than se. Thus, it is not supporting box one.

Thirdly, we describe the method that checks the center of gravity of every layer of boxes. We
assume that all the boxes are rectangular rigid bodies. In general, this is not true, since under
pressure the boxes may deform producing inclined towers of boxes. A rigid body is said to be
in equilibrium if the sum of the forces acting on it, and sum of the moments they apply on it,

4



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

2 3

4 5

x

z

x

1

54

y

1
se se

se se

se

se

Figure 3: Edge contact support

are both zero. However, we do not need to calculate explicitly the forces or moments between
bodies.

In our work, we adopt the next definition from [15]. A tower of boxes is stable if for every
layer of boxes the center of gravity of layers i + 1 up to the top lies above the interior of the
convex hull of the contact points between layers i and i+ 1.

For contact regions, the motion produced by any distribution of contact forces over the entire
contact region can be produced by equivalent forces acting on only the vertices of the contact
region; the same is true for line segment contact regions [11]. Interior points of contact regions
are not considered as contact points. Thus, a configuration of bodies can be considered to have
finite many contact points only. [1]

In figure 4, we see a box a top of three boxes. We have marked all the contact points with
black dots, the convex hull with bold line. The center of gravity is marked with a circle. The
minimum distance from the center of gravity to the edge of the convex hull is marked with line.

contant point

center of gravity

convex hull

minimum distance

x

z

contact region

Figure 4: Three boxes below one box: the minimum distance from the center of gravity to the edge of convex hull

Since relative positions are stored into memory, we get the supporting boxes of already
packed boxes easily. Only the first layer needs to be recalculated, i.e. we have to test every box
whether it supports placed box. It is called finding deep supporting boxes. This tree structure
cannot directly tell us whether all the the layers are stable.

Thus, the concept of mass layer is devised: By mass layer we mean a set of boxes that
together form a layer for which we have a common top surface and a common bottom surface.
For this box group we can determine the center of gravity. In figure 5, boxes 2 and 3 form a

5



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

layer 1

layer 2

y

x

placed box1

2 3

4
5

6
7

z

x

12 3

4 5

Figure 5: Mass layer

mass layer, also boxes 4, 5, 6 and 7. On the other hand, boxes 4 and 5 or 6 and 7 do not form a
common surface, so they do not form a mass layer.

As an example, we now place the box number one to its candidate location, see figure 5.
First, we calculate its center of gravity ~rcg and project it to the xz-plane ~r xz

cg above the first layer.
If we don’t know the weight distribution, we assume it to be uniform. So the center of gravity
~rcg for the box i is simply (xi + wi/2, yi + hi/2, zi + li/2). Then, we check the overhang and
edge support conditions. After that, the contact region and the contact points between the box
one and the first layer is determined. We calculate the convex hull and measure the shortest
distance dmin from ~r xz

cg to edge of the convex hull, see figure 4. To calculate the convex hull,
well-known methods can be used, like Graham Scan [5]. In principle, the distance dmin could
be zero for a stable case, but for the robustness we reserve a tolerance dtolmin for it. If ~r xz

cg is inside
the convex hull and dmin is larger than the tolerance value dtolmin, then we proceed to the next
layer.

We join the box one and the layer one together (boxes 1,2,3), and calculate its center of mass

~r new
cg =

m1~r1 +m2~r2
m1 +m2

(1)

where m1 and m2 are the masses of the box (one) and layer (of boxes two and three) and
~r1 and ~r2 are the center of gravities of the box and the next layer. Next, we continue to the
second layer, calculate the contact region and contact points between layers 1 and 2. And again,
we determine the convex hull and check whether ~r new

cg is inside it, and the distance is within
tolerance. This procedure is continued until we are at the bottom level. If all these tests pass,
the current location of the box one is stable. In summary, the proposed method is described in
algorithm 1.

6



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

Algorithm 1: Is the location stable?
Data: box b, candidate location l, list of packed boxes and parameters so, se, dtolmin

Result: true or false
if box is on floor then

stop and return true
end
Get all the supporting boxes D of the smaller rectangle defined by se.
if there is no supporting boxes in D then

stop and return false
end
Let A = {b} be the set of boxes above.
Calculate the center of gravity ~rcg of A and project it to ~r xz

cg plane of boxes that support A.
Convert all the supporting boxes D to mass layers M .
for each layer l in M from top to down do

if l is the first layer and the overhang condition for so is not met then
stop and return false

end
Let P the contact points of the contact region between the bottom of A and the top of
layer l. Calculate the convex hull of contact points P .

Determine the smallest distance dmin from ~r xz
cg to the convex hull.

if dmin < dtolmin then
stop and return false

end
Join layer l to A. Calculate the center of gravity ~rcg of A and project it to ~r xz

cg plane
that support A. If the plane is floor, stop and return true

end

7



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

3 THE PACKING METHODS

In this section, two constructive packing heuristics are described: a single corner method and
a four corner method. For both methods we give as an input a list of n boxes π1, π2, . . . , πn and
a list of orientation for each box γ1, γ2, . . . , γn. We will pack these boxes in this order and in
this given orientation.

3.1 Single Corner Method

A single corner method is proposed by He et al. [6]. We call this method as a single corner
method, since the method starts and tries to pack boxes towards a single corner of the pallet.

γ1 γ2

(li, wi, hi) (wi, li, hi)

Y

Y

X

X

Z Z

Figure 6: Reference points and orientations

The concept of reference point is used. It is a point where we can insert a box to its left-
front-bottom corner (xi, yi, zi). Reference point is feasible if certain conditions are met: box is
not intersecting with the pallet’s boundaries or any other box, and the stability rejection method
should accept the location. The list of conditions can be easily extended.

An empty pallet contains one reference point at origo (0, 0, 0). Then for every box πi with
dimensions (li, wi, hi) that is inserted to a selected reference point, three more reference points
are created (xi + li, zi, yi), (xi, zi + wi, yi), (xi, zi, yi + hi), which we classify as a X-, Z- and
Y- reference points, respectively. Origo is classified as O.

Next, we describe how to select a reference point. To measure the goodness of reference
point we have two values: cage index Icage and spare index Ispare. The concept of cage bin
is used. It measures the volume for packed boxes, that is the smallest rectangular box that
contains all the packed boxes. Its dimensions lc × wc × hc may grow as we pack more boxes.
For reference point k, let the box πi be packed at point k. After this, let Vi be the volume of
all the packed boxes. Now we measure lkc , w

k
c , h

k
c , which are the length, width and height of the

cage bin. The cage index is defined as

Icage =
lkc × wk

c × (hkc )
2

Vi
. (2)

We penalize height dimension more, hence (hkc )
2. As stated in [6], only using cage index for

reference point selection is not comprehensive enough. There are reference points which have
the same cage index value, since the cage bin is not growing. A spare volume is defined as
dynamic residual space with dimensions of ls ×ws × hs, where ls = (lc − xk), ws = (wc − yk)
and hs = (hc − zk). The spare index is defined as

Ispare =
ls × ws × h2s

lni × wni × hni

(3)

8



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

Table 1: Different move chains depending on reference point type.

Reference point type Moves in turn
Type X s→ (z)→ y → (x)→ y
Type Y s→ (z)→ y → (x)→ y → z
Type Z s→ (x)→ y → (z)→ y
Type O s

which is a measure of the spare-height over the filled rate of the spare volume. [6] The values
lni, wni and hni are the dimensions of the rotated box.

After a box is placed on a reference point, the box can be moved along x-, y- and z-axis to
make the packing more compact and to fill gaps between boxes. This parallel moving was also
conducted in Wu et al. [14] and He et al. [6] with different strategy.

To perform parallel moves a concept of parallel chains is deviced. The reference point types
are X,Y,Z,O and their associated parallel chains are presented in table 1. parallel chains are
presented in table 1. We start from the location of the reference point s and we do movements
to different directions in given order. The movements that are in brackets are not stored in the
chain. So for example for the type X, the chain is s, y, y. The returned chain do not contain the
same locations, only distinct elements are returned.

Let R = {r1, r2, . . . , rn} be the list of n candidate reference points. We start from the best
reference point r1. Depending on its type we do all the parallel moves, which gives a chain
of possible placements. Then we test from the chain end to the chain start, whether or not the
placement is feasible. The first feasible placement is selected. If no placement is feasible, we
take the second best reference point r2. We repeat this procedure until we find the first feasible
placement. Otherwise, if we can’t find any, we try to pack on the top of the packing.

If no reference point is feasible to put the current box, we then put it at v0 = (0, 0, Hc),
where Hc is the height of the current cage bin [6]. If this location is not feasible, we then try
to do reverse parallel moves, that is, the opposite direction of the parallel moves. Let −z and
−x mean reverse parallel moves to z-axis and x-axis. We then try to do the following sequence:
v0 → (−z)→ y → (−x)→ y → (−z)→ y. If can’t find a feasible placement, we try the next
sequence: v0 → (−x) → y → (−z) → y → (−x) → y. Finally if this doesn’t work, we can
try v0 → (−x)→ y and v0 → (−z)→ y. If none of these moves produce a feasible placement,
we must conclude that the given box and orientation sequence is infeasible.

If a feasible location for a box is found, then we store it and associated relative positions to
the memory. For each box we store its supported boxes. At the later state of the iteration after
we have identified the first layer, we can calculate all the later layers from memory. We call this
finding deep supporting boxes.

Some further improvements are made. It is possible to combine boxes of the same size to
a single box πi. We combine two boxes only if their narrow ratio is within a set parameter.
The narrow ratio is defined as min{wi/hi, li/hi}. For example, if wi < li, the combined box
dimension is (2wi, li, hi). When we have found a final position for a composite box, it is then
unwrapped and stored as its factors.

It is also useful to be able to continue on an interrupted, unfinished job. In this case, there

9



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

are two sets of boxes: those that are already packed and those that will be packed. For already
packed boxes, we store them directly to its final location.

In summary. we give a pseudo code for the single corner packer in algorithm 2.
Algorithm 2: Single Corner Packer

Data: List of boxes π1, π2, . . . , πn and their orientations γ1, γ2, . . . , γn
Result: Packing solution
Let R = {(0, 0, 0)} be a list of all reference points.
for each box i in π1, . . . , πn do

Let F = ∅ be a list of feasible reference points.
for each reference point rk in R do

if πi is inside pallet boundaries and do not intersect with packed boxes then
Mark a reference point rk as feasible, insert it to F and compute the cage and
spare index values of this point by (2) and (3), respectively.

end
end
Sort F : take first spare index points and then cage index points are in increasing order
while do
end
if there are feasible reference points |F | > 0 then

Choose the best reference point among F and do parallel chain.
else

Pack box πi upon the current cage bin and do reverse parallel moves
end
Store its final coordinates (xi, yi, zi) and relative positions to other boxes
Add three new x,y,z-reference points in R
Update the dimensions of the cage bin

end

3.2 Four corner method

Our proposed four corner method is an extension to the single corner method. (The drawback
of the single corner is ... ) Instead of pushing boxes towards a single corner, this method tries
to push boxes towards all four corners. Basically, every corner has its own cage bin, reference
point list, parallel moves and a list of packed boxes that have been tried to pack that corner. It is
like these corners are competing with each other on the space resource. Next we describe one
way to implement this idea.

The basic idea is that for four corners we have four inside packers, which are mirrors of each
other. In this way, we can use directly the structure of the single corner packer and we don’t
have to separate parallel moves for every corner. A concept of inside packer is similar to single
corner packer, but the difference is that it can store boxes in two ways. First, it stores packed
boxes which updates a cage bin and adds the three reference points to the list of reference
points. Second, it can store boxes, called virtual boxes, that do not grow the cage bin and do
not produce reference points. In both cases, relative positions are stored.

In figure 7, can be seen that we have four different packers called PO, PX , PZ and PXZ . The
first packer PO is our original, main packer. The second packer PX is an x-axis mirror and the
third PZ is a z-axis mirror of the first packer. The fourth packer PXZ is mirror of both axes.

Whenever we store a box to its location, we make four copies of it to every inside packer.

10



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

PO PX

PZ PXZ

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 4

5 5

5 5

6 6

66

7 7

7 7

Figure 7: Four different corners.

Packer store normally store virtually
PO PO : O 7→ O PX : O 7→ X , PZ : O 7→ Z and PXZ : O 7→ XZ
PX PX : O 7→ O PO : O 7→ X , PZ : O 7→ XZ and PXZ : O 7→ Z
PZ PZ : O 7→ O PO : O 7→ Z, PX : O 7→ XZ and PXZ : O 7→ X
PXZ PXZ : O 7→ O PO : O 7→ XZ, PX : O 7→ Z and PZ : O 7→ X

Table 2: Different move chains depending on the reference point type.

By notation PX : A 7→ B we mean a transformation from the packer A’s coordinate system to
the packer B’s coordinate system and store the result to packer X. In table 2, it is listed how we
store boxes to different inside packers, based on in which packer we orinally try to pack on. For
example, if a box is packed to packer PZ , we store it normally to that packer and make a z-axis
copy to packer PO etc. In figure 7, it can be seen these relations visually.

Reference points are selected in a similar way as in the single corner method. The only
difference is that every inside packer has its own list of reference points. Thus, we join these
lists and sort them. Although we make four copies of a box, we do not produce more reference
points than previously, because they are scattered to different inside packers. First sort spare
indexes and then cage indexes reference points in ascending order as previously. The reference
points are now in order. Parallel moves are done within the inside packer where the selected
reference point belongs to. The moves are done in chains as previously and we select the first
feasible placement we find. If no feasible placement is found, then we try to pack on top of
every inside packer.

As an example, in figure 7, we have packed seven boxes. The first four are packed to corners,
because empty corner has always the best index value.

11



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

4 EVOLUTIONARY ALGORITHMS

In this section, we present the main ideas of our implementation of genetic algorithm and
the global search framework. For more detailed explanation, refer to He et al. [6]. For small
cases, enumerating all permutations can be evaluated, but for larger problems genetic algorithm
or global search framework must be used.

4.1 The genetic algorithm

Genetic algorithms are widely applied in operations research due to their easy implementa-
tion and good quality solutions for hard problems. We have adopted our method based on the
methods proposed by Wu et al. [14] and He et al. [6]. Our chromosome is represented as a per-
mutation. We need to consider two factors: the order of boxes to be packed and the box rotation.
All boxes are first sorted in volumetric descending order and numbered: V1 ≥ V2 ≥ · · · ≥ Vn.
Next we decribe all the steps needed to perform the algorithm.

In the first step, an initial population of chromosomes are generated. Let Psize denote the
size of the population. Sorting the boxes according to certain rules has demonstrated some
advantages in providing better starting solutions. We create two chromosomes with the same
box sequence in decreasing volume order. All boxes in chromosome one have orientation γi = 1
and all boxes in chromosome two have orientation γi = 2. The rest of the population are
produced with random box sequences and box orientations. At every iteration, a new population
is created through selection, crossover and mutation until a termination condition is met.

Step 2. Selection is the process to choose most of the better individuals in each generation for
crossover and mutation. We adopt the tournament selection method where the objective value
of a chromosome can be directly used as the selection criterion. It is also efficient to code and
independent of the scaling the fitness function. First, the elite mechanism is applied: nelite the
best solution found so far have been placed into the reproduction pool. The number of bits in
chromosome includes order bits and orientation bits. We may also set the minimum difference
percentage in bits between elite members, so that we can also select worse inviduals. Then, the
rest Psize − nelite individuals are selected by tournament process. Let p be the tournament size.
For each tournament round, we repeatedly take p chromosomes at random and choose the best
of them to be placed into the reproduction pool.

Step 3. Crossover is the process during which two parents generate two offsprings who
inherit elements from each parent. For different chromosome representations different crossover
operators are used. For permutation representation (He et al.), partially matched crossover
operator is adopted for the box sequence. That is, a two-point crossover, a two random points
in chromosome are selected for two parents and the two pairs between the crossover points of
the two parents are switched over to form two children. Parental orientation is preserved in the
nearly children chromosome. For example, let two box and orientation sequences be

π1
1, π

1
2, π

1
3, π

1
4|γ11 , γ12 , γ13 , γ14 and π2

1, π
2
2, π

2
3, π

2
4|γ21 , γ22 , γ23 , γ24 .

We choose randomly two numbers, e.g. 2 and 3. We exchange all these boxes between these
numbers and get

π1
1, π

2
2, π

2
3, π

1
4|γ11 , γ22 , γ23 , γ14 and π2

1, π
1
2, π

1
3, π

2
4|γ21 , γ12 , γ13 , γ24 .

12



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

Repairing is needed if the children is not feasible due to some boxes appear in the children
twice while some do not appear at all. Random repair creates one pool of duplicated bits and
one pool of missing bits. The actual repairing replaces the duplicated bit with missing bit at
random to restore feasibility. This was also used by Wu et al. [14].

In a step 4, mutation is the process to change some genes in a chromosome and produce
a new chromosome. The swap mutation found favorable to the problems with asymmetrical
feature, especially in solving the large-size instances (He et al. [6]). That is, the order of the
boxes to be packed is changed and boxes are rotated. For example, first, by changing genes 2
and 4 the order is

π1, (π2), π3, (π4), π5|γ1, (γ2), γ3, (γ4), γ5
is mutated to

π1, (π4), π3, (π2), π5|γ1, (γ4), γ3, (γ2), γ5.

Then we give random orientation mutation, for example 1, 2, 1, 2, 1 is mutated to 2, 1, 1, 2, 1.

In the step 5, to evaluate the fitness of every chromosome of the population, we decode the
chromosomes to packing solutions. The single corner or four corner packer with or without
stability rejection method is used.

Several metrics can be used to measure the goodness of the packing solution. One packing
objective is to maximize volume utilization. The concept of volume utilization is V/(L×W ×
Hsol), where V is the total box volume, L and W are the pallet length and width and Hsol is the
height of the final solution.

In the step 6, we use the typical termination condition for genetic algorithm that is it stops
when a fixed number of iterations In is reached. It can also stop when the objective function is
not improved within a number of iterations.

Algorithm 3: Genetic algorithm
Data: A packing problem
Result: best chromosome and its packing solution
Produce an initial generation of chromosomes Ps and evaluate them
while the terminal condition is not met do

Select ne elite members
while population size is not Ps do

Select a chromosome pair with tournament selection
Do crossover operator for this pair
Repair
Do mutation operator for this pair
Evaluate the pair
Add the chromosomes to new population

end
end
return the best chromosome and its packing solution

13



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

4.2 The global search framework

In evolutionary algorithms, different runs may produce different solutions. Also with a single
run, premature convergence is a main drawback. Therefore, several computational tests are
carried out and the best solution is selected. Better solutions are possible to obtain if more
computational tests are conducted. The problem is to determine how to perform these tests and
when to stop. The aim is to carry out tests in reasonable computation time and get more robust
results with less calibration. As a solution, a global search framework (He et al. [6]) is adopted.
In this framework, both evolved solutions and the evolutionary gradient guide the search.

A concept of evolutionary gradient is adopted. In numerical optimization methods, espe-
cially in smooth convex optimization, when the gradient of an objective function with certain
point is zero, the optimum is found. In evolutionary algorithms, when a number N of computa-
tional tests are carried out to evaluate the genetic algorithm, for each test l, the relative deviation
RDl = (f l

obj−fbest)/fobj is calculated, where f l
obj is the objective value and fbest the current best

solution. The mean relative deviation is defined as evolutionary gradient

Edev =
1

N

N∑
l=1

RDl.

If all tests obtain the same objective value, then the gradient vanishes, in other words Edev = 0
and it may not be necessary to carry out more tests. Otherwise, (Edev > 0), more tests are done
for better solutions.

In the global search framework, these tests can be organized in three or two local phases. We
have set the number of tests as a constant N (see He at al. [6] for more).

In the first phase, called rough search, N tests of the genetic algorithm is performed with
initial generation including the heuristic seeds and random chromosomes. After the tests, the
evolutionary gradient is calculated. If the gradient is zero, we are done. Otherwise, we continue
on the next phase.

In the second phase, called refining search, N genetic tests are conducted. Each test is
initialized with the advanced chromosomes from the last phase and random chromosomes. That
is, all the N evolved solutions obtained in iteration g are put into the initial generation of each
test in iteration g + 1. Heuristic seeds are also included. We repeat this phase until the gradient
is eventually zero.

The third phase is optional and reserved for hard cases. If no new solution is found, only one
refining search is executed, otherwise, with better solution is obtained, several refining searhes
are to be conducted until the gradient is zero.

It is straightforward to implement algorithm 4 as a serial or a parallel code. For example, all
for-loops can be done in parallel.

14



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

Algorithm 4: Global Search Framework
Data: A packing problem, number of tests N
Result: the best packing solution
The global iterations g = 0
for l = 1 . . . N do

Rough search: genetic algorithm with heuristic seeds
g ← g + 1

end
Calculate Edev(g)
while Edev(g) 6= 0 do

for l = 1 . . . N do
Refining Search: genetic algorithm with advanced seeds and heuristic seeds
g ← g + 1

end
Calculate Edev(g)

end
return the best packing solution

5 NUMERICAL EXPERIMENTS

In this section, we apply the proposed methods to our own test cases and the preliminary
test results are analyzed. In table 3 are listed all the eight algorithm combinations: the genetic
algorithm (GA) and the global search framework (GSF) are tested with the single (1) and four
corner method (4) with and without the stability rejection method (S) or box combiner (B).
When the algorithms are compared, we will refer to their given notation. For the global search
framework, the number of rough and refining searches are listed also. All the algorithms are
coded in C# in .NET Framework 4.

Notation Algorithm Corners Stability Rough Searches Refined Searches
GA-1-(B) GA 1 no - -
GA-4-(B) GA 4 no - -
GA-1S-(B) GA 1 yes - -
GA-4S-(B) GA 4 yes - -
GSF-1-(B) GSF 1 no 8 8
GSF-4-(B) GSF 4 no 8 8
GSF-1S-(B) GSF 1 yes 8 8
GSF-4S-(B) GSF 4 yes 8 8

Table 3: The tested algorithm combinations.

5.1 Problem data

In table 4 are listed our real data test cases that were collected from a company. For every
test, the pallet dimensions are (L × W × Hmax = 1200 × 800 × 3000) in millimeters. In
these cases, the number of boxes to be packed and the number of different types are listed. The
number of boxes is no more than 40.

Test problems can be categorized into three groups: in group 1, (N ≤ 21) are a small number

15



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

of boxes, in group 2, (26 ≤ N < 40) a moderate number of boxes and in group 3, (N = 40)
are packed forty boxes with increasing number of box types.

Ten runs were conducted for each test case and the worst, best, average performance, the
standard deviation of the run results, the improvement of the average performance against the
actual operation and the average running times are shown. The best solution is selected from 10
computational tests.

Experiments were conducted with Google Cloud Platform 1. We selected High-CPU ma-
chine type with 32 virtual CPUs and 28.8 GB of memory. A virtual CPU is implemented as a
single hardware hyper-thread on a 2.3 GHz Intel Xeon E5 v3 (Haswell).

group 1 group 2 group 3
problem N /types problem N /types problem N /types
order264 11/7 order94 26/24 order1 40/24
order139 11/10 order265 25/19 order222 40/30
order120 15/12 order217 30/16 order213 40/31
order114 15/13 order21 30/21 order215 40/31
order106 20/18 order82 35/34 order226 40/36
order177 21/18 order61 35/29 order228 40/37
- - order227 40/38
- - order229 40/39

Table 4: Test cases

5.2 Algorithm parameter configuration

Algorithm parameter configuration impacts the performance and results. These are the pre-
liminary settings and the parameters could be fine-tuned. Especially, different settings should
be found depending on the problem size and the number of boxes. Currently, all the algorithms
use the same setting.

In stability rejection method, the edge support limit is set to 20 mm. Mass distribution is
assumed to be uniform based on the box volume. Maximum overhang is set to 50 mm and
maximum overhang percentage is 20%. Minimum distance from the center of gravity to the
edge of convex hull is set to 50 mm.

In packer parameters, two same sized boxes are combined if their narrow ratio is at least 0.8.
In genetic algorithm, the population size Ps is set to 200. The number of iterations In is fixed

to 100. The crossover rate Cr = 0.85 and mutation rate Mr = 0.2. Orientation mutation rate
Or = 0.1. We take in every iteration 5 elite chromosomes for which the minimum difference
percent is 0.3. For selection, tournament size is 5. In summary, (Ps, In, Cr,Mr, Or, En, Ed, Tn) =
(200, 100, 0.85, 0.2, 0.1, 5, 0.3, 5). We use random repairer and swap mutation. Boxes are sorted
in volumetric order.

In global search framework, the number of rough searches and refining searches or the num-
ber of GA tests within a global iteration are set to N = 8. Number of iterations of each GA test
is fixed to 25.

1https://cloud.google.com

16



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

5.3 Results and analysis

The comparative study is carried out from three aspects: the packing height H/volume uti-
lization F , computational time T and qualitative analysis of stability and packability. In the
appendix are listed eight tables: In tables A1 to A4, are listed genetic algorithm results. We
compare GA-1 to GA-4 and GA-1S to GA-4S. In tables A5 and A8, are listed global search
framework results. Again we compare GSF-1 to GSF-4 and GSF-1S to GSF-4S.

First, we compare packing height and volume utilization. They are equivalent measures, so
we can compare them together. Due to only two orientations, the search space of the problem
is smaller than with six orienations, but it is harder to find tight solutions. To compare the
maximum performance, running with six orientations should be tested.

When we compare the global search framework to the genetic algorithm we notice that vol-
ume utilization and packing height are better. This happens almost always. It takes more time
to compute the GSF but it converges better and the deviation of volume utilization between
different runs is lower. By only using the genetic algorithm the quality of solution varies more.
In practice, GSF must be used, so we continue on compare their differences.

From the tables A1 - A8 we note that all the algorithms that use the four corner method on
average volume utilization is higher and packing height is lower than in the results produced by
the single corner method.

The search space of stable packing is smaller than the solution space without stability. In
GSF, this means that volume utilization drops on average from 79% to 76%. The difference
will be larger, when there are more than forty boxes to be packed.

There is a small advantage to use box combiner. Without stability GSF-1-B and GSF-4-B.
have better volutime utilization. The four corner method seems to benefit more than single
corner method. With stability the difference is not significant.

Secondly, computational time is an important factor to measure the efficiency. Tables A1
- A8 present the computational times T in seconds, which is an average of ten runs for each
problem. The total run time of all tests is about 50 hours, but can be run in parallel in the cloud
service within 15 minutes.

The performance of GA tells us what is the packing performance of each packer. The single
corner method is always faster than four corner method. Using box combiner will make the
search space smaller, but the execution time is quite the same. Without stability the four corner
method takes 10% more time and with stability 30%. However, the stability method generates
a lot of infeasible solutions. If the population size is 200, in the beginning there could be 150
infeasible solutions and in the end there is usually 50. This affects the convergence rate. For
example, with stability the single corner method may produce more infeasible solutions, thus it
converges faster.

The GSF performance depends on the convergence speed and thus the number of global
iterations. The average number of global iterations g is about 3. High quality solutions typically
needs many global iterations. Untable GSF needs 2.54 - 3.19 global iterations. Stable GSF
needs 3.15 - 3.77 global iterations.

In the GSF, if we increase the number of rough and refining search e.g. from 5 to 10 tests, the
volume utilizations are not much higher, but the computational time doubles. So we get almost
the same result with less time.

Without stability GSF-4 takes 30% more time than GSF-1. With stability method, GSF-4S

17



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

can take up to 60% more timne than GSF-4.
In unstable GSF, there is no difference in performance between using box combiner or not in

group 3. In group 4, box combiner takes a bit more time, but the results are also better. In stable
GSF, However, in group 3 and 4, box combiner has performance advantage 10%. but volume
utilizations drops.

Finally, from practical point of view, the most important factor is stability of the load. It
is clear that methods that do not consider stability, do not have any guarantee that the boxes
are packable. Boxes can almost be even in the air and this can be seen in the right solution
of figure 8. In figure 9, the stability method fixes this drawback. In figure 10, although the
packing solution is very compact, we see from the right figure that three boxes that would fall if
packed. In stable version 11, there is not that problem. It is argued in literature that high volume
utilization indicates high stability. However, our methods do not confirm this.

Qualitatively the single corner method procudes packing results in which the boxes have
more side contanct to other boxes and the packing has two flat sides on the edges of the pallet.
Also the final cage bin of the single corner method is always equal or smaller than the final cage
bin of four corner. On the other hand, the four corner method produces four flat sides. This
makes the four corner method visually more appealing. This also helps to wrap the shrinking
foil evenly around the package.

For stable methods, the stability rejection method produces solutions that have high towers
at the beginning of the iteration, but solution converges close to methods without stability. The
tendency to produce towers, also produces more gaps between boxes. This can be improved
with a finalization procedure that may push boxes towards each other with the constraint that
the stability method must accept the solution.

6 CONCLUSION

The present work addresses three-dimensional bin packing problem with stability rejection
criterion that includes some restrictions which had not been worked out altogether in previous
works. In addition, it introduces improvements in the previous single corner packer and an ex-
tension that enables to pack boxes from four different corners. New research perspectives have
to do with the inclusion of additional considerations such as dynamic stability and optimization
criteria based on stability. A finalization procedure based on the stability checking can be used
to rearrange and compact the end result. In conclusion, when the volume utilization is near 80
percent for larger and harder test cases, the genetic algorithm with the global search framework
can produce reasonable and compact packing results.

REFERENCES

[1] Baraff D.: Analytical methods for dynamic simulation of non-penetrating Rigid Bodies,
Computer Graphics, Volume 23, Number 3, July 1989.

[2] Bischoff, E.E., Janetz, F., Ratcliff, M.S.W., Loading pallets with non-identical items, Eu-
ropean Journal of Operational Research 84 (1995) 681692.

[3] Bortfeldt A., Wscher G.: Constraints in container loading – A state-of-the-art review,
European Journal of Operational Research 229 (2013) 1-20.

18



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

[4] Chen C.S., Lee S.M., Shen Q.S.: An analytical model for the container loading problem,
European Journal of Operational Research 80 (1995) 68-76.

[5] Graham R. L.: An efficient algorithm for determining the convex hull of a finite planar set,
Information processing letter 1 (1972) 132 - 133.

[6] He Y., Wu Y., de Souza R.: A global search framework for practical three-dimensional
packing with variable carton orientations, Computers & Operations Research 39 (2012)
2395 - 2414.

[7] Huang W., He K., A caving degree approach for the single container loading problem,
European Journal of Operational Research 196 (2009) 93-101.

[8] Junqueira L., Morabito R., Yamashita D. S.: Three-dimensional container loading models
with cargo stability and load bearing constraints, Computers & Operations Research 39
(2012) 74-85.

[9] Lin J., Chang C., Yang J.: A study of optimal system for multiple-constraint multiple-
container packing problems, Advances in Applied Artificial Intelligence: 19th Interna-
tional Conference on Industrial, Engineering and Other Applications of Applied Intelli-
gent Systems, IEA/AIE 2006, Annecy, France, June 27-30, 2006. Proceedings,

[10] Martello S, Pisinger D, Vigo D, den Boef E, Korst J.: Algorithm 864: general and robot-
packable variants of the three-dimensional bin packing problem, ACM Transactions on
Mathematical Software 2007;33:112.

[11] Palmer R. S.: Computational complexity of motion and stability of polygons, Ph.D Thesis,
1989.

[12] Ramos A. G., Oliveira J. F., Gonçalves, Lopes M. P.: Dynamic stability metrics for the
container loading problem, Transportation Research Part C 60 (2015) 480 - 497.

[13] Schuster M., Bormann R., Steidl D., Reynolds-Haertle S., Stilman M.: Stable stacking for
the distributor’s pallet packing problem, IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’10) Oct. 2010.

[14] Wu Y., Li W., Goh M., de Souza R.: Three dimensional bin packign problem with variable
bin height, European Journal of Operational Research 2010, 202, 347 - 55.

[15] Zwick U.: Jenga, Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’02, 2002.

A Appendix

19



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

GA-1 GA-4
problem type maxF minH avgT maxF minH avgT
order265 25/19 72.54 710.00 15.56 80.47 640.00 19.60
order94 26/24 70.46 660.00 17.01 72.66 640.00 22.90

order217 30/16 74.57 705.00 23.96 79.06 665.00 29.05
order21 30/21 74.29 750.00 23.37 77.93 715.00 30.16
order61 35/29 72.91 930.00 35.44 75.76 895.00 38.60
order82 35/34 77.84 870.00 37.42 78.29 865.00 46.72
average 73.77 770.83 25.46 77.36 736.67 31.17
order1 40/24 77.17 1130.00 52.91 78.92 1105.00 56.31

order213 40/31 77.59 1060.00 51.56 78.33 1050.00 55.82
order215 40/31 78.30 935.00 48.85 78.30 935.00 54.54
order226 40/36 75.98 1110.00 50.93 78.09 1080.00 54.00
order227 40/38 77.62 925.00 48.78 79.33 905.00 54.76
order228 40/39 74.90 925.00 48.00 77.84 890.00 55.90
order229 40/39 79.25 920.00 50.35 79.69 915.00 62.38
order222 40/40 79.29 925.00 49.66 78.86 930.00 55.06
average 77.51 991.25 50.13 78.67 976.25 56.10

Table A1: Without box combiner

GA-1-B GA-4-B
problem type maxF minH avgT maxF minH avgT
order265 25/19 76.30 675.00 16.01 79.85 645.00 19.69
order94 26/24 70.46 660.00 17.14 73.81 630.00 21.35

order217 30/16 73.53 715.00 27.17 79.66 660.00 28.86
order21 30/21 74.29 750.00 23.09 76.85 725.00 28.77
order61 35/29 73.70 920.00 33.60 75.76 895.00 38.11
order82 35/34 78.29 865.00 35.35 78.75 860.00 44.20
average 74.43 764.17 25.39 77.45 735.83 30.16
order1 40/24 77.86 1120.00 46.82 78.57 1110.00 53.76

order213 40/31 76.87 1070.00 54.08 78.71 1045.00 53.00
order215 40/31 78.73 930.00 48.58 78.30 935.00 55.35
order226 40/36 75.30 1120.00 48.02 77.73 1085.00 56.66
order227 40/38 78.04 920.00 49.17 78.04 920.00 54.70
order228 40/39 72.92 950.00 51.27 78.73 880.00 55.26
order229 40/39 79.25 920.00 49.08 80.12 910.00 55.21
order222 40/40 78.86 930.00 49.28 78.44 935.00 58.04
average 77.23 995.00 49.54 78.58 977.50 55.25

Table A2: With box combiner

20



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

GA-1S GA-4S
problem type maxF minH avgT maxF minH avgT
order265 25/19 70.55 730.00 22.16 73.57 700.00 25.16
order94 26/24 68.89 675.00 20.10 70.99 655.00 27.27

order217 30/16 79.06 665.00 29.42 79.06 665.00 34.46
order21 30/21 74.79 745.00 31.81 76.85 725.00 33.89
order61 35/29 72.52 935.00 32.93 74.51 910.00 46.08
order82 35/34 73.61 920.00 36.28 76.96 880.00 46.17
average 73.24 778.33 28.78 75.33 755.83 35.51
order1 40/24 74.22 1175.00 56.66 76.16 1145.00 66.58

order213 40/31 71.52 1150.00 45.53 75.11 1095.00 63.54
order215 40/31 77.89 940.00 48.78 19 77.07 950.00 62.90
order226 40/36 66.93 1260.00 20.25 68.29 1235.00 43.10
order227 40/38 75.98 945.00 51.75 77.20 930.00 58.63
order228 40/39 74.90 925.00 58.75 73.31 945.00 67.12
order229 40/39 74.40 980.00 31.83 75.56 965.00 54.98
order222 40/40 78.44 935.00 62.08 78.44 935.00 64.03
average 74.28 1038.75 46.95 75.14 1025.00 60.11

Table A3: Without box combiner

GA-1S-B GA-4S-B
problem type maxF minH avgT maxF minH avgT
order265 25/19 69.60 740.00 19.51 76.87 670.00 24.16
order94 26/24 69.93 665.00 20.21 69.93 665.00 23.27

order217 30/16 72.02 730.00 29.71 84.12 625.00 33.48
order21 30/21 74.29 750.00 31.36 77.93 715.00 35.56
order61 35/29 72.91 930.00 34.29 73.31 925.00 41.88
order82 35/34 74.02 915.00 32.82 75.67 895.00 47.72
average 72.13 788.33 27.98 76.30 749.17 34.35
order1 40/24 74.54 1170.00 53.58 75.83 1150.00 67.08

order213 40/31 71.52 1150.00 41.13 74.43 1105.00 63.80
order215 40/31 77.48 945.00 47.33 77.48 945.00 60.66
order226 40/36 64.87 1300.00 21.72 69.41 1215.00 38.85
order227 40/38 77.62 925.00 49.81 77.20 930.00 62.95
order228 40/39 74.09 935.00 55.32 73.31 945.00 63.71
order229 40/39 75.17 970.00 28.41 71.48 1020.00 50.75
order222 40/40 78.44 935.00 59.05 77.61 945.00 71.92
average 74.22 1041.25 44.55 74.59 1031.88 59.97

Table A4: With box combiner

21



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

GSF-1 GSF-4
problem type g maxF minH avgT g maxF minH avgT
order265 25/19 2.60 79.85 645.00 37.36 2.63 81.10 635.00 58.19
order94 26/24 3.10 72.66 640.00 50.22 2.40 80.17 580.00 57.18

order217 30/16 3.00 75.10 700.00 62.42 3.33 80.26 655.00 99.58
order21 30/21 2.70 76.85 725.00 56.48 2.90 78.48 710.00 86.83
order61 35/29 3.20 74.11 915.00 92.14 2.50 75.76 895.00 95.95
order82 35/34 3.00 79.68 850.00 87.07 3.40 79.68 850.00 137.30
average 2.93 76.37 745.83 64.28 2.86 79.24 720.83 89.17
order1 40/24 3.30 79.28 1100.00 130.11 2.80 79.64 1095.00 158.15

order213 40/31 2.80 76.16 1080.00 114.94 2.50 83.08 990.00 140.91
order215 40/31 3.30 78.30 935.00 135.16 2.00 78.30 935.00 115.40
order226 40/36 3.10 76.32 1105.00 120.49 3.22 78.45 1075.00 181.82
order227 40/38 2.80 78.47 915.00 112.34 2.33 78.04 920.00 155.83
order228 40/39 3.10 78.28 885.00 128.44 2.80 77.84 890.00 159.13
order229 40/39 2.90 81.01 900.00 111.43 2.60 80.12 910.00 170.27
order222 40/40 2.30 78.86 930.00 94.51 2.10 78.44 935.00 117.27
average 2.95 78.34 981.25 118.43 2.54 79.24 968.75 149.85

Table A5: Without box combiner

GSF-1-B GSF-4-B
problem type g maxF minH avgT g maxF minH avgT
order265 25/19 3.80 80.47 640.00 53.76 3.30 81.75 630.00 71.04
order94 26/24 2.50 71.54 650.00 38.09 2.50 84.55 550.00 59.28

order217 30/16 2.70 76.75 685.00 55.05 2.70 79.66 660.00 75.53
order21 30/21 3.10 76.33 730.00 65.22 2.70 77.93 715.00 75.47
order61 35/29 2.90 77.49 875.00 82.71 2.70 81.70 830.00 99.99
order82 35/34 3.10 79.21 855.00 90.27 3.70 79.68 850.00 140.44
average 3.02 76.97 739.17 64.18 2.93 80.88 705.83 86.96
order1 40/24 2.90 80.01 1090.00 115.75 3.20 80.01 1090.00 168.93

order213 40/31 3.90 81.84 1005.00 163.11 3.00 83.50 985.00 160.31
order215 40/31 3.10 78.30 935.00 121.62 2.50 79.58 920.00 135.05
order226 40/36 2.90 76.32 1105.00 117.58 2.60 79.56 1060.00 135.77
order227 40/38 3.10 78.47 915.00 128.19 2.70 78.47 915.00 167.87
order228 40/39 3.40 77.84 890.00 136.75 3.40 79.63 870.00 184.20
order229 40/39 3.70 81.92 890.00 148.13 2.80 80.57 905.00 169.21
order222 40/40 2.50 79.29 925.00 102.08 2.40 78.86 930.00 134.62
average 3.19 79.25 969.38 129.15 2.83 80.02 959.38 157.00

Table A6: With box combiner

22



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

GSF-1S GSF-4S
problem type g maxF minH avgT g maxF minH avgT
order265 25/19 3.50 76.87 670.00 67.74 2.90 78.63 655.00 76.59
order94 26/24 2.70 69.93 665.00 48.79 2.20 69.93 665.00 54.64

order217 30/16 3.40 81.51 645.00 83.50 3.00 81.51 645.00 97.84
order21 30/21 3.30 77.39 720.00 91.27 3.50 78.48 710.00 126.76
order61 35/29 3.20 75.76 895.00 86.09 4.00 77.05 880.00 161.97
order82 35/34 4.20 78.29 865.00 113.55 3.70 80.15 845.00 151.81
average 3.38 76.62 743.33 81.82 3.22 77.62 733.33 111.60
order1 40/24 4.20 76.50 1140.00 193.29 4.30 79.64 1095.00 263.60

order213 40/31 4.20 78.71 1045.00 149.99 4.10 75.46 1090.00 231.63
order215 40/31 3.30 77.89 940.00 121.28 3.50 77.89 940.00 195.94
order226 40/36 4.20 70.57 1195.00 69.51 4.20 73.33 1150.00 153.96
order227 40/38 3.40 76.79 935.00 130.43 3.60 78.04 920.00 228.79
order228 40/39 2.60 75.30 920.00 112.09 3.70 75.71 915.00 220.03
order229 40/39 3.50 76.35 955.00 83.30 3.67 75.95 960.00 196.21
order222 40/40 3.50 78.44 935.00 171.13 3.10 78.44 935.00 200.59
average 3.61 76.32 1008.13 128.88 3.77 76.81 1000.63 211.34

Table A7: Without box combiner

GSF-1S-B GSF-4S-B
problem type g maxF minH avgT g maxF minH avgT
order265 25/19 3.50 72.54 710.00 62.24 3.60 79.85 645.00 89.15
order94 26/24 2.60 72.09 645.00 44.36 3.10 70.46 660.00 71.68

order217 30/16 3.60 79.66 660.00 87.18 3.30 81.51 645.00 103.39
order21 30/21 3.10 74.29 750.00 82.08 2.90 80.17 695.00 101.76
order61 35/29 2.50 73.31 925.00 70.11 3.20 75.76 895.00 121.12
order82 35/34 3.60 75.67 895.00 102.49 3.10 77.40 875.00 122.50
average 3.15 74.59 764.17 74.74 3.20 77.52 735.83 101.60
order1 40/24 3.70 75.83 1150.00 166.89 4.70 79.28 1100.00 285.29

order213 40/31 4.00 73.11 1125.00 119.50 3.60 76.51 1075.00 193.20
order215 40/31 3.60 78.30 935.00 129.39 3.20 79.15 925.00 169.58
order226 40/36 4.20 71.47 1180.00 67.49 3.50 72.08 1170.00 120.22
order227 40/38 3.70 78.04 920.00 137.09 2.80 77.20 930.00 165.36
order228 40/39 3.20 74.90 925.00 134.46 3.00 74.90 925.00 162.82
order229 40/39 3.30 77.16 945.00 71.29 3.60 77.16 945.00 187.87
order222 40/40 3.10 78.44 935.00 147.54 3.00 78.44 935.00 178.27
average 3.60 75.91 1014.38 121.71 3.43 76.84 1000.63 182.83

Table A8: With box combiner

23



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

Figure 8: Unstable single corner

Figure 9: Stable single corner

24



Teemu Linkosaari, Tero Urponen, Henrik Juvonen, Marko M. Mäkelä and Yury Nikulin

Figure 10: Unstable four corner

Figure 11: Stable four corner

25


	INTRODUCTION
	STABILITY REJECTION CRITERION METHOD
	THE PACKING METHODS
	Single Corner Method
	Four corner method

	EVOLUTIONARY ALGORITHMS
	The genetic algorithm
	The global search framework

	NUMERICAL EXPERIMENTS
	Problem data
	Algorithm parameter configuration
	Results and analysis

	CONCLUSION
	Appendix

