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We study memory effects as information backflow for an accelerating two-level detector weakly
interacting with a scalar field in the Minkowski vacuum. This is the framework of the well-known Unruh
effect: the detector behaves as if it were in a thermal bath with a temperature proportional to its acceleration.
Here we show that if we relax the usual assumption of an eternally uniformly accelerating system, and we
instead consider the more realistic case in which a finite-size detector starts accelerating at a certain time,
information backflow may appear in the dynamics. Our results demonstrate the existence of a connection
between the trajectory of the detector in Minkowski space and the behavior of information flow. This
allows us to inspect the Unruh effect under a new light, making use of the latest developments in quantum
information theory and open quantum systems.
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I. INTRODUCTION

Quantum field theory predicts that a detector accelerat-
ing in empty Minkowski space shall observe a particle bath
with a spectrum dependent on the proper acceleration of the
detector. In particular, if the motion is linear with constant
proper acceleration, the particle bath is thermal with a
temperature proportional to the acceleration [1,2]. This
extremely minute physical phenomenon is called the Unruh
effect. Despite being difficult to detect directly, the effect
could prove to be significant in various scenarios such as
centripetal acceleration in rotating frames [3]. Moreover,
there exist several proposals for observing and simulating
the Unruh effect in laboratory conditions [4–10]. Since it
has not been detected directly, its very existence and
meaning have also been questioned [11,12]. From the
theoretical point of view, the Unruh effect is also closely
related to Hawking radiation (for a detailed discussion on
the subject, see Ref. [2]).
Since a constantly accelerated detector experiences an

effective thermal background, it is possible to model it as a
two-level system interactingwith a bosonic environmentwith
a Planckian spectrum. This model has been studied exten-
sivelywithin the framework of open quantum systems theory,
both invoking the Born-Markov approximation [13,14], and
in more general non-Markovian settings [15–17]. In all these

previous works, both Markovian and non-Markovian, an
eternally and constantly accelerating Unruh-DeWitt detector
is considered.
In this paper, we focus on the more realistic case of a

finite-size detector starting its constant acceleration at a
finite time, while still considering weak coupling between
the detector and the field. The master equation describing
the dynamics of the detector in this situation becomes a
time-local master equation with time-dependent decay rates
which may take temporarily negative values. This time-
local structure highlights the departure from the Markovian
semigroup dynamics described by the well-known Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL) master equa-
tion. However, our approach differs from Refs. [15–17]
for two distinct reasons. First, the time-dependent decay
rates are always directly dependent on the detector’s
trajectory, which in our case is different from the standard
eternally accelerated case considered in Refs. [15–17].
Second, we use a modified Wightman function to take into
account the detector’s profile, as proposed in Ref. [18].
During the last decade, a new paradigm in the description

of open quantum systems has emerged. Specifically,
a formal and rigorous information-theoretical approach
was introduced and used to define Markovian and
non-Markovian dynamics in order to give a clear physical
interpretation, as well as an operational definition, to
memory effects [19–23]. Markovian dynamics is charac-
terized by a continuous and monotonic loss of information*bosoko@utu.fi
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from the open system to the environment, while non-
Markovian dynamics occurs when part of the information
previously lost into the environment comes back due to
memory effects, namely information backflow occurs.
For the system studied in this paper, the time-dependent

decay rates appearing in the master equation are obtained
from the underlying microscopic Hamiltonian model of
system (detector) plus environment (quantum field). Such
coefficients are directly linked to the trajectory of the
detector in Minkowski space. Interestingly, we have iden-
tified the relevant physical parameter ruling the appearance
of information backflow and showed under which con-
dition memory effects may occur. This provides new
physical insight in the understanding of the Unruh effect
and paves the way to the exploration of relativistic quantum
phenomena in terms of quantum information exchange
between system and environment.
The structure of the paper is as follows. In Sec. II, we

review the concept of information backflow and how it is
related to memory effects and non-Markovian dynamics. In
Sec. III, we present our results, namely, (i) we discuss the
form of the time-local master equation obtained in the weak
coupling limit for a finite-size detector which starts to
accelerate at t ¼ 0, (ii) we study the presence or absence of
information backflow and its interpretation, and (iii) we
investigate the regions of validity of our approximated
master equation by looking at the CP conditions. Finally, in
Sec. IV, we discuss our results and present conclusions.

II. NON-MARKOVIANITY AND
INFORMATION BACKFLOW

The concept of Markovian and non-Markovian stochas-
tic process has a clear and rigorous formulation in
the classical domain [24]. The extension to quantum
processes, however, is not straightforward. Open quantum
systems, indeed, may display dynamical features which do
not have a classical counterpart, such as recoherence,
information trapping, entanglement sudden death and
revivals, and so on. For this reason, the generalization of
the definition of Markovian/non-Markovian process from
classical to quantum is still the subject of an intense debate
(for reviews, see Ref. [20–23]). Generally speaking, there
are two approaches to the definition of quantum non-
Markovianity. The first one focuses on the properties of the
master equation or the corresponding dynamical map,
while the second one emphasizes the need of a more
physical approach, identifying memory effects with the
occurrence of information backflow. The latter approach
does not require the knowledge of the explicit form of
either the master equation or dynamical map and has been
pioneered by Breuer, Laine, and Piilo (BLP), who intro-
duced the now famous BLP non-Markovianity measure
[19]. In the following, we review both perspectives and
recall their connection.

A. Non-Markovianity as nondivisibility

Historically, Markovian open quantum dynamics was
identified with the GKSL form of the master equation and
was extensively used due to its powerful property of
guaranteeing complete positivity (CP), and hence physi-
cality, of the density matrix at all times. A straightforward
extension of the GKSL theorem [25,26] to time-local master
equations identifiesMarkovian and non-Markovian dynam-
ics with the properties of the dynamical map Φτ∶ρðτÞ ¼
Φτρð0Þ characterizing the open-system evolution. More
precisely, the dynamics is said to be Markovian whenever
the dynamical map possesses the property of being CP
divisible, namely, whenever the propagator Vτ;s, defined by
Φτ ¼ Vτ;sΦs, isCP [27]. This occurs iff the time-dependent
decay rates appearing in the master equation are positive at
all times τ. On the contrary, non-Markovian dynamics
occurs when the dynamical map Φτ is not CP divisible.
This is signaled by the fact that at least one of the time-
dependent decay rates of the master equation attains
negative values for certain time intervals.

B. Non-Markovianity as information backflow

The evolution of a quantum system interacting with its
surrounding environment, be it classical or quantum,
relativistic or nonrelativistic, can be described in terms
of exchange of energy and/or information between the two
interacting parties. While the concept of energy is uniquely
defined in quantum systems, a unique definition of infor-
mation is lacking. Indeed, in principle, there are a number
of useful and rigorous choices for quantifying information,
and hence information flow, and such choices obviously
depend on which “type” of information one is interested
in. Quantum information theory deals with the study of
information quantifiers, their properties, their dynamics,
and their usefulness in quantum computation, communi-
cation, metrology, and sensing.
The first attempt to quantify system-environment infor-

mation flow and connect it to the Markovian or non-
Markovian nature of the dynamics was based on the
concept of trace distance between two states ρ1 and ρ2
of an open system,

Dðρ1; ρ2Þ ¼
1

2
trjρ1 − ρ2j: ð1Þ

The trace distance is invariant under unitary transforma-
tions and contractive for CP dynamical maps, i.e., given
two initial open-system states ρ1ð0Þ and ρ2ð0Þ, the trace
distance between the time-evolved states never exceeds its
initial value D½ρ1ðtÞ; ρSðtÞ� ≤ D½ρ1ð0Þ; ρ2ð0Þ�.
Trace distance is a measure of information content of the

open quantum system since it is simply related to the
maximum probability PD to distinguish two quantum states
in a single-shot experiment, namely, PD¼ 1

2
½1þDðρ1;ρ2Þ�

[28]. Therefore, an increase in trace distance signals an
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increase in our information about which one of the two
possible states the system is in. Following Ref. [19], one
can define information flow as the derivative of trace
distance as follows:

σðtÞ ¼ d
dt

D½ρ1ðtÞ; ρ2ðtÞ�: ð2Þ

Even though trace distance cannot increase under CP
maps, it may not behave always in a monotonic way as a
function of time. Specifically, whenever the trace distance
decreases monotonically, information flow is negative,
meaning that the system continuously loses information
due to the presence of the environment. On the other hand,
if for certain time intervals information flow becomes
positive, then this signals a partial and temporary increase
of distinguishability and, correspondingly, a partial recover
of information. This information backflow has been pro-
posed as the physical manifestation of memory effects
and non-Markovianity. This idea is known as BLP non-
Markovianity.
Note that whenever the dynamical map is BLP non-

Markovian, i.e., in presence of information backflow, then
it is also CP nondivisible. However, the inverse is not true,
namely, there exist systems that are CP nondivisible but
BLP Markovian. In general, the concept of nondivisibility
and the concept of BLP non-Markovianity, or information
backflow quantified by trace distance, do not coincide and
their relationship has been the subject of numerous studies
(see, e.g., Refs. [22,23] for reviews).

C. Connection between nondivisibility
and information backflow

The difference between the concept of CP divisibility
and the concept of memory effects due to information
backflow, as signaled by an increase of distinguishability,
can be overcome if one allows for a more general definition
of distinguishability between states. More precisely, the
concept of distinguishability based on trace distance is
based on the idea of equal probabilities of preparing the two
states, i.e., the preparation is uniformly random and there is
no prior additional information on which one of the two
states is prepared. One can, however, generalize this
concept by introducing the Helstrom matrix Δ,

Δ ¼ p1ρ1 − p2ρ2; ð3Þ

where p1 and p2 are the prior probabilities of the
corresponding states. The information interpretation in
terms of the one-shot two-state discrimination problem is
valid also in this more general setting [29].
In more detail, one now considers two states and their

corresponding ancilla evolving under the completely pos-
itive, trace preserving dynamical map Φτ as follows:

ρ̃1;2ðtÞ ¼ ðΦτ ⊗ IdÞρ̃1;2ð0Þ; ð4Þ

with ρ̃1;2 the combined system-ancilla state, Id the identity
map, and d the dimension of the Hilbert space of the
system, which in this case is equal to the one of the ancilla.
It has been recently shown in Ref. [29] that, for bijective

maps, the trace norm of the Helstrom, matrix defined as

EðtÞ ¼ jΔðtÞj ¼ jp1ρ̃1ðtÞ − p2ρ̃1ðtÞj ð5Þ

is monotonically decreasing iff the map is CP divisible.
This result has been generalized to nonbijective maps in
Ref. [30]. This allows one to interpret lack of CP
divisibility in terms of information backflow for system
and ancilla, when having prior information on the state of
the system, or in our case of the detector.
Finally, one can release the assumption of prior infor-

mation and prove that if one uses a dþ 1 dimensional
ancilla, then the dynamical map Φτ is CP divisible if and
only if the trace distanceD decreases or remains constant as
a function of time for all pairs of initial system-ancilla states
Ref. [31]. Therefore, also in this case, one can interpret the
loss of CP divisibility in terms of information backflow for
the system-ancilla pair. For further details on the connec-
tion between CP divisibility and information backflow, we
refer the reader to the recent perspective article [23].
In this paper, we will specify these approaches to our

physical system and study memory effects and information
backflow by looking at the time evolution of the time-
dependent decay rates defined by Eq. (8). We note that for
the form of master equation considered in this paper, the
behavior of the decay rates can be directly connected to the
presence or absence of BLP non-Markovianity, and of
several other non-Markovianity indicators based on the
behavior of other quantifiers of information, as demon-
strated by some of the authors of this paper in Ref. [32].
Specifically, BLP non-Markovianity can be inferred by the
violation of certain sets of inequalities involving the decay
rates [32]. We will use these results in the follow-up
discussions.

III. RESULTS

A. The master equation

In Ref. [14], a microscopic derivation of the master
equation describing the dynamics of a two-level detector
weakly interacting with a scalar field in the Minkowski
vacuum was presented. The derivation relies on the
standard Born-Markov approximation [24]. An eternally
and uniformly accelerated detector parametrized with the
proper time, i.e., following the well-known hyperbolic path
[1], is considered by the authors. Here we relax this
unrealistic assumption and consider instead a different
trajectory in Minkowski space, assuming that the detector
is inertial until a certain time after which it experiences a
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uniform acceleration. Under these conditions the environ-
ment correlation function is not time-translation invariant
anymore, and this leads to decay rates which are now
time dependent. Moreover, we generalize the description
of the detector from pointlike to finite size. We show in
the Appendix that with these generalizations, following
the same lines of Refs. [14,24], the master equation
describing the dynamics of theHeff detector takes the form
_ρ ¼ −i½Heff ; ρ� þ LðρÞ, where the dissipator L, in the
instantaneous rest frame of the detector, is given by

LðρÞ ¼ γ1ðτÞ
2

L1ðρÞ þ
γ2ðτÞ
2

L2ðρÞ þ
γ3ðτÞ
2

L3ðρÞ; ð6Þ

and where the effective Hamiltonian isHeff¼ωσz=2þΩðτÞ,
with ΩðτÞ a generally time-dependent renormalized fre-
quency. The dissipator is given by the sum of three terms,
LiðρÞ, describing, in order, heating, dissipation, and dephas-
ing, and having the following form:

L1ðρÞ ¼ σþρσ− −
1

2
fσ−σþ; ρg

L2ðρÞ ¼ σ−ρσþ −
1

2
fσþσ−; ρg

L3ðρÞ ¼ σzρσz − ρ: ð7Þ

The coefficients γ1ðτÞ; γ2ðτÞ, and γ3ðτÞ are the absorption,
emission, and dephasing rates, respectively, with the
implicit ω dependence. They are simply related to the
proper time (τ−)derivative of the correlation function
FτðωÞ through the equations

γ1ðτÞ ¼ 4 _Fτð−ωÞ; γ2ðτÞ ¼ 4 _FτðωÞ; γ3ðτÞ ¼ 2 _Fτð0Þ: ð8Þ

Note that in this paper we use units c ¼ ℏ ¼ 1 and
Minkowski spacetime signature (þ;−;−;−).
For any detector, the correlation function is related to the

Wightman function Wðτ; τ0Þ ¼ hϕðxðτÞÞϕðxðτ0ÞÞi on the
detector worldline xðτÞ as follows [33]:

FτðωÞ ¼
Z

τ

τ0

dτ0
Z

τ

τ0

dτ00e−iωðτ0−τ00ÞWðτ0; τ00Þ; ð9Þ

where ϕðxÞ is a massless scalar field at Minkowski space
point x ¼ ðt; x; y; zÞ. Hence, the proper time derivative
_FτðωÞ, for an always-on detector, i.e., for τ0 → −∞, in its
rest frame, reads as

_FτðωÞ ¼ 2

Z
∞

0

dsℜðe−iωsWðτ; τ − sÞÞ: ð10Þ

The Wightman function is most easily calculated for a
pointlike detector. However, it is not physically realistic
and leads to problems, e.g., with Lorentz invariance
[34,35]. These problems can be circumvented by assuming

that the detector has a finite size instead of being pointlike.
The spatial shape of the detector can be defined by the
Lorentzian smearing function given in terms of the Fermi
coordinates ξ (momentarily normal coordinates) [34] as

fðξÞ ¼ 1

π2
ϵ2

ðjξj2 þ ϵ2Þ2 ; ð11Þ

but the detector profile is eventually irrelevant at least if it
satisfies some smoothness conditions [18]. Following the
same reference, the transition rate for a pointlike always-on
detector is given by

_FτðωÞ ¼ −
ω

4π
þ 1

2π2

Z
∞

0

ds

�
cosðωsÞ
ðΔxÞ2 þ 1

s2

�
; ð12Þ

while the transition rate for a finite-size detector of
characteristic size ϵ is given by (10) ith

Wðτ; τ0Þ ¼ −1=4π2

ðxðτÞ − xðτ0Þ − iϵð _xðτÞ − _xðτ0ÞÞÞ2 ; ð13Þ

where Δx ≔ xðτÞ − xðτ − sÞ.
This finite-size correlator is more physical, it appears to

have much more regular properties, and is therefore used in
our study.
In this paper, we consider a detector at rest for τ ≤ 0

and uniformly accelerated for τ > 0, following the path
given by

tðτÞ ¼ θð−τÞτ þ θðτÞα sinh
�
τ

α

�
;

xðτÞ ¼ αθð−τÞ þ αθðτÞ cosh
�
τ

α

�
;

yðτÞ ¼ zðτÞ ¼ 0; ð14Þ

where the proper acceleration experienced by the detector
is 1=α, and θðτÞ is the Heaviside step function.
These more realistic assumptions allow us to perform

calculations and obtain explicit expressions for the decay
rates. By inserting Eq. (13) and the path into Eq. (12), we
obtain

2πα _Fτ̄ðω̄Þ¼
ω̄

e2πω̄−1
þΔ _Fτ̄ðω̄Þ

≡ ω̄

e2πω̄−1

þ 1

π

Z
∞

τ̄
ds̄cosðω̄ s̄Þ

�
1

ðΔxÞ2>
−

1

ðΔxÞ2<

�
; ð15Þ

where
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ðΔxÞ2> ≔ −ðsinhðτ̄Þ − ðτ̄ − s̄ÞÞ2 þ ðcoshðτ̄Þ − 1Þ2
ðΔxÞ2< ≔ −4 sinh2ðs̄=2Þ; ð16Þ

with ω̄ ¼ ωα, τ̄ ¼ τ
α, and s̄ ¼ s

α.
For negative times τ̄ < 0, the rate of an inertial detector,

_Fτ̄ðω̄Þ ¼ − ω
2π θð−ωÞ, is restored reflecting the fact that

only emission can happen. For positive times τ̄ > 0, the
transition rate is the sum of the Planckian equilibrium part
ω̄=ðe2πω̄ − 1Þ and a dynamical correction Δ _Fτ̄ðω̄Þ which
tends to be zero in the asymptotic limit τ̄ → ∞. In this limit,
we obtain the same Lindbladmaster equation as in Ref. [14].
Equations (15) and (16) allow us to obtain the expression

of the decay rates by means of Eq. (8) and thus show
their connectionwith the detector trajectory.We note that the
behavior of the decay rates crucially depends on the
α-multiplied angular frequency ω̄, and hence on both the
detector energyℏω and the proper acceleration; in particular,
for fixed ω, larger values of ω̄ correspond to smaller proper
acceleration, i.e., smaller deviation from the inertial system.
Also, since the proper acceleration is proportional to the
effective Unruh temperature TU, ω̄ can be seen as the ratio
between the detector energy and the effective bath thermal
energy kBTU. We will see that this parameter rules the
appearance of information backflow in the Unruh effect.

B. Decay rates and information backflow

In this section, we analyze in detail the behavior of the
time-dependent decay rates with the aim of understanding
the time evolution of information exchange between system
and environment. We recall that if at least one of the
coefficients becomes negative at some time, then the map is
not CP divisible and therefore information flows back into
the system-ancilla pair. However, the system can still be
BLP Markovian, meaning that there is no information
backflow into the system only, but information does return
to a larger Hilbert space which includes an ancilla living in
a Hilbert space of dimension d (prior information on the
state present) or dþ 1 (no prior information on the state
present).
The dephasing rate can be calculated explicitly and has

the form

παγ3ðτ̄Þ ¼
1

2π

τ̄ − sinhðτ̄Þ
1 − coshðτ̄Þ : ð17Þ

From this equation, we see that γ3ðτ̄Þ is always non-
negative for our system. The absorption and emission
rates, defined for ω̄ ≠ 0, require numerical approaches.
In Fig. 1, we plot sample curves of the absorption and
dephasing rates γ1ðτ̄Þ and γ3ðτ̄Þ weighed by the inverse
acceleration factor α. These illustrate by examples our
extensive numerical investigations showing positivity of
the aforementioned rates for all times.

The emission rate γ2ðτ̄Þ displays a more interesting
temporal behavior, since it can attain negative values for
ω̄ ≥ 1, as shown in Fig. 2. The parameter ω̄, therefore,
controls the transition between CP divisibility and CP
nondivisibility, with ω̄ ≈ 1 the transition value. In the
intervals of time where γ2ðτ̄Þ is negative, the system-ancilla
pair experiences information backflow and memory effects.
This happens approximately when the detector energy
becomes greater than the thermal energy of the effective
bath, i.e., for small Unruh temperatures (or small proper
accelerations).
We now conclude our analysis by looking at behavior of

other non-Markovianity indicators. In Ref. [32], we have
established conditions for detecting memory effects using a
number of indicators common in the literature, including
the BLP non-Markovianity, by means of inequalities
involving the decay rates. Since the numerical values of
the emission rate are at all times much higher than those of
the absorption rate, as seen from Eq. (15), the inequalities
derived in Ref. [32] allow us to conclude immediately that
the BLP measure [19], the geometric measure [36], and the
relative entropy of coherence measure [37] do not detect
information backflow for any value of ω̄.

FIG. 1. Absorption rate γ1ðτ̄Þ for ω̄ ¼ 0.50ðredÞ; 0.20ðgreenÞ;
0.05ðyellowÞ, and dephasing rate γ3ðτ̄Þ.

FIG. 2. Emission rate γ2ðτ̄Þ for ω̄ ¼ 0.9ðblueÞ; 1.0ðyellowÞ;
1.6ðgreenÞ; 4.0ðredÞ starting from top, showing non-Markovian
regions after ω̄ ≈ 1 threshold.
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This is consistent with the fact that these three quantities
are only indicators of CP nondivisibility; therefore, they
may not always detect violation of such property. In other
words, in the framework of the system studied, information
never returns to the detector only but it will return to a
larger system formed by the detector, which interacts with
the environment, and an ancilla which does not interact
directly with the environment. The ancilla could physically
represent, for example, other electronic levels of an atom, if
the detector is actually a single atom, or more in general
other degrees of freedom which are not explicitly taken into
account in the two-state description of the detector and
which are not explicitly coupled to the environment.

C. Complete positivity

We now explore the conditions for complete positivity of
the time-local master equation for the Unruh effect dis-
cussed in this paper. This is particularly relevant since we
know that when the decay rates become negative, and
hence the dynamics non-Markovian, we cannot rely any-
more on the GKSL theorem to guarantee physicality (i.e.,
complete positivity) of the solution of the master equation.
In Ref. [38], necessary and sufficient conditions for

complete positivity for a master equation such as the one
here considered has been derived. These conditions are
expressed in terms of four inequalities involving the decay
rates. By using these inequalities, it is straightforward to see
that since in our case γ3ðτÞ > 0 [Eq. (17)] at all times,
the condition Γ̃ðτÞ ¼ R

τ
0 dsγ3ðsÞ ≥ 0 is always satisfied.

Therefore, in our system, the complete positivity conditions
reduce to the simpler positivity conditions, given by

P1ðτÞ≡ e−ΓðτÞ½GðτÞ þ 1� ∈ ½0; 1�
P0ðτÞ≡ e−ΓðτÞGðτÞ ∈ ½0; 1�; ð18Þ

where

ΓðτÞ ¼ 1

2

Z
τ

0

dsðγ1ðsÞ þ γ2ðsÞÞ

GðτÞ ¼ 1

2

Z
τ

0

dseΓðsÞγ2ðsÞ: ð19Þ

Moreover, P0;1ðτÞ can be identified as the ground state
probability with initial conditions Pð0Þ equal to 0 or 1,
respectively. The positivity conditions of Eq. (18) can be
seen as upper and lower bounds to the ground state
probability, respectively.
Taking the derivative of Eq. (18) with respect to τ, we

arrive to the same differential equation, with two different
boundary values

P0
1;0ðτÞ ¼ −P1;0ðτÞΓ0ðτÞ þ 1

2
γ2ðτÞ

P1ð0Þ ¼ 1

P0ð0Þ ¼ 0: ð20Þ

The upper bounds P0;1ðτÞ ≤ 1 can be studied using
Eq. (20),

P0
1ð0Þ ¼ −

1

2
γ1ð0Þ < 0

P0
0ð0Þ ¼

1

2
γ2ð0Þ > 0; ð21Þ

as γ1;2ð0Þ ¼ _FPð∓ωÞ > 0, where _FPðωÞ is the Planckian
spectrum. Thus, P1ðτÞ is equal to 1 and decreasing at τ ¼ 0
while P0ðτÞ is equal to 0 and increasing at τ ¼ 0. Also, both
P0ðτÞ and P1ðτÞ tend to be a single finite asymptotic value
∈ ð0; 1Þ as τ → ∞, because both Γ0 and γ2 have constant
positive asymptotic time limits.
Suppose now that P0ðτÞ or P1ðτÞ is increasing at some

time τ1 > 0 where it reaches value 1 and would therefore
violate complete positivity upper bound for τ > τ1. At
τ ¼ τ1, Eq. (20) reduces to

P0
0;1ðτ1Þ ¼ −Γ0ðτ1Þ þ

1

2
γ2ðτ1Þ

¼ −
1

2
ðγ1ðτ1Þ þ γ2ðτ1ÞÞ þ

1

2
γ2ðτ1Þ

¼ −
1

2
γ1ðτ1Þ: ð22Þ

However, the numerical evidence [see, e.g., Fig. 1] indi-
cates that γ1ðτÞ > 0 ∀ τ > 0, i.e., the function P0;1ðτÞ
decreases at the point τ1 where its value is 1, which is
in conflict with the assumption that the function is
increasing. Therefore, neither function P0ðτÞ nor P1ðτÞ
can reach the value 1 for any positive time. Thus, ∀ τ ≥ 0
we have P0;1ðτÞ ≤ 1, and the upper bounds of the complete
positivity conditions are satisfied.
The lower bounds can only be studied numeri-

cally. Fortunately, because P1ðτÞ > P0ðτÞ only condition
P0ðτÞ ≥ 0 is relevant. In Fig. 3, we show the dynamics of
the ground state probabilities, i.e., functions of the con-
ditions (18), for some values of ω̄. At first sight, it seems
that the dynamics are completely positive for all times and
all considered values of ω̄. However, studying parameter
values ω̄ > 1.0, where the decay rate γ2ðτÞ already exhibits
nonpositivity, numerical investigations reveal that the CP
condition is violated, i.e., P0ðτ̄Þ < 0, when ω̄≳ 1.53
(Fig. 4). This indicates the breakdown of the approxima-
tions used in the derivation of the master equation.

D. Reversed path

A similar approach to the one in sections above can be
directly applied to the case in which the detector decelerates
from infinity to rest with a constant negative acceleration
rate. This yields the same equation as (15), now with

ðΔxÞ2> ¼ −ðτ̄ − sinh ðτ̄ − s̄ÞÞ2 þ ð1 − cosh ðτ̄ − s̄ÞÞ2;
ðΔxÞ2< ¼ s̄2: ð23Þ
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Further analysis, however, shows that the complete
positivity conditions fail for all times τ > 0. This is
consistent with the fact that the derivation of the master
equation with the Lindbladian dissipator in Eq. (6) assumes
complete separability for the initial global state at τ ¼ 0,
which is not the case if there has been interaction between
the open system and a thermal, T > 0, environment for all
of τ < 0.

IV. DISCUSSION AND CONCLUSIONS

When considering the dynamics of the system under
study, it is worth recalling that while the accelerated
detector undergoes emission and absorption, an inertial
detector does not undergo spontaneous excitations. Indeed,
more elaborate calculations on the system show that the

energy momentum tensor describing the particle content of
the space vanishes in any coordinate system, and in
particular in the inertial as well as in the rest frame of
the accelerated detector [33]. This simply means that the
particles detected by the accelerated detector are not real
but rather “fictitious” particles.
The source of energy for the excitation of the accelerating

detector is, indeed, its direct coupling to the surrounding
vacuum field [2,33,39]. As the detector accelerates, it feels
resistance andwork is done on it by the external system. The
work done not only accelerates the detector but also excites
it: to overcome the resistance, it is converted into the thermal
field affecting the noninertial detector. Thus, the energy is
not provided by any external particle field but rather
originates from the unspecified force keeping the detector
in the state of accelerating motion.
In this paper, we show that releasing the eternally

accelerated and pointlike detector assumptions, the dynam-
ics may display memory effects and information backflow.
The corresponding master equation is time local with time-
dependent decay rates directly linked to the detector
worldline. For small enough accelerations, the detector
keeps memory of the initial time when the acceleration
began, and the time evolution becomes non-CP divisible
displaying information backflow as defined in Ref. [31].
The same parameter (ω̄) which drives the crossover
between the presence or absence of information backflow
also controls the range of validity of the master equation, as
shown by our study on CP conditions.
Our results shed light on the dynamics of information

exchange between the detector and its environment, and
specifically on the occurrence of information backflow, in
the framework of the Unruh effect. We believe that cross-
fertilization between relativistic quantum field theory,
open quantum system theory, and quantum information
theory may pave the way to a better understanding of a
number of open problems by introducing new tools, diverse
approaches, and original perspectives.
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APPENDIX: MICROSCOPIC DERIVATION
OF THE MASTER EQUATION

In the microscopic approach to open quantum
systems dynamics, we start by modeling the total closed

FIG. 4. The ground state probabilities P0ðτ̄Þ for ω̄ ¼
1.20ðlight blueÞ; 1.53ðdark blueÞ; 2.0ðvioletÞ starting from top,
where P0ðτ̄Þ < 0 indicates CP violation. Dashed lines represent
the Markovian behavior without time-dependent contribution.

FIG. 3. P0ðτ̄Þ and P1ðτ̄Þ. The ground state probabilities for
ω̄ ¼ 0.05ðblueÞ; 0.2ðyellowÞ; 1.53ðredÞ. Dashed lines represent
the Markovian behavior without time-dependent Δ _Fτ̄ðω̄Þ con-
tribution corresponding to eternally accelerated detector with
ground state probability 0 or 1 at τ̄ ¼ 0.
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system, whose Hilbert space is HS ⊗ HE, by means of the
microscopic Hamiltonian

H ¼ HS ⊗ IE þHE ⊗ IS þHI; ðA1Þ

where HS and HE are the free Hamiltonians of the system
and of the environment, respectively, and HI is the
interaction term. The initial state of the total system is
assumed to be separable, i.e., no correlations between
system and environment are initially present. As the total
system is closed, we can write its unitary evolution as

ϱSEðτÞ ¼ UðτÞϱSð0Þ ⊗ ϱEU†ðτÞ; ðA2Þ

with UðτÞ ¼ exp½−iHτ�. If we now take the partial trace
over the environment in the equation above, we have

ϱSðτÞ ¼ TrEfUðτÞϱSð0Þ ⊗ ϱEU†ðτÞg
≡ ΛtϱSð0Þ; ðA3Þ

where Λt is the dynamical map. In the following, we will
describe the assumptions that allow us starting from a
microscopic description of system plus environment to
derive a physically meaningful master equation.
Let us consider the dynamics of the overall density

operator ϱSE given by the von Neumann equation which, in
units of ℏ and in the interaction picture, reads as follows:

dϱSEðτÞ
dt

¼ −i½HIðτÞ; ϱSEðτÞ�; ðA4Þ

where we omit for simplicity of notation the subscript I
which we should use to indicate the density matrix in the
interaction picture. The integral form of this equation is

ϱSEðτÞ ¼ ϱSEð0Þ − i
Z

τ

0

ds½HIðsÞ; ϱSEðsÞ�: ðA5Þ

Inserting Eq. (A5) into Eq. (A4) and taking the partial trace
over the environmental degrees of freedom, we get

dϱS
dt

ðτÞ ¼ −
Z

τ

0

dsTrEf½HIðτÞ; ½HIðsÞ; ϱSEðsÞ��g; ðA6Þ

where we have assumed TrB½HIðτÞ; ϱSEð0Þ� ¼ 0.
We assume now that system and environment are

weakly coupled (Born approximation). This approximation
amounts to assuming that the correlations established
between system and environment are negligible at all times
(initially zero), i.e.,

ϱSEðτÞ ≈ ϱSðτÞ ⊗ ϱE:

Within this approximation, we get a closed integro-
differential equation for ϱSðτÞ,

dϱSðτÞ
dt

¼−
Z

τ

0

dsTrEf½HIðτÞ; ½HIðsÞ;ϱSðsÞ⊗ ϱE��g: ðA7Þ

Note that, in the equation above, the future evolution of the
system, described by dϱs

dt ðτÞ, depends on the past states of
the system ϱSðsÞ for times s < τ through the integral. A
further simplification to this equation is obtained by
assuming that we can replace ϱSðsÞ appearing inside the
integral with its value at time τ, ϱSðτÞ, which is possible if
the density matrix does not change strongly in the interval
of time 0 ≤ s ≤ τ. This is the case in many physical
situations in which this integrand (or rather that part of
it describing the environment correlations) quickly decays
to zero after a short characteristic correlation time τE. This
timescale quantifies the memory time of the reservoir.
Hence, if the density matrix of the system does not change
sensibly in the correlation time τE, then we can approxi-
mate ϱSðsÞwith ϱSðτÞ in Eq. (A7). The resulting equation is
known as the Redfield equation

dϱSðτÞ
dt

¼−
Z

τ

0

dsTrEf½HIðτÞ; ½HIðsÞ;ϱSðτÞ⊗ ϱE��g: ðA8Þ

Equation (A8) is local in time, i.e., the future evolution of
the state of the system does not depend on its past state.
However, it still retains memory of the initial state ϱSð0Þ.
Until now we have assumed the density matrix does not

change much within the correlation time τE. The next step
will be to neglect such a change altogether by performing a
coarse graining in time. This is mathematically achieved by
replacing the upper limit of the integral in Eq. (A8) with∞,

dϱS
dt

ðtÞ ¼ −
Z

∞

0

dsTrEf½HIðtÞ; ½HIðt − sÞ; ϱSðtÞ ⊗ ϱE��g;

ðA9Þ

where we have replaced for the sake of convenience s with
τ − s. The two-step approximation described in Eqs. (A8)
and (A9) is known as the Markov approximation. We say
that Eq. (A9) is derived from a microscopic model under
the Born-Markov approximation, i.e., for weak coupling
and quickly decaying reservoir correlations (memoryless
dynamics).
Let us decompose the interaction Hamiltonian HI in

terms of operators of the system and of the environment,

HI ¼
X
α

Aα ⊗ Bα;

with AαðBαÞ Hermitian operators of the system (environ-
ment). In our case of a two-level system interacting with a
scalar field, this can be rewritten as

HI ¼
X
α

σα ⊗ ϕα:
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Let us assume that HS has a discrete spectrum, and let us
indicate with ϵ the eigenvalues and with ΠðϵÞ the corre-
sponding projectors into the corresponding eigenspace. We
define the eigenoperators of the system as follows:

σαðωÞ ¼
X

ϵ0−ϵ¼ω

ΠðϵÞσαΠðϵ0Þ: ðA10Þ

We can rewrite the interaction Hamiltonian in terms of
eigenoperators ofHS and then pass to the interaction picture
exploiting the fact that the system eigenoperators have a
simple time dependency in this picture. The environment
operators in the interaction picture are simply given by
ϕαðτÞ ¼ eiHEτϕαe−iHEτ.
After some algebra, we can rewrite the master equation

in the following form:

dϱs
dt

ðτÞ ¼
X
ω;ω0

X
α;β

eiðω0−ωÞτΓαβðωÞ½σβðωÞϱSðτÞσ†αðω0Þ

− σ†αðω0ÞσβðωÞϱSðτÞ� þ H:c:; ðA11Þ

where we introduced

ΓαβðωÞ≡
Z

∞

0

dseiωshϕ†
αðτÞϕβðτ − sÞi;

with the reservoir correlation functions given by

hϕ†
αðτÞϕβðτ − sÞi≡ TrEfϕ†

αðτÞϕβðτ − sÞϱEg:

Such correlation functions are homogeneous in time if the
reservoir is stationary, i.e.,

hϕ†
αðτÞϕβðτ − sÞi ¼ hϕ†

αðsÞϕβð0Þi;

however, this is not true in our case as the field ϕ is not
invariant under time translations, which is one of the crucial
differences from the time-independent case in Ref. [14].
We now make the last approximation, known as the

secular approximation. First, we define τS as the character-
istic intrinsic evolution time of the system. This timescale is
generally of the order of τS≈ jω0−ωj−1;ω0≠ω. We indicate
with τR the relaxation time of the open system. If τS ≫ τR,
we can neglect all the exponential terms oscillating at
frequency jω0 − ωj ≠ 0 as they oscillate very rapidly
(averaging out to zero) over the timescale τR over which

ϱS changes appreciably. We then decompose the environ-
ment correlation functions into their real and imaginary
parts,

ΓαβðωÞ ¼
1

2
γαβðωÞ þ iSαβðωÞ;

where, for fixed ω,

γαβðωÞ¼ΓαβðωÞþΓ�
βαðωÞ¼

Z þ∞

−∞
dseiωshϕ†

αðτ− sÞϕβðτÞi

form a positive matrix and

SαβðωÞ ¼
1

2i
½ΓαβðωÞ − Γ�

βαðωÞ�

form a Hermitian matrix. With these definitions, we finally
arrive at the interaction picture master equation

dϱS
dt

ðτÞ ¼ −i½HLS; ϱSðτÞ� þ LðϱSðτÞÞ; ðA12Þ

where

HLS ¼
X
ω

X
α;β

SαβðωÞσ†αðωÞσβðωÞ

is a Lamb-Shift term which provides a Hamiltonian
contribution to the dynamics and

LðϱSÞ¼
X
ω

X
α;β

γαβ

�
σβðωÞϱSσ†αðωÞ−

1

2
fσ†αðωÞσβðωÞ;ϱSg

�
:

This form of the dissipator (generator of the dynamics) L is
known as first standard form. Diagonalizing the real
positive matrix γαβðωÞ, we get the GKSLMarkovian master
equation

LðϱSÞ ¼
X
ω

X
α

γαðωÞ
�
σ̄αðωÞϱSσ̄†αðωÞ

−
1

2
fσ̄†αðωÞσ̄αðωÞ; ϱSg

�
;

where fσ̄αgα¼0…3 ¼ fI; σþ; σ−; σzg.
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