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Abstract

The automatic detection of facial expressions of pain is needed to ensure accurate pain

assessment of patients who are unable to self-report pain. To overcome the challenges of

automatic systems for determining pain levels based on facial expressions in clinical patient

monitoring, a surface electromyography method was tested for feasibility in healthy volun-

teers. In the current study, two types of experimental gradually increasing pain stimuli were

induced in thirty-one healthy volunteers who attended the study. We used a surface electro-

myography method to measure the activity of five facial muscles to detect facial expressions

during pain induction. Statistical tests were used to analyze the continuous electromyogra-

phy data, and a supervised machine learning was applied for pain intensity prediction

model. Muscle activation of corrugator supercilii was most strongly associated with self-

reported pain, and the levator labii superioris and orbicularis oculi showed a statistically sig-

nificant increase in muscle activation when the pain stimulus reached subjects’ self

-reported pain thresholds. The two strongest features associated with pain, the waveform

length of the corrugator supercilii and levator labii superioris, were selected for a prediction

model. The performance of the pain prediction model resulted in a c-index of 0.64. In the

study results, the most detectable difference in muscle activity during the pain experience

was connected to eyebrow lowering, nose wrinkling and upper lip raising. As the perfor-

mance of the prediction model remains modest, yet with a statistically significant ordinal

classification, we suggest testing with a larger sample size to further explore the variables

that affect variation in expressiveness and subjective pain experience.

Introduction

Pain as a subjective experience is difficult to assess in situations in which patients have no abil-

ity to self-report their pain. These situations are common in intensive care units (ICUs), where

pain related to critical illnesses, major surgeries and everyday care procedures is common [1,2]
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and many of the patients are unable to communicate verbally due to mechanical ventilation or

sedation. Most behavioral pain assessment scales validated for critically ill patients share an

item measuring the facial expressions connected to pain [3], which is found to be the strongest

marker associated with pain assessment in non-communicative patients [4,5]. On behavioral

pain assessment scales, facial expressions connected to pain are often referred to as grimacing,

frowning and wrinkling of the forehead [6–8], scored by observer interpretation according to

the intensity of the expression. However, observer-based subjective evaluations often underes-

timate pain in others [5,9].

According to the study by Arif-Rahu et al. [10], the actions of critically ill patients’ facial

muscles during pain are similar to those of healthy volunteers. There is a consensus on four

facial actions most associated with pain, forming the core pain expression: brow lowering,

nose wrinkling and lip raising, orbit tightening, and eye closure [11,12]. In some studies, the

muscles affecting the mouth have also been associated with pain [13,14]. However, facial

expressions have been decoded on the level of action units (AUs) more often than a single-

muscle basis. The Facial Action Coding System (FACS), a framework for identifying facial

expressions by Ekman and Friesen [15], divides facial movements into action units represent-

ing individual components of muscle movements. While the FACS has high reliability [16],

using the FACS requires specific training, and the scoring is dependent on the subjectivity of

the scorer [17].

Advances have been made in developing systems employing facial expressions of pain for

automatic pain detection. Computer vision-based pattern recognition has been developed

with fair to excellent classification performance [18] using the FACS coding, videotaped mate-

rial of the BioVid heat pain database [19,20] and the UNBC-McMaster shoulder pain expres-

sion archive database [21,22], as well as in clinical situations in post-operative patients [23].

However, monitoring facial expressions using computer vision is challenging when coping

with head orientation changes and the interference of medical accessories over a patient’s face,

such as tubes or oxygen masks. Most methods are based on coding every frame of a video

based on the FACS, which could be a time-consuming process in real-time application [18]. A

promising technology used in automatic pattern recognition is surface electromyography

(sEMG), a non-invasive technology measuring the electrical activity of superficial muscles

with electrodes placed on the skin [24]. The advantage of a sEMG system is the ability to objec-

tively detect subtle facial muscle activity that can be invisible to observers [25]. However, a

recent review by Dawes et al. [26] found only one study using the sEMG method to detect

facial pain expressions objectively. Furthermore, the suggested correlation between pain inten-

sity and muscle tension has remained unproven.

The current study is a part of the Smart Pain Assessment Tool project, which is intended to

develop a clinically useful automatic pain assessment tool for critically ill patients. The main

objective of this study was to evaluate the feasibility of the sEMG method for pain detection

using two kinds of gradually increasing pain stimuli in healthy subjects. The aim was to exam-

ine the facial muscles that can most feasibly be used to detect pain and investigate predictabil-

ity of pain intensity with machine learning algorithms based on those muscles.

Methods

Study subjects

The study was approved by the Ethics Committee of the Hospital District of South West Fin-

land (ETMK:83/1801/2015). Each study subject provided a written informed consent. The

study subjects were recruited via advertisements on the university campus and university web-

sites. Thirty-one (15 male and 16 female) healthy volunteers aged 21–51 years (mean age
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33 ± 9.0 years) were included in the study. Following the inclusion criteria, all the study sub-

jects had healthy facial skin and no excess facial hair in the areas where the sEMG sensors

would be placed. The general health of the study subjects was ensured through oral enquiry.

The study exclusion criteria consisted of having chronic or acute illnesses, being pregnant and

taking regular medication during or two weeks preceding the study. The data were collected

between December 2015 and April 2016.

Materials and procedures

Facial muscles. Pain-related facial descriptors have been investigated in several studies.

Facial muscles for the sEMG measurement were chosen compiling previous study findings as

shown in Table 1 [17,27,28]. The facial muscles measured in the study were corrugator super-

cilii, orbicularis oculi, levator labii superioris, zygomaticus major and risorius.

Electromyography device. For facial muscle activation recognition, the sEMG signal was

captured with a multi-purpose biosignal acquisition device that was developed for health mon-

itoring [29]. This device was designed and manufactured by the IoT4Health research group.

Version 1.0 of the device used in the study has previously been tested and reported on by Jiang

et al. [30]. The multi-purpose device is capable of eight-channel signal acquisition with 24-bit

analogue-to-digital resolution. The sample rate is adjustable, and in this study, it was set to

1000 samples per second. The amplitude of the analogue signals were amplified 24 times

before digitalization. Each channel was set as a single-ended connection. The muscle activities

of selected facial muscle regions were captured with surface electrodes on the right side of the

face with monopolar configuration. Additionally, a reference electrode was placed on the bony

area behind the ear. The frontalis sEMG channel on the same side was taken as noise reference

signal for adaptive noise cancellation.

Test procedures. The study was done using a randomized crossover design. The facial

sEMG was recorded among other biosignals including heart rate, respiratory rate and skin

conductance. The procedures are described and reported with greater detail in Jiang et al. [31].

The study procedures were conducted in a quiet room with a comfortable armchair. A study

technician and a study nurse were present during each data-collection session. A non-harmful,

slowly increasing pain stimulus was induced with heat and electrical stimulus (shown in Fig 1)

on the right of left arms. The subjects were tested four times during each session; two times

with each stimulus. The starting test number of the pain induction was randomized to control

the order effect. We defined the four tests as 1-left heat, 2-right heat, 3-left electrical pulses and

4-right electrical pulses. A random number between 1 and 4 was generated before all the tests.

For example, if the start number was 3, then the order of the test was 3-4-1-2. Heat pain was

induced using a round heating element with a diameter of 3 cm in the subject’s inner arm. The

Table 1. Adult pain facial expression descriptors, FACS action units and appearance [26], pain-related AUs and muscles [16,27].

Descriptor Action Unit Appearance Change Muscular Basis

Brow lowerer AU4 The eyebrows are lowered and pulled together, pushing the eyelid down. Corrugator supercilii

Cheek raiser AU6 The skin around the temples and cheeks is drawn towards the eyes, narrowing the eye opening. Orbicularis oculi

Lid tightener AU7 The eyelids are tightened, narrowing the eye opening. Orbicularis oculi

Nose wrinkler AU9 The skin along the sides of the nose is pulled upward and wrinkled. Levator labii superioris

Upper lip raiser AU10 The upper lip is drawn up, with the central portion being raised higher than the lower portions. Levator labii superioris

Lip corner puller AU12 The lip corner is pulled up diagonally towards the cheekbone. Zygomaticus major

Mouth stretcher AU20 The lips are pulled back and sideways, making the mouth look longer. Risorius

Eye closer AU43 The eyes are closed, with no apparent tension in the lids. Orbicularis oculi

https://doi.org/10.1371/journal.pone.0235545.t001
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heat increased slowly from 30˚C at intervals of 0.2–0.3˚C per second until reaching 52˚C,

which is considered a safety limit and the heating process stopped. However, in some cases in

which the pain tolerance was not reached before 52˚C, the heating element kept warming one

to two degrees past the limit with inertia, leading to a mean heat of 52.9˚C. A cold pad was

applied to prevent any burn marks after each heating session. Electrical stimulus was induced

in the fingertip of the ring finger with a transcutaneous electrical nerve stimulation (TENS,

Sanitas, Hans Dinlage GmbH, Germany). A pre-installed program with pulse width of 250 μs

and the frequency of 100 Hz was selected. The TENS output can be manually increased from

level 0 to 50 (peak to peak voltage 2V per level at 500 Ohm) and the levels were increased in

every three seconds.

The main motivation of using two pain stimuli in this study was to model generalized

experimental pain from physiological signals rather than one specific experimental type of

pain. The perception of pain starts from nociceptors, the sensing neurons, sending signals to

the spinal cord and brain in response to potentially damaging stimuli. A-Delta and C fibers

both carry a certain type of sensory information. The slowing increasing contact heat activates

A-Delta fibers, which are responsible for the sensation of a quick and shallow initial pain, and

then C fibers, which respond to a deeper, secondary pain. By contrast, electrical stimuli excite

nerve fibers directly in the epidermis including the aforementioned nociceptors as well as

non-nociceptive fibers [32]. Due to this primary aim, the collected facial sEMG data from all

the tests were analyzed altogether.

Electromyography data collection. The facial skin under the electrodes was cleaned

using cleansing swabs with 70% alcohol before the electrode placement. The pre-gelled

H124SG Ag/AgCl sensors (30 mm × 24 mm) were placed on the predetermined facial muscles

unilaterally along the right side of the face. The lead wires were attached firmly with tape to

avoid disturbing movements. A baseline recording was performed before pain induction

began. The pain induction starting place was pre-randomized. Subjects were instructed not to

talk during pain induction, to avoid speech-related muscle movement inference. The facial

muscle sEMG signals were continuously collected throughout the sessions.

Pain intensity assessment. The subjects were instructed to press an alarm signal on two

occasions during the pain induction; first, when the sensation was perceived as pain for the

first time (pain threshold time point) and second, the pain was intolerable (pain tolerance time

point). The pain inducement was stopped within the safety limits even if the pain tolerance

was not reached.

Fig 1. Study stimulation and measurements.

https://doi.org/10.1371/journal.pone.0235545.g001
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Data analysis

Preprocessing and feature extraction. Signal processing and data recomposition were

implemented using MATLAB R2014a. The sEMG signal was preprocessed with a 20-Hz But-

terworth high-pass filter to remove the movement artefacts and baseline drifts. An adaptive fil-

ter was applied for removal of the electrical pulse signals caused by the electrical tests and

50-Hz power line interference. A high-pass filtered frontalis sEMG was used as a noise refer-

ence signal in the adaptive noise cancellation. Then, the data were recomposed and down sam-

pled from 1000-Hz signals to 1-Hz features with root mean square (RMS) and waveform

length (WL) (Table 2) transformations for each sEMG signal for analysis. The RMS models

acted as an amplitude modulated Gaussian random process, whereas the WL represents the

sEMG complexity over the time segment [33]. The recomposition produced ten separate fea-

tures, named with the abbreviation of each muscle (cor = corrugator supercilii, orb = orbicu-

laris oculi, lev = levator labii superioris, zyg = zygomaticus major, and ris = risorius) and

feature transformation (rms = root mean square, and wl = waveform length): corrms, corwl,

orbrms, orbwl, levrms, levwl, zygrms, zygwl, risrms and riswl (Table 3).

Data analysis tasks were performed using Python versions 2.7.14 and 3.6.3 (Anaconda

Python for data science). During the feature processing, an additional outlier removal in the

form of Hampel filtering was applied to all the data to remove artifact spikes of extremely high

amplitude [34] (Table 2). All features were standardized on an individual level for the intra-

and inter-person comparison of the sEMG activity between muscles and subjects [35]. The

standardization was applied on each subject’s individual test level using z-transformation (zero

mean and one standard deviation with a “no pain” period included).

Data labelling. The test periods defined by stimulus start (t1), subject-reported pain

threshold (t2) and pain tolerance (t3) (Fig 2, Table 3) were split linearly to allow more detailed

exploration of the level of pain intensity. This resulted in four shorter period labels; P1–P4 (see

Table 3). After the data collection, additional test periods P0 were derived by including the col-

lected sEMG signals captured during the 30-second period preceding the start of pain

induction.

Statistical evaluation of the sEMG features. In the statistical comparison, first, the

sEMG features were visually evaluated across the test periods P0–P4. For this, period-specific

sEMG feature medians were calculated and plotted. Secondly, a pair-wise statistical compari-

son of the feature medians was performed. Subject level sEMG feature medians were com-

puted for each period (P1–P4). Finally, inter-correlations between the sEMG features and the

test period P1–P4 were determined.

Table 2. Data processing.

Order Processing Additional Details

preprocessing

1 20-Hz Butterworth high-pass filter

2 Adaptive non-linear noise cancellation

3 Segmentation and feature extraction:

from 1000-Hz signals to 1 Hz signals

with root mean square (RMS) and

waveform length (WL) transformation

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

PN
i¼1
ðxiÞ

2
q

WL ¼
PN� 1

i¼1
jxiþ1 � xij

preprocessing

4 Hampel filtering The Hampel filter (K = 3, t = 3) [34], where K is the half-

window and the outlier threshold is t standard deviations

5 Z-score standardization on test level z ¼ ðx� mÞ
s

, where μ is the mean, and σ is the standard deviation

https://doi.org/10.1371/journal.pone.0235545.t002
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Non-parametric methods were used in the data analysis due to an imbalance of label classes

and non-normally distributed sEMG feature values and to avoid linearity assumptions. Thus,

we computed Wilcoxon signed-rank statistics [36] for the pairwise comparison of sEMG

across the pain periods and Spearman’s rank-correlation for the monotonic relationships.

The k-nearest neighbour (kNN) algorithm was chosen as the machine learning model. The

small sample size, unbalanced label classes, non-normally distributed feature values, and the

individual differences in the subjects led us to use a simple but efficient non-parametric

machine learning method kNN that is able to also capture possible linear, but especially the

inherent nonlinearity in the problem.

Table 3. Time mark and period definitions used in the study.

Symbol Definition

Time

Mark

Time

collected during study
t1 Stimulus start

t2 Self-reported pain threshold reached

t3 Self-reported pain tolerance threshold (intolerable) or pain stimulus Safety limit reached/pain

induction end

calculated after study
t0 30 seconds before t1

t1split t1þ bt2� t1
2
c (floor function)

t2split t2þ bt2� t1
2

t3� t2
2
c (floor function)

Test

period

Time limits

P0 [t0, t1)

P1 [t1, t1split]

P2 (t1split, t2)

P3 [t2, t2split]

P4 (t2split, t3]

https://doi.org/10.1371/journal.pone.0235545.t003

Fig 2. Test schedule. Test periods P0–P4 were defined by test time points stimulus start (t1), subject-reported pain threshold (t2), and pain

tolerance (t3).

https://doi.org/10.1371/journal.pone.0235545.g002
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Machine learning modeling. A supervised machine learning model was applied for pain

intensity prediction. To study the primary aim, feasibility of pain recognition using sEMG sig-

nals, research focused on one method only. The model was constructed using selected sEMG

features as the input and periods P1–P4 as the labelled output. The selection process of the

sEMG features is described with more detail in the results section. The results from the sEMG

feature comparison were used in addition to a table of Spearman’s rank-order correlation coef-

ficients [37] to limit the number of features used in the pain intensity prediction.

The k-nearest neighbour (kNN) algorithm was chosen as the machine learning model. The

kNN is a non-parametric method, which performs well with both linear and non-linear pat-

terns. A c-index [38] was used as the performance measure to calculate the concordance

between the real ordinal outcomes and model predictions. A c-index is a generalization of the

area under the ROC curve (AUC) [39], and values above 0.50 correspond to concordance

between the predicted and real categories; values below 0.50 correspond to discordance, and

values of 0.50 correspond to random predictions. Unlike the commonly used accuracy, a c-

index also gives a reliable measure for unevenly distributed output classes.

In meta learning, the model is designed to automatically select the optimal learning model.

The feature selection and hyperparameter k tuning were performed in the prediction model

using nested cross-validation. Parameter optimizations were run within an inner loop, while

an outer loop was applied for model selection. This method estimated the overall predictability

performance without observed data and optimization bias [40]. The within-subject depen-

dence-resulting bias was handled by using leave-subject-out cross-validation [41].

Sometimes, the classifier may produce feasible analysis results without the data itself con-

taining actual patterns due to a small dataset or having too many features [42]. This can be sta-

tistically tested using permutation-based p-value. The competence of the meta learning

classifier was assessed before the final model evaluation with a permutation-based p-value

using randomized labels [42] in 1000 permutation tests; the null hypothesis was that the model

classifier performance is a result of a random change. This evaluation tested if there is a real

connection between the input data and class labels. Leave-subject-out nested cross-validation

was applied to the real input values in each test in addition to randomized output classes. A

plain non-nested leave-subject-out cross-validation evaluated the final model estimate, with

the most suitable parameters produced by the meta learning model.

Results

In total, 120 tests were included in the analysis; four tests were excluded due to technical prob-

lems with the electrical stimulus device. The length of the tests varied between the study sub-

jects and the nature of the pain stimuli. The average duration of a study test involved in the

analysis was 110 seconds (SD = 42 seconds). In this study, all the tests were analyzed togetherin

alignment with our initial aim to build a general model rather than one specific to a single

stimulus.

Distribution of the self-report-based test period length was almost balanced (Fig 3, ‘All’),

especially during the pain induction. A more detailed visual inspection on the pain stimuli

level average period length (Fig 3, ‘Heat’, ‘Electrical’) revealed that the heat and electrical sti-

muli had different threshold period lengths and that the distribution of all sEMG signal distri-

butions were skewed heavily to the right. Therefore, the study data were considered to be non-

normally distributed.

The sEMG signal across the test periods was analyzed visually and then statistically. The

visual comparison of the standardized sEMG feature medians (see Fig 4) exhibited clear differ-

ences between different muscle areas across periods. The corrugator supercilii sEMG-derived
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RMS and WL feature medians were distinguishable from the other sEMG features. The corru-

gator muscle activity grew simultaneously with the pain stimulus, whereas the point estimates

of the other muscle areas altogether followed similar patterns across study periods P0–P4 from

high activation during no pain to low activation at period P1. Eventually, they exhibited slower

growth throughout the increasing pain stimulus intensity during the periods P3–P4. The study

Fig 3. Data distribution across test periods with respect to all tests and then only heat or electrical tests. Bars represent the mean duration of each test period (P0–

P4), and the confidence interval shows individual period standard deviations; All–all 120 tests, Heat–only heat stimulus, and Electrical–only electrical stimulus.

https://doi.org/10.1371/journal.pone.0235545.g003

Fig 4. Medians of standardized sEMG features (RMS and WL) across test periods P0–P4. Muscle areas: cor = corrugator supercilii, orb = orbicularis oculi,

lev = levator labii superioris, zyg = zygomaticus major, and ris = risorius; feature transformations: rms = root mean square, and wl = waveform length.

https://doi.org/10.1371/journal.pone.0235545.g004
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subjects were not allowed to talk during the pain induction periods. Because this restriction

was not present during the later-added no-stimulus period P0, and the visualization showed

that period P0 sEMG signals were impacted by talking, all P0 period sEMG signals were

excluded from the following analysis.

The statistical analysis over test periods P1–P4 included a pairwise comparison of sEMG

features. According to the Wilcoxon signed-rank statistics, corrugator supercilii activity

increased across periods. The increase was statistically significant (p< 0.05) during all test

periods, except the RMS values during period P3 vs. P4. Corrugator features were the only

ones that showed a statistically significant difference during the period P1 vs. P2 and P3 vs. P4.

The activity increase of the levator labii superioris was not statistically significant during

the test period P1 vs. P2 or the period P3 vs. P4 but showed significant increase in all tests

when comparing the periods P1 and P2 before the pain hold vs. periods P3 and P4 after the

pain threshold. The pairwise test results of orbicularis oculi activation was similar to levator

labii superioris, with the difference in that RMS was not statistically significant when compar-

ing the P1 period and P4 periods.

The change in activation of all five tested muscles in both feature transformations was sta-

tistically significant when comparing periods of P2 and P3, representing the time that the sub-

ject reported the pain threshold. The p values of the Wilcoxon signed-rank statistics are

presented in Table 4.

Irrelevant and correlated features were identified using the sEMG signal visual and statisti-

cal analysis together with Spearman’s rank correlation coefficient [37] (Table 5). The features

selected for the predictive meta learning phase were corrms, corwl, levwl, and orbwl. The over-

all predictability performance of the meta model produced an average c-index value 0.63. The

best performing feature combination in the prediction model included the features presenting

the waveform lengths of muscles corrugator supercilii and levator labii superioris.

The permutation test results of the meta model showed a statistically significant difference

(p< 0.01) and therefore rejected the null hypothesis of classifier performance being a result of

a random change, which confirmed the significance of the model classifier.

The final kNN model evaluation with the features corrugator supercilii WL and levator

labii superioris WL and the optimized hyperparameter resulted in only moderate prediction of

Table 4. Pairwise comparison (Wilcoxon signed-rank, n = 31) across test periods P1–P4 using muscle sEMG feature medians of the individual subjects.

Muscle feature p-value

P1 vs. P2 P1 vs. P3 P1 vs. P4 P2 vs. P3 P2 vs. P4 P3 vs. P4

corrms 0.013� <0.001�� <0.001�� <0.001�� <0.001�� 0.088

corwl 0.015� <0.001�� <0.001�� <0.001�� <0.001�� 0.046�

orbrms 0.367 0.018� 0.057 <0.001�� <0.001�� 0.422

orbwl 0.422 0.010� 0.008�� <0.001�� <0.001�� 0.953

levrms 0.829 0.001�� 0.015� <0.001�� 0.001�� 0.493

levwl 0.984 0.003�� 0.022� <0.001�� 0.001�� 0.784

zygrms 0.085 0.290 0.570 <0.001�� 0.023� 0.433

zygwl 0.164 0.136 0.583 0.001�� 0.024� 0.357

risrms 0.638 0.023� 0.088 <0.001�� 0.003�� 0.597

riswl 0.597 0.048� 0.071 0.002�� 0.004�� 0.456

Muscle areas: cor = corrugator supercilii, orb = orbicularis oculi, lev = levator labii superioris, zyg = zygomaticus major, and ris = risorius; feature transformations:

rms = root mean square, and wl = waveform length.

�p < 0.05

��p < 0.01

https://doi.org/10.1371/journal.pone.0235545.t004
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pain intensity (c-index 0.64). Subject level concordance performance varied from random

to good (c-index = 0.43, 0.82, respectively). The average subject performance is visualized in

Fig 5.

Discussion

The feasibility of sEMG for pain assessment can be examined from various angles. In this

study, we tested the sEMG method measured using a non-commercial multipurpose biosignal

acquisition device on healthy subjects to explore which facial muscles are the most feasible for

a pain detection and prediction model.

Table 5. Inter-correlations (Spearman’s Rho) between the sEMG signals (input), and the period P1–P4.

corrms corwl orbrms orbwl levrms levwl zygrms zygwl risrms riswl

periods P1–P4 0.302 0.328 0.149 0.210 0.200 0.218 0.065 0.127 0.153 0.183

corrms 0.871 0.532 0.528 0.547 0.531 0.367 0.401 0.481 0.463

corwl 0.489 0.559 0.488 0.554 0.332 0.437 0.454 0.512

orbrms 0.832 0.798 0.732 0.751 0.668 0.750 0.659

orbwl 0.713 0.803 0.637 0.760 0.693 0.768

levrms 0.834 0.678 0.602 0.746 0.645

levwl 0.616 0.694 0.692 0.747

zygrms 0.759 0.780 0.659

zygwl 0.695 0.807

risrms 0.807

Muscle areas: cor = corrugator supercilii, orb = orbicularis oculi, lev = levator labii superioris, zyg = zygomaticus major, and ris = risorius; feature transformations:

rms = root mean square, and wl = waveform length.

https://doi.org/10.1371/journal.pone.0235545.t005

Fig 5. The average subject performance. The average concordance performance (c-index) of the ordinal classification for each subject (ordered by average c-

index) compared to the random prediction level (0.5). Red (dashed) line shows the average performance of the final model (0.64).

https://doi.org/10.1371/journal.pone.0235545.g005

PLOS ONE Pain intensity prediction model using facial expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0235545 July 9, 2020 10 / 15

https://doi.org/10.1371/journal.pone.0235545.t005
https://doi.org/10.1371/journal.pone.0235545.g005
https://doi.org/10.1371/journal.pone.0235545


In our results the facial muscles most associated with pain were congruent to the muscle

actions described as the core facial pain expression in existing literature [11,12,17]. The corru-

gator supercilii seemed to be the most feasible muscle area for the recognition of gradually

increasing continuous experimental pain in all of our analyses. This is in line with previous

findings, which have found corrugator supercilii to be the “muscle of pain” [11,17,43]. The

levator labii superioris also reacted strongly to the pain stimuli when the stimulus reached the

pain threshold causing cheek raising and nose wrinkling. Our findings are also partly consis-

tent with the study of Wolf et al. [44], in which nine facial muscles were analyzed using the

sEMG method during experimental pain induction with a laser system in a sample of 10 male

healthy volunteers. They found two muscle groups to be mainly related to pain expression: the

orbicularis oculi, as strongest muscle related to eye narrowing, and the mentalis and depressor

anguli oris, which cause movements around the mouth. The corrugator supercilii also showed

significant results in their analysis as a part of eye narrowing.

The lower perioral muscles around the mouth were not included in our study due to our

aim to avoid placing electrodes in impractical positions, considering the care procedures and

medical accessories in the ICU. Furthermore, the anatomical differences in facial musculatures

and soft tissues form some challenges to the feasibility of sEMG use in clinical care. The medial

part of the corrugator supercilii is located just superior to the eyebrow [45], forming an easily

located landmark for electrode placement. On the contrary, the upper perioral region muscles

located on the cheek are more difficult to distinguish, because the facial muscles are typically

very thin and located in layers [46]. Especially risorius cannot be identified in many individu-

als [47]. Our findings suggest that the risorius might not be a feasible muscle to be used as a

predictive measure of pain expression.

Using sEMG signals during the continuously increasing pain stimuli period, the data were

classified into four pain intensities. The ordinal classification of the most feasible sEMG sig-

nals, the corrugator supercilii and levator labii superioris, resulted in model performance of

0.64. This is better than a random result, but it does not reach a good prediction level. How-

ever, for some subjects, the ordinal classification provided a fair pain intensity prediction

(eight subjects with c-index > 0.70), whereas some were somewhat randomly ranked (six sub-

jects with the c-index values of 0.43–0.55). This could be a result of the subjects’ differences in

facial expressiveness and non-expressiveness [48]. Pain experience is subjective and has vari-

ability; therefore, the predictive model could benefit of more items that support the individual

differences rather than one-fits-all generalization [49]. With 31 study subjects, a more detailed

model was not realizable, but the sample size was reasoned with the feasible nature of the

study. Furthermore, in a study design with intentional pain induction, the sample size must be

ethically considered. In addition to the subjectivity of the pain experience, pain expression is a

diverse non-verbal action to communicate pain to others, involving both voluntary and invol-

untary actions. It may be influenced by situational differences, but not as easily as the self-

report of pain. The influence of the social presence and characteristics of the experimenter

may influence the pain tolerance and pain intensity, but the pain threshold seems to be more

resistant to external influences [50].

Limitations

Our study design has weaknesses. Each participant was tested four times with experimental

pain, and a carryover effect can occur when multiple interventions are tested on the same

study subject [51]. In this study, the carryover effect might have affected the pain experience or

the facial pain expression in spite of our attempts to control the carryover effect with randomi-

zation. Furthermore, adding a non-painful control intervention that distinguishes expressions
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unrelated to pain during the study and possibly monitoring a decreasing pain stimulus would

have strengthened the design.

Demographic information collected from the subjects consisted of age and sex, as we aimed

to have equal numbers of male and female subjects in our sample. These variables were not

used in the analysis due to the limited sample. Adding demographic variables related to ethnic

backgrounds would have strengthened the insight into the variability of facial actions [52].

Furthermore, the complex phenomenon of facial aging influences changes in the facial bones,

soft tissues and skin [53]. Also, muscle contraction amplitude in facial muscle sEMG may be

influenced by aging [54], and skinfold thickness may affect signal selectivity [55].We did not

test the system of the person’s natural social situation, and the test might have involved contex-

tual factors that affected the results in a study [56]. The participants were aware of the overall

study aims to detect various biosignals during pain induction. The study subjects may have

applied different emotion regulation strategies during pain inducement that can moderate

their pain expression [57]. However, in addition to facial electrodes, the participants wore elec-

trodes on their fingers and in a belt around their chests to detect other biosignals (Reported by

Jiang et al. [31]). This might have distracted them from concentrating on the facial expressions

only.

The electrodes were applied according the guidelines of the human electromyography

study by Fridlund and Cacioppo [58], but it remained unclear whether the recorded muscle

activities actually reflected the muscle over which the electrodes were supposed to be fixed or a

neighboring muscle. Therefore, when referring to the sEMG measurement of a specific mus-

cle, it would be more appropriate to refer to the muscle group. Also, our choice to use the

monopolar configuration may have had an effect on lower selectivity but was reasoned with

better usability of the system.

Conclusions

In conclusion, the feasibility study results show that the muscles that gave the most informa-

tion in the sEMG measurement during experimental pain were connected to eyebrow-lower-

ing, nose wrinkling and upper lip-raising movements. This is congruent with the previously

described core expression of pain. The performance of the prediction model remains modest,

but the ordinal classification performance was statistically significant, confirming the pattern

between the sEMG features and labels. Pain detection based on facial expressions may need

further assurance of subject demographics and other relevant attributes due to the variability

in expressiveness of the subjective pain experience.

Supporting information

S1 Fig. Filtered sEMG signals in one test, with extracted waveform length feature.
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Writing – review & editing: Riitta Mieronkoski, Elise Syrjälä, Mingzhe Jiang, Amir Rahmani,
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6. Gélinas C, Fillion L, Puntillo KA, Viens C, Fortier M. Validation of the critical-care pain observation tool

in adult patients. Am J Crit Care. 2006 Jul 1; 15(4):420–7. PMID: 16823021

7. Odhner M, Wegman D, Freeland N, Steinmetz A, Ingersoll GL. Assessing pain control in nonverbal criti-

cally ill adults. Dimens Crit Care Nurs. 2003; 22(6):260–7. https://doi.org/10.1097/00003465-

200311000-00010 PMID: 14639117

8. Payen JF, Bru O, Bosson JL, Lagrasta A, Novel E, Deschaux I, et al. Assessing pain in critically ill

sedated patients by using a behavioral pain scale. Crit Care Med. 2001 Dec; 29(12):2258–63. https://

doi.org/10.1097/00003246-200112000-00004 PMID: 11801819

9. Prkachin KM, Berzins S, Mercer SR. Encoding and decoding of pain expressions: a judgement study.

Pain. 1994; 58(2):253–9. https://doi.org/10.1016/0304-3959(94)90206-2 PMID: 7816493

10. Arif Rahu M, Grap MJ, Cohn JF, Munro CL, Lyon DE, Sessler CN. Facial expression as an indicator of

pain in critically ill intubated adults during endotracheal suctioning. Am J Crit Care. 2013 Sep 1; 22

(5):412–22. https://doi.org/10.4037/ajcc2013705 PMID: 23996421

11. Prkachin KM. The consistency of facial expressions of pain: a comparison across modalities. Pain.

1992; 51(3):297–306. https://doi.org/10.1016/0304-3959(92)90213-u PMID: 1491857

PLOS ONE Pain intensity prediction model using facial expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0235545 July 9, 2020 13 / 15

https://doi.org/10.1007/s00134-014-3299-3
https://doi.org/10.1007/s00134-014-3299-3
http://www.ncbi.nlm.nih.gov/pubmed/24797682
https://doi.org/10.1097/01.anes.0000287211.98642.51
https://doi.org/10.1097/01.anes.0000287211.98642.51
http://www.ncbi.nlm.nih.gov/pubmed/18073576
https://doi.org/10.1111/j.1365-2648.2008.04947.x
https://doi.org/10.1111/j.1365-2648.2008.04947.x
http://www.ncbi.nlm.nih.gov/pubmed/19291192
https://doi.org/10.1186/cc6789
http://www.ncbi.nlm.nih.gov/pubmed/18279522
http://www.ncbi.nlm.nih.gov/pubmed/16823021
https://doi.org/10.1097/00003465-200311000-00010
https://doi.org/10.1097/00003465-200311000-00010
http://www.ncbi.nlm.nih.gov/pubmed/14639117
https://doi.org/10.1097/00003246-200112000-00004
https://doi.org/10.1097/00003246-200112000-00004
http://www.ncbi.nlm.nih.gov/pubmed/11801819
https://doi.org/10.1016/0304-3959(94)90206-2
http://www.ncbi.nlm.nih.gov/pubmed/7816493
https://doi.org/10.4037/ajcc2013705
http://www.ncbi.nlm.nih.gov/pubmed/23996421
https://doi.org/10.1016/0304-3959(92)90213-u
http://www.ncbi.nlm.nih.gov/pubmed/1491857
https://doi.org/10.1371/journal.pone.0235545


12. Prkachin KM, Solomon PE. The structure, reliability and validity of pain expression: Evidence from

patients with shoulder pain. Pain. 2008 Oct 15; 139(2):267–74. https://doi.org/10.1016/j.pain.2008.04.

010 PMID: 18502049

13. Craig KD, Patrick CJ. Facial expression during induced pain. J Pers Soc Psychol. 1985 Apr; 48

(4):1080–91. https://doi.org/10.1037/0022-3514.48.4.1089 PMID: 3989673

14. Kunz M, Lautenbacher S. Improving recognition of pain by calling attention to its various faces. Eur J

Pain. 2015 Oct; 19(9):1350–61. https://doi.org/10.1002/ejp.666 PMID: 25736626

15. Ekman P, Friesen W V. Facial Action Coding Consulting. Palo Alto California: Consulting Psycholo-

gists Press; 1978.

16. Sayette MA, Cohn JF, Wertz JM, Perrott MA, Parrott DJ. A psychometric evaluation of the facial action

coding system for assessing spontaneous expression. J Nonverbal Behav. 2001; 25(3):167–85.

17. Prkachin KM. Assessing pain by facial expression: Facial expression as nexus. Vol. 14, Pain Research

and Management. ProQuest Central pg; 2009. p. 53–8.

18. Sathyanarayana S, Satzoda RK, Sathyanarayana S, Thambipillai S. Vision-based patient monitoring: a

comprehensive review of algorithms and technologies. J Ambient Intell Humaniz Comput. 2018 Apr 26;

9(2):225–51.

19. Walter S, Gruss S, Ehleiter H, Tan J, Traue HC, Crawcour S, et al. The biovid heat pain database: Data

for the advancement and systematic validation of an automated pain recognition. In: 2013 IEEE Interna-

tional Conference on Cybernetics, CYBCONF 2013. 2013. p. 128–31.

20. Werner P, Al-Hamadi A, Niese R, Walter S, Gruss S, Traue HC. Automatic pain recognition from video

and biomedical signals. In: Proceedings—International Conference on Pattern Recognition. IEEE;

2014. p. 4582–7.

21. Lucey P, Cohn JF, Prkachin KM, Solomon PE, Chew S, Matthews I. Painful monitoring: Automatic pain

monitoring using the UNBC-McMaster shoulder pain expression archive database. In: Image and Vision

Computing. Elsevier; 2012. p. 197–205.

22. Lucey P, Cohn JF, Matthews I, Lucey S, Sridharan S, Howlett J, et al. Automatically detecting pain in

video through facial action units. IEEE Trans Syst Man, Cybern Part B Cybern. 2011;

23. Sikka K, Ahmed AA, Diaz D, Goodwin MS, Craig KD, Bartlett MS, et al. Automated assessment of chil-

dren’s postoperative pain uning computer vision. 2015 Jul 1; 136(1).

24. Boxtel A Van. Facial EMG as a tool for inferring affective states. Proc Meas Behav. 2010; 2010(August

24–27):104–8.

25. Wolf K. Measuring facial expression of emotion. Dialogues Clin Neurosci. 2015 Dec; 17(4):457–62.

PMID: 26869846

26. Dawes TR, Eden-Green B, Rosten C, Giles J, Governo R, Marcelline F, et al. Objectively measuring

pain using facial expression: is the technology finally ready?. Vol. 8, Pain management. 2018. p. 105–

13. https://doi.org/10.2217/pmt-2017-0049 PMID: 29468939

27. Ekman P, Rosenberg EL. What the Face Reveals: Basic and Applied Studies of Spontaneous Expres-

sion Using the Facial Action Coding System (FACS). What the Face Reveals: Basic and Applied Stud-

ies of Spontaneous Expression Using the Facial Action Coding System (FACS). 2012. 1–672 p.

28. Bartlett MS, Littlewort GC, Frank MG, Lee K. Automatic Decoding of Facial Movements Reveals Decep-

tive Pain Expressions. Curr Biol. 2014 Mar 31; 24(7):738–43. https://doi.org/10.1016/j.cub.2014.02.009

PMID: 24656830

29. Sarker VK, Jiang M, Gia TN, Anzanpour A, Rahmani AM, Liljeberg P. Portable multipurpose bio-signal

acquisition and wireless streaming device for wearables. In: 2017 IEEE Sensors Applications Sympo-

sium (SAS). IEEE; 2017. p. 1–6.

30. Jiang M, Gia TN, Anzanpour A, Rahmani A-M, Westerlund T, Salantera S, et al. IoT-based remote facial

expression monitoring system with sEMG signal. In: 2016 IEEE Sensors Applications Symposium

(SAS). IEEE; 2016. p. 1–6.
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