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Abstract

We develop a new approach for testing conditional asset pricing models that
avoids the issues in using realized returns as a proxy for expected returns. Tes-
table restrictions are developed by asking what realized returns we would ob-
serve, given the pricing model under scrutiny. The new reverse testing approach
is used to test the Merton ICAPM and a long-standing risk-return puzzle: the
price of market risk has often turned out to be insignificant and at times even
negative. The results from the new testing approach on US data give strong
support for a positive relationship between conditional variance and the equity
premium.
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1. INTRODUCTION

Tests of asset pricing models evolved from the evaluation of their uncon-

ditional cross-sectional implications into tests of their conditional time series

implications in the late 1980s (Ferson, 2003). However, as tests of conditional

implications focus on period-by-period return properties instead of long-term

averages, the tests come with a cost. Using realized returns as a proxy for ex-

pected returns is a concern in the conditional tests but not in the unconditional
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tests as there are a number of reasons to believe that realized returns are not

adequate proxies for the conditional expected returns (see, e.g., Brav et al.,

2005). For example, Greenwood and Shleifer (2014) document that investors

possess high expectations on future returns when rational expectations asset

pricing models suggest a low return. A common solution has been to estimate

jointly an expectations model – the typical choice being a linear one (Harvey,

2001). However, it suffers from the same problem – the choice of forecasting

variables are selected ex post to have predictive power over realized returns. Alt-

hough a lot of work on finding better proxies for the expected returns have been

done, the suggested solutions (e.g., the use of surveys) are not often suitable for

tests of conditional asset pricing models.

In this paper, we introduce a new approach to test conditional asset pricing

models which avoids the issues in using realized returns as a proxy for expected

returns as well as the need to use an empirical expectations model. We turn the

tables and ask what realized returns we would observe, given the asset pricing

model for the expected returns. Using this insight, we derive a simple but

innovative model for the realized returns that combines the dividend discount

model of Campbell and Hentschel (1992) with the selected conditional asset

pricing model to study the model and the risk-return trade-off. This reverse

(flipped) testing approach differs from traditional testing approaches in a sense

that it relates realized returns to the change in the risk-free rate, in the expected

dividends, and in the risk premiums rather than to the level of or the surprise

in the variables.1

We use the new approach to test one of the simplest, yet fundamental pri-

cing equations, the Merton (1973, 1980) model.2 The model suggests that a

representative investor must receive a certain amount of positive compensation

for her investment, commonly referred to as price of market risk, or lambda, for

a unit increase in variance. Because the model is applicable to any security and

1 The framework of Campbell and Hentschel (1992) – generalized e.g. in Campbell et al.
(1997) – is obviously closely related to our study. However, our models differ slightly; Campbell
et al. show how (real) realized returns can be written as the sum of the expected return for
the same period and of the changes in expectatations of future (real) returns and dividends.
As an example, they assume that the expected returns behave in an autoregressive manner.
We do not separate the expected return terms which allows us to test the theoretical model
directly. The empirical model derived in Guo and Whitelaw (2006) to study the Merton (1973)
ICAPM is also related to our model, although the motivation and the scope are different.

2 The reverse testing approach can in principle be used to test any conditional asset pricing
model and for any number of assets. The selected model is merely chosen to demonstrate the
differences to the traditional testing approach.
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hence also to a market portfolio, Merton’s model suggests a positive relations-

hip between the expected return of a market portfolio and the variance of the

market, all conditional on available information. However, empirical evidence

on this relationship has been mixed, even a long-standing puzzle (sometimes

labeled the total volatility puzzle). Although some studies have found empirical

support for the relationship between return and variance (see, e.g., Ghysels,

Santa-Clara and Valkanov, 2005), there is also a great deal of evidence that the

relationship is non-significant, with lambda estimates being too small and at

times even negative, particularly in shorter samples, and sensitive to methodo-

logy and sample period (reviews of the studies can be found, e.g., in Bali, 2008,

and in Gonzales, Nave and Rubio, 2012).

A number of alternative explanations have emerged. The first line of ex-

planation is based on the idea that the measure of the market portfolio is not

adequate (Merton, 1987). This leads to a situation where investors are compen-

sated for holding imperfectly diversified portfolios; hence, the standard model

relating market returns to market variance could be missing a source of risk

that is driving the puzzle (see Malkiel and Xu, 2006).

A related explanation for the total volatility puzzle is that the simple one-

factor asset pricing model is wrong. In line with this reasoning, the inconclusive

results are due to some missing risk or investment opportunity hedge factors

(e.g., Guo and Whitelaw, 2006; Kim and Nelson, 2014; Feunou et al., 2014).

Work along this line has considered, for example, the unpredictable part of

the variance (French, Schwert and Stambaugh, 1987) or skewness (Theodossiou

and Savva, 2016). The former has been motivated by the leverage effect (Black,

1976) and the volatility-feedback effect (Pindyck, 1984). They both explain why

variance and realized return can move in opposite directions. The former states

that a negative shock in the market causes the overall leverage to increase,

leading to higher volatility. The latter is based on the idea that a positive

unexpected shock to volatility leads to a higher risk premium which implies

a negative realized return. French et al. (1987) use intuition to motivate an

empirical model where the realized equity premium is related both to conditional

as well as unexpected variance (later more formally motivated in Campbell,

1991). They find support for the volatility-feedback effect over the leverage

effect. However, although their results support the importance of the expected

and unexpected variance, they are not simultaneously statistically significant.

The second line of explanation for the puzzle suggests that the variance

measures are inadequate and hence should be improved. Suggestions include
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developments in econometric modeling techniques to model the conditional va-

riance as well as using forward-looking implied volatility measures. The first

wave of improvements came with the introduction of the (G)ARCH specifica-

tion by Engle (1982) and Bollerslev (1986). Ultimately, an enormous number

of different specifications in the GARCH family have been proposed, including

asymmetric extensions and non-normal distributions (see, e.g., Glosten et al.,

1993; Bekaert and Wu, 2000).

A more recent econometric development in estimating variance followed with

the mixed data sampling methods (henceforth MIDAS) introduced by Ghysels

et al. (2005). MIDAS allows one to combine data of different frequencies. This

method is especially suitable for studying the risk-return tradeoff because it

allows combining daily data for more accurate variance estimation with lower-

frequency data to model the long-term risk-return relationship, thus alleviating

problems with noisy short-term returns. Studies utilizing this method to eva-

luate the relationship between volatility and future returns are rather scarce as

of today but include, e.g., Gonzales, Nave, and Rubio (2012) and Ghysels et al.

(2005 and 2016).

Alongside the development of new econometric estimation techniques for the

conditional variance, other approaches have also been proposed, the most nota-

ble being the use of implied volatility calculated from option prices. A number

of stock and derivatives exchanges have started to calculate these implied vo-

latility measures (cf., e.g., CBOE’s Volatility Index, VIX). Because the implied

volatility measure is by construction forward-looking, some researchers have ar-

gued for its use over conventional historical measures (for a review, see, e.g.,

Poon and Grander, 2003). As a result, researchers have also used implied vo-

latilities in studying the relationship between variance and market premia (see,

e.g., Guo and Whitelaw, 2006; Santa-Clara and Yan, 2010).

Although there have been clear improvements in variance estimation, gene-

rally only certain parts of the puzzle have been explainable, not all of it, and

neither under all circumstances nor over short horizons. For example, Hedegaard

and Hodrick (2016) provide potential explanations for why the risk-return trade-

off cannot be observed particularly over short horizons. They note that market

microstructure frictions, non-synchronous portfolio investment decisions, and

individual stock illiquidity can drive the results. Conversely, Hibbert, Daignler

and Dupoyet (2008) argue in favor of a behavioral explanation for the negative

return-volatility relationship.

The reverse testing approach provides an alternative explanation for the to-
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tal volatility puzzle that also helps to explain why many earlier models have

not been able to fully provide one. We argue that many of the earlier efforts to

uncover the conditional return-variance relationship yield susceptible estimates

of lambda and have shortcomings that can be circumvented by the empirical

model implied by the new approach. First, the new model explains why the

lambda estimate is not significant if one only links realized returns to the con-

temporaneous conditional variance as is done in many previous studies. Second,

the model explains why empirical estimates of lambda are by necessity too small

unless properly adjusted. Third, the model helps us to understand why the esti-

mation results are affected by the time interval used to measure returns. Finally,

comparison of the traditional and the new model reveals why it is possible to

find a negative risk-return relationship with the traditional approach in certain

sample periods and return horizons and why this is not the case with the new

approach.

Applying our new approach to study the Merton (1973, 1980) model yields

a model that resembles the volatility-feedback model. However, the models and

the results are not the same. In fact, the tests are closely related only if the

unexpected realized variance is positively related to the conditional variance at

the end of the period. However, this is not necessarily the case. Our model

has also some resemblance to Guo and Whitelaw (2006). They connect a log

linearization to Mertons (1973) ICAPM, and include both market variance (the

risk component), and the covariance with investment opportunities (the hedge

component) in their model, alongside with shocks to the risk (i.e. volatility

feedback) and hedge components. Further, their model contains shocks to the

risk-free rate and dividends, although they are not explicitly estimated in their

empirical specification, but left in the error term. Using implied variance over a

relatively short sample from 1983(11) to 2001(5), Guo and Whitelaw find that

the price of risk estimate is positive, statistically significant, and reasonable in

magnitude. They also find that the correlation between the risk component and

the hedge component is negative, a result that may explain the weak results

using traditional approaches which exclude the hedge component. However, in

their condensed models, and in models for checking the robustness, the results

are more ambiguous.

Empirically, we compare the new approach to estimate the price of market

risk against the approaches used in the literature. We use both traditional

measures of volatility such as those based on (asymmetric) GARCH models and

new models in the spirit of MIDAS. For robustness (e.g. to avoid errors in
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the variables issues), we also use a readily available, forward-looking variance

measure based on the option implied VIX volatility index. Tests are conducted

using US stock market returns for 1928 to 2013.

2. THEORETICAL BACKGROUND

2.1. Merton model for the return-risk relationship

The capital asset pricing model CAPM postulates that the excess return on

any security can be determined by

E
[
rei,t+1 |Ωt

]
= βi,t+1 (Ωt)E

[
rem,t+1 |Ωt

]
, (1)

where E
[
rei,t+1 |Ωt

]
and E

[
rem,t+1 |Ωt

]
are expected excess returns on secu-

rity i and the market portfolio, conditional on investors’ information set Ωt

available at time t. Because the conditional beta, βi,t+1 (Ωt), is defined as

Cov (ri,t+1, rm,t+1 |Ωt )V ar (rm,t+1 |Ωt )−1
, where Cov(.) is the conditional cova-

riance between security i and the market and Var(.) is the conditional market va-

riance, we can use equation (1) to define the ratio E
[
rem,t+1 |Ωt

]
V ar (rm,t+1|Ωt)−1

as λm,t+1, a measure commonly labeled as the conditional price of market risk or

reward-to-risk; it measures the compensation the representative investor must

receive for a unit increase in the variance of the market return. Under certain

assumptions (e.g., power utility), it can be shown that this lambda term is equal

to the aggregate relative risk aversion.

Merton (1973, 1980) showed that the same conclusion can be achieved using

an intertemporal CAPM. Under certain conditions, equilibrium expected re-

turns are related to the (co)variance of market returns and a reward-to-risk

term defined as −U ′′

ww ·W ·
(
U

′

w

)−1

, where U is a utility function for the re-

presentative investor, W is wealth, and U
′

represents partial derivatives of the

utility function. In both cases, the equilibrium expected excess returns for any

security i can be stated as

E
[
rei,t+1 |Ωt

]
= λm,t+1Cov (ri,t+1, rm,t+1 |Ωt ) , (2)

where the conditional expected excess return E
[
rei,t+1 |Ωt

]
is linearly related

to the time-varying aggregate price of market risk, measured by the parameter

λm,t+1, and the conditional covariance between the security’s return and that

of the market, everything conditional on information Ωt. Because the model is

6



applicable to any security i, and hence also to the market portfolio, the model

for the excess return on the market portfolio can be written as

E
[
rem,t+1 |Ωt

]
= λm,t+1V ar (rm,t+1 |Ωt ) . (3)

Equation (3) basically shows that investors must be compensated by a higher

expected return if the conditional variance increases. Because subtracting a

constant from a random variable does not change the variance, we can rewrite

the variance term in the right hand side in excess return form: V ar
(
rem,t+1 |Ωt

)
.

This equation forms the basis for most of the empirical analysis conducted so

far.

2.2. Traditional testing approach

The theoretical model (3) has a number of empirical implications. To test

the model, one must provide empirical proxies for expected returns and con-

ditional variances. Typical tests assume that realized returns can be used as

a proxy for the expected returns. This is based on a notion of rational expec-

tations, which is commonly used as a basis to test unconditional implications

of asset pricing models. Rational expectations imply that although investors’

expectations may be wrong in the short run, they are correct on average in

the long run, they utilize all information, and they are not consistently biased.

Given an estimate for the variance, one typically proceeds to estimate equation

(3) under the assumption of constant price of market risk using the following

linear model:

rem,t+1 = µ+ λmσ
2
m,t+1 + εm,t+1, (4)

where rem,t+1 is the realized excess market return from time t to t+1, µ is a

constant expected to be zero if excess returns are used and the asset pricing

model is valid, λm is the price of market risk, and σ2
m,t+1 is the conditional

variance for the period from t to t+1, given the information available at time

t.3 We refer to using this equation as the traditional approach to estimating

lambda.

Empirical research has used a number of alternative approaches to estimate

3 One could also allow the price of market risk to be time-varying (see, e.g., Harvey, 2001).
However, as we focus on the fundamental relationship between risk and return, we assume it
to be constant throughout this paper.
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the variance. The simplest is to use the realized squared returns as an estimate

for the variance. The most commonly used approach, however, is based on the

family of (generalized) autoregressive conditional heteroskedasticity (GARCH)

models. Their popularity is based on the fact that they can be used to capture

the main stylized features in the volatility of financial assets, namely volatility

clustering, time-variation, asymmetry, and non-normality. The most commonly

used specification is the univariate GARCH(1,1)-in-Mean model in which one

combines equation (4) with the assumption that εm,t+1 ∼ nid
(
0, σ2

m,t+1

)
and

the following process for the conditional variance:

σ2
m,t+1 = ω + αε2

m,t + βσ2
m,t, (5)

where the parameters ω, α and β relate to the GARCH(1,1) variance specifi-

cation. Equation (5) captures time-variation and clustering, and can easily be

adjusted to take into account further stylized facts of the variance allowing, for

example, for asymmetric responses to return shocks and for alternative distri-

butions.

The traditional approach is, however, problematic because its empirical tests

rest on the joint hypothesis of the expectations model and the asset pricing

model itself. We believe that realized returns are inadequate proxies for the ex-

pected returns, particularly for the relatively short return measurement intervals

often used in asset pricing tests, and that this approach therefore is not the best

approach for empirical tests of conditional asset pricing models that allow for

time-varying expectations. In addition, we argue that the traditional approach

implicitly assumes a flat term structure for the risk premium which goes against

recent evidence (c.f., Feunou et al., 2014). In fact, we argue that some of the

empirical anomalies that have been found with respect to the Merton model are

due to the traditional testing approach.

One of the main empirical anomalies with respect to lambda is that the

estimates are often too small compared to their ex ante expectation, as there

are theoretical justifications that lambda should be greater than one but less

than five (see e.g. Meyer and Meyer, 2005). The same conclusion can also be

drawn by a casual study of equation (3), which indicates that, for a typical

long-term average annual volatility (e.g., 15 percent) and market risk premium

(e.g., five percent), lambda estimates should be greater than one.

The solution suggested in the literature is to include the surprise to the

conditional variance in addition to the theoretical relationship. This volatility-
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feedback effect offers an alternative way to estimate lambda. Following French

et al. (1987), we can add the unexpected variance σ2
u,m,t+1 into equation (4):

rem,t+1 = µ+ λmσ
2
m,t+1 + γmσ

2
u,m,t+1 + εm,t+1, (6)

where σ2
u,m,t+1 = σ2

r,m,t+1−σ2
m,t+1. Realized variance, σ2

r,m,t+1, is often calcula-

ted as the sum of daily squared returns within a particular month. In practice,

we can estimate lambda easily by augmenting equation (4) with the realized

variance and estimating rem,t+1 = µ + δmσ
2
m,t+1 + γmσ

2
r,m,t+1 + εm,t+1. Since

δm = λm − γm, an estimate for lambda can be calculated as the sum of δm and

γm. We call this equation the volatility-feedback approach to estimating lambda.

Although the volatility-feedback approach is a step forward, it still suffers from

the use of realized returns as a proxy for expected returns.

2.3. A new model for testing the return-variance relationship

Based on the discussion above, we take a slightly different point of view on

estimating the relationship between market variance and the risk premium. Our

starting point basically turns the tables and asks the question: What realized

returns would one observe, given that the asset pricing model is correct? To

investigate this, we create a model in the spirit of Campbell and Hentschel

(1992).4 We analyze realized returns over one period. The length of the period

can be chosen freely, but here we assume it to be one month. At first, we do

not take a stand on the pricing model or how investors set their discount rates.

The model is derived in a continuously compounded world, and thus all rates

are continuously compounded returns/dividend growth rates per period.

Our starting point is a dividend-paying security, i.e., an individual stock, a

stock portfolio or the overall stock market portfolio. Later, the pricing model

under analysis focuses on the market portfolio. The security pays a dividend

at the end of each period. From Campbell, Lo, and MacKinlay (1997), we

know that the log price of the security at time t can be stated as a function of

the future log dividends and continuously compounded discount rates using the

dynamic Gordon growth model as

pt ≈
k1

1− ρ
+

∞∑
i=0

ρi (1− ρ)Et[dt+1+i]−
∞∑
i=1

ρi−1Et[rt+i], (7)

4 Originally in Campbell and Shiller (1988). Additionally, see the models in Guo and
Whitelaw (2006) and Banerjee, Doran and Peterson (2007).
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where k1 ≡ −ln (ρ)−(1− ρ) ln (1/ρ− 1) and ρ ≡ 1/(1+exp(d− p)), where d− p
is the average logarithmic dividend-price ratio. The parameter ρ is positive and

less than one by definition. Campbell et al. (1997) suggest that ρ should be 0.997

for monthly data. Et[rt+i] expresses the continuously compounded required

rate of return for the period t+i whereas Et[dt+i] represents the expected log

dividend occurring at the end of the period at time t + i, all conditional on

information available at time t.

Note that we use lowercase letters for logarithms of variables and that alt-

hough the formulation in equation (7) differs slightly from Campbell et al.

(1997), it is essentially the same equation. For convenience, we use the following

notation from now on: dt,t+i = Et[ln(Dt+i)], i.e., the conditional expected value

of the log dividend at time t+ i (i > 0). Similarly, rt,t+i = Et[rt+i] is the con-

tinuously compounded required rate of return for period t+ i, both conditional

on information available at time t.

Using a first-order Taylor log-linearization, the continuously compounded

realized return at time t+1 can be written as

rt+1 ≈ k1 + ρpt+1 − pt + (1− ρ)dt+1, (8)

where dt+1 is the log of the realized dividend at time t+1. Inserting log prices

(equation (7) and a similar expression for the log price at t+1), and rearranging,

we get the following expression for realized returns:

rt+1 ≈ (1− ρ)

∞∑
i=0

ρi (dt+1,t+1+i − dt,t+1+i) +

∞∑
i=1

ρi−1
(
rt,t+i − ρrt+1,t+1+i

)
,

(9)

where we have utilized the fact that dt+1 = dt+1,t+1.5 From this point forward

our setup differs a bit more from Campbell and Hentschel (1992) as we imple-

ment our main insight: different asset pricing models imply different realized

returns that can be used to test the model. The testing proceeds by selecting a

candidate pricing model, and inserting it into equation (9).

Applying this insight to test the one-factor version of the Merton (1980)

5 This equation is a slightly rearranged version of equation (3) in Campbell and Hent-
schel (1992), here for nominal returns. It is easy to show e.g. that the last term
of equation (9) can also be written as

∑∞
i=1 ρ

i−1 (rt,t+i − ρrt+1,t+1+i) = Et[rt+1] −∑∞
i=1 ρ

i (Et+1[rt+1+i] − Et[rt+1+i]).
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model (3) for the conditional expected returns for the market portfolio and

assuming that the price of market risk is constant, we can rewrite the last term

of equation (9) as follows:

∞∑
i=1

ρi−1 (rt,t+i − ρrt+1,t+1+i)

=

∞∑
i=1

ρi−1 (rft,t+i − ρrft+1,t+1+i) + λm

∞∑
i=1

ρi−1
(
σ2
t,t+i − ρσ2

t+1,t+1+i

)
, (10)

where rft,t+i is the risk-free rate for the period t + i given the information at

time t.6 The risk-free rates known at time t+1 are defined similarly. In practice,

conditional future risk-free rates can be approximated for example with forward

rates.

As a result, our model differs slightly from Campbell and Hentschel’s spe-

cification because our model relates realized returns directly to the change in

the conditional variance over the period rather than to the (contemporaneous)

expected level and unexpected surprise of the conditional variance.

Equation (10) is still not directly testable and we need to put more structure

into the model. Working first with the second risk premium related term, we

use the assumption that the conditional variance is a mean-reverting process

(cf., e.g., Engle and Patton, 2001) and that one-step-ahead forecasts can be

assessed. We further assume that the conditional variance for any future period

i ≥ 1 can be expressed as a function of the next period’s forecast as

σ2
t,t+i = φi−1σ

2

t,t+1 + σ2
(
1− φi−1

)
, (11)

where |φ|<1 is a persistence parameter reflecting the speed of convergence of

the conditional variance toward the long-term unconditional variance σ2. As

we expect φ to be positive, this model states that if the current variance is

below (above) the long-term average, the forecast for the variance also stays

below (above) the long-term average, but over time the variance will converge

toward the mean. The model also implies that an increase (decrease) in the

next period’s conditional variance is also reflected in the periods that follow but

with decreasing intensity, and in the long term, the variance converges to its

6 The same reasoning can be extended to multifactor models. An Internet Appendix shows
how the one-factor model in equation (10) can be extended to a general K+1 factor model.
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long-run mean.

We can write all future conditional variances in terms of next period’s con-

ditional variance and the unconditional variance. The last terms in the parent-

heses of equation (10) can be rewritten using the fact that equation (11) implies

that

σ2
t,t+i − ρσ2

t+1,t+1+i = φi−1
(
σ2
t,t+1 − ρσ2

t+1,t+2

)
+ σ2 (1− ρ)

(
1− φi−1

)
. (12)

Inserting (12) into (10), we can rewrite (9) for the realized market returns

after some modifications as

rm,t+1 ≈ (1− ρ)

∞∑
i=0

ρi(dt+1,t+1+i − dt,t+1+i) +

∞∑
i=1

ρi−1(rft,t+i − ρrft+1,t+1+i)

+ λm[
(
σ2
t,t+1 − ρσ2

t+1,t+2

)
· ϕ∆σ + σ2·ϕσ], (13)

where ϕ∆σ = (1 − ρφ)−1 and ϕσ =
(

1− 1−ρ
1−ρφ

)
. The parameters ϕ∆σ and ϕσ

are collectively called as sigma multipliers. In theory, if the variance persistence

parameter φ equals, say, 0.9 and ρ equals 0.997 for monthly data, ϕ∆σ equals

1/(1 − 0.997 · 0.9) = 9.74, and ϕσ equals (1− ϕ∆σ · (1− ρ)) = 0.97. The pa-

rameter ϕ∆σ indicates how much changes in the conditional variance over one

period are magnified due to the persistence of variance.

To simplify the model further, we can assume that the interest rate term

structure is flat, i.e., the risk-free rate at any given time is the same for all future

periods. Using this assumption on the second term on the right of equation (13)

gives us rft,t+1 + (rft,t+1 − rft+1,t+2)
∑∞
i=1 ρ

i. Alternatively, we can assume

that all future risk-free rates change from time t to t + 1, but all changes are

equal. Similarly, we want to simplify the series of expected dividends. There

are several ways to do this but perhaps the most intuitive approach utilizes the

fact that we can rewrite the conditional dividend stream as a function of its

growth expectations. This gives us
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(1− ρ)

∞∑
i=0

ρi(dt+1,t+1+i − dt,t+1+i) =

∞∑
i=0

ρi (∆dt+1,t+1+i −∆dt,t+1+i)

=

∞∑
i=0

ρi (gt+1,t+1+i − gt,t+1+i) . (14)

Now, there are a number of alternative ways to simplify (14), but here we

assume that, even though investors can adjust their views on dividend growth

from time t to t+1, the difference between the forecast and the new growth rate

will converge to zero the further into the future one forecasts the dividends.

This assumption is consistent with intuition, because new information at time

t+1 is likely to affect investors’ expectations regarding the dividend growth in

the short run, but this effect is unlikely to last for a long time. As a result, we

can simplify equation (14) as

∞∑
i=0

ρi(gt+1,t+1+i − gt,t+1+i) = (gt+1,t+1 − gt,t+1)

(
1 +

∞∑
i=1

(ρφg)
i

)
, (15)

where gt+1,t+1− gt,t+1 represents the change in expectations of future dividend

growth rates from time t to t+1, and φg its converge rate over time (< 1).

The sum in the right hand side of equation (15) forms a geometric series which

converges and we can calculate its sum.7 After some modifications, we get the

following result:

rm,t+1 ≈k2 + (gt+1 − gt,t+1) · ϕd + (rft − rft+1) · ϕrf

+ λm

(
(σ

2
t,t+1 − ρσ

2
t+1,t+2) · ϕ∆σ + σ2 · ϕσ

)
, (16)

where the parameters ϕd = 1 +
ρφg

(1−ρφg) and ϕrf = ρ
1−ρ can be interpreted as

parameters that measure the impact of the change in the dividend growth rates

and risk-free rates, respectively. Both of them are by definition positive. The

7We could have employed the geometric convergence assumption also with the risk-free
rates, i.e., given the change in the risk-free rate for the next period, the changes in the risk-
free rates beyond that would converge geometrically to zero. The assumption of geometric
convergence is not in fact required either for the risk-free rate series or the dividend growth
series as long as their infinitive sum can be written as a linear function of the one-period
change. Regardless of the simplifying assumption, equation (16) would ensue, but the theo-
retical definition of the ϕd and ϕrf parameters would be different.
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constant k2 is defined as k2 = rft. Its value is also expected to be positive when

the risk-free rate is positive.

An analysis of equation (16) shows that realized returns should be higher

if investors’ conditional expectations of the dividend growth rate increase from

period t to t+1, ceteris paribus. The same is true if the interest rates decrease.

Assuming that the asset pricing model is correct, a decrease in conditional

volatility should also lead to higher realized returns. All implications of the

model are in line with intuition. It is also quite straightforward to prove that

the realized return given by equation (16) equals the expected return given by

equation (3) if investors’ conditional expectations prove to be right (the proof

is provided upon request).

Since equation (16) is an approximation, a relevant question is whether the

lambda is sensitive to estimation errors in the variables. Suppose that the ex-

pected divided growth rates and risk-free rates are two and three percent per

annum, respectively. The lambda is further assumed to be two, rho 0.997, and

the variance persistence parameter as well as dividend growth forecast conver-

gence rate are assumed to be 0.9. Conditional volatility is assumed to be 20

per cent per annum. All parameter values are assumed to remain unchanged

at times t and t+1. Furthermore, expected and realized log dividend at time

t+1 are assumed to be 1/12 dollar. We also assume that the variance exhibits

mean-reversion as in equation (11) and that asset-pricing model (3) applies.

Using monthly parameter values, we can calculate time series for the expected

dividends, conditional variances and required rates of return for each period

from t+1 onward, conditional on information available at time t. Then, we can

do the same from period t+2 onward, conditional on information available at

time t+1. Now, discounting dividends using the required rates, we can derive

prices at time t and t+1 for the security as a sum of the discounted dividends.

Taking into account the dividend paid at t+1, we calculate the realized return

for the security. Using the given values and derived dividends, the realized and

expected returns are equal, 0.917 per cent per month.8

Now, using equation (16), we can solve for lambda. Obviously, using the

parameters above, lambda is two with high accuracy. Using different values

for the parameters, lambda is almost unchanged with respect to changes in

the values for the risk-free rate, level of volatility, variance persistence, and

8 Here calculated for the next 2,000 months.
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dividend growth convergence rate (the difference is less than 0.001% except

for low volatilities; e.g., a volatility of ten per cent leads to a bias +1.016%

in lambda). The analysis also reveals that the lambda is most sensitive to

the changes in expectations in future dividend growth rates. If the expected

dividend growth rate decreases (increases), for example, 20% from time t to t+1,

the lambda is biased downwards by 6.452% (upwards by 6.454%). However, it is

very unlikely that growth rate changes would trend except in very short samples.

2.4. Empirical model and estimation

The empirical objective of this paper is to estimate the price of market

risk, or lambda, to find out whether there is a positive, statistically significant

relationship between risk and return, and to assess whether the lambda is within

a theoretically justifiable region. In practice, we also want to compare the

estimate of lambda from the traditional approach (λTm) with our estimate (λm).

Therefore, we first estimate the GARCH(1,1)-in-Mean model for the market as

given by equations (4) and (5) to get the traditional lambda.

To get our estimate for the lambda, we write equation (16) in excess-return

form as

rem,t+1 = b1 + b2[(σ2
t,t+1 − ρσ2

t+1,t+2) · ϕ∆σ + σ2 · ϕσ]

+ b3 (gt+1 − gt,t+1) + b4 (rft − rft+1) + um,t+1, (17)

where b1 to b4 are the coefficients to be estimated. All coefficients (but b1) are

expected to be positive. Since we are estimating the model with excess returns,

b1 is expected to be zero. Note, however, that it cannot be given the same

Jensen’s alpha interpretation as the constant in standard tests of asset pricing

models. The coefficient b2 corresponds to the lambda. The term gt,t+1 is the

expected continuously compounded growth rate for the dividends from time t to

t+1, conditional on information available at time t. The risk-free rate at time t

is given by rft. The term σ2
t,t+1 is the variance of the continuously compounded

excess market return from time t to t+1, conditional on information available

at time t. Variables are defined similarly for time t+1. Other parameters are

as defined earlier.

Since the future dividend growth rates are well-known to be difficult to

forecast (c.f., Cochrane, 2008) and since our main interest is the estimate for
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the price of market risk, we also estimate the following simplified version of the

model:

rem,t+1 = b1 + b2[(σ2
t,t+1 − ρσ2

t+1,t+2) · ϕ∆σ + σ2 · ϕσ] + um,t+1, (18)

where b1 is expected to account for the mean effect from the components exclu-

ded from the model and b2 is again our estimate for the lambda. This simplified

model allows us to study the market risk without taking a stand on how to

model changes in investors’ views on future dividend growth and interest rates.

In the long run, these changes are anyhow expected to be zero on average. In

addition, the simplified model can help us to do potentially illustrating compa-

risons with the traditional approach. Obviously, the results from the simplified

model may suffer from omitted variables bias if the change in risk-free rates

and in the dividend growth expectations are correlated with the changes in the

conditional variance. However, this is unlikely to be the case as there is no-

thing indicating anything other than an indirect relationship between changes

in dividend growth rate (or interest rate) and changes in market variance.

To estimate the model, we need a proxy for the conditional variance. We use

three different proxies, the first two are the conditional variance from GARCH

and MIDAS models, and the last one is based on the VIX index. With GARCH

we utilize a two-step estimation strategy. In the first step, we estimate the

GARCH(1,1) model including only a constant in the mean equation (c.f., e.g.,

Hedegaard and Hodrick, 2014).9 In the second step, we estimate equation (17)

or (18) using the conditional variance estimates from the first step. Note that

we utilize contemporary conditional variance at time t+1 for the period ending

at time t+2 in the mean equation, i.e., σ2
t+1,t+2. This value corresponds to

σ2
m,t+2 in the GARCH-M specification (equation (5)).

To provide an estimate for lambda, we must estimate ϕ∆σ, ϕσ, and the

unconditional variance, σ2. To estimate ϕ∆σ and ϕσ, we use their definitions.

This requires an estimate for the speed of conditional variance returning to

its long-term mean, i.e., the φ parameter and the dividend-to-price-related ρ

parameter. The latter can be easily calculated from the data, but the former

utilizes the results from the model for the conditional variance. Assuming that

the conditional variance follows a GARCH(1,1) process, we can write the i -

9 We choose this specification for simplicity and conformability with the VIX-index which
is a measure defined outside the model to be tested.
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step ahead forecasts for the conditional variances as a combination of the next

period’s conditional variance and a long-term (unconditional) level, i.e.,

σ2
t,t+1+i = (α+ β)

i
σ2
t,t+1 + ω

1− (α+ β)
i

1− α− β
, (19)

where α, β, and ω are the GARCH parameters. Now, assuming that the

GARCH parameters remain constant, our variance convergence speed parame-

ter φ is the sum of α and β. The unconditional variance can be estimated as

ω/(1− α− β).

Our second proxy for the variance is obtained by mixing data of different

frequencies using MIDAS techniques. It is a compromise between the need

for lower-frequency data for modeling the risk-return relationship and higher-

frequency data for modeling the variance. It is well known that the accuracy of

the variance estimates improves with higher data frequency, whereas it is not the

case for the mean. As before, we first use the traditional approach to estimate

lambda after which the specification (18) is estimated. Following Ghysels et al.

(2005 and 2016), we write equation (4) for the lower frequency (here monthly)

excess market return rm,t+1 as follows:

rem,t+1 = α+ λTmh
MIDAS
t+1 + em,t+1, em,t+1 ∼ Distr

(
0, hMIDAS

t+1

)
, (20)

where we have defined σ2
m,t+1 = hMIDAS

t+1 to be the conditional variance for the

period from time t to t+1, estimated using higher frequency data (here daily)

up to time t with MIDAS. Distr refers to some probability distribution, often

the normal distribution, but not necessarily. The variance is modeled using the

MIDAS on high frequency returns rm,t:

hMIDAS
t+1 = C

D−1∑
d=0

wD−d
(
θD
)
r2
m,daily,t+1−c−d, (21)

where wd(θ
D) is a polynomial weighting structure for daily observations. The

equation belongs to a group of distributed lag (DL) models. The parameter

C is a scaling constant that refers to the average number of trading days in a

month; here it converts daily variance into a monthly one. Most of the research

have used a value of 22 for C and we follow this approach. D is the number

of lagged daily observations used to estimate the monthly variance. It should

be chosen such that the specification captures a sufficient number of lags, yet
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being feasible to estimate. In practice, the parameters of the weight function

restrict the effective number of lags to less than 200 (Ghysels, 2015). Here we

select it to be 30.10

The parameter c is the number of lags from which the high frequency regres-

sors start. It is added into equation (21) to highlight the fact that here we need

to lag daily observations by one month i.e. from month-end t+ 1 to match the

month-end t. The estimation then uses D high frequency (daily) observations

from the end of month t backwards to provide an estimate of the conditional

variance for the month ending t + 1. In practice, the value for c has to be set

for the average number of trading days in a month. We set c to be 23 for the

full sample and 22 for the post-1990 sample.

A number of polynomial weighting structures can be used (for more infor-

mation, see Ghysels et al., 2007). Here we use the normalized beta probability

density function with a zero last lag. The weights w given on past daily obser-

vations are calculated as follows:

wi (D, θ1, θ2) =
xθ1−1
i (1− xi)θ2−1∑D

j=1 x
θ1−1
j (1− xj)θ2−1

, (22)

where xi = (i − 1)/(D − 1). For a reasonably large D, the sum of the weights

is very close to one. Specification (22) ensures that all weights are positive,

guaranteeing a positive variance estimate. The shape parameters θ1 and θ2 are

estimated jointly with the rest of the parameters and allow for a rich spectrum

of weighting schemes. The variance estimator of French et al. (1987) has some

similarities to specification (22). However, it gives equal weights to the obser-

vations.

To estimate equation (17) or (18) in the MIDAS framework, we follow the

two-step procedure as before with the GARCH approach, i.e., we first derive

our estimate for the conditional variance and then plug it into equation (17) or

(18) for the second step. To calculate the ϕ∆σ and ϕσ parameters, we assume

here that the variance follows a mean reverting AR(1) process given by

hm,t+1 = φ0 + φ1hm,t + εm,t+1. (23)

To calculate forecasts for the conditional variance, the speed of convergence

10 The estimation is done using version 1.1 of the Matlab routines provided by Professor
Eric Ghysels on his website.
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to the unconditional variance is simply φ1, and the unconditional variance is

φ0/(1− φ1).

Our third proxy for the conditional variance is based on implied volatilities

calculated from options prices observed in the market. As the variance is readily

available, this approach can be estimated in one step to avoid any potential EIV

and endogeneity issues. We start by estimating the traditional lambda based

on realized returns as proxies for the expected returns. Using the notation

in equation (4), we define σ2
m,t+1 = IV 2

m,t+1 as the squared implied volatility

observed at time t for the period t+1. Now, we can estimate the traditional

lambda using the following model:

rem,t+1 = αm + λTmIV
2
m,t+1 + εm,t+1. (24)

To estimate our model using implied volatilities, we need to calculate the

required sigma multipliers, ϕ∆σ and ϕσ. To do this, we first run an AR(1)

model for the implied variance to estimate the variance persistence parameter

and unconditional variance as with the MIDAS estimation and then proceed

similarly.

Utilizing a two-step estimation strategy to estimate our simplified model (18)

or the full model (17) raises the question of whether there might be biases in our

second-step estimator for the lambda because the independent variable is subject

to an errors-in-the-variables (EIV) problem. Following earlier studies, we argue

that the potential measurement error in the variance decreases due to the long

sample period (cf. Shanken, 1992) and, as a result, the lambda estimates are

not systematically distorted. For example, Hedegaard and Hodrick (2014) use

a four-step procedure in a multivariate setup.11 They conduct a simulation

study to conclude that the parameters of interest are well-behaved, and that

their standard errors are correctly estimated. Moreover, as the VIX index is a

variance measure defined outside the model to be tested, we have analogously

chosen to model the variance as a GARCH or MIDAS process containing only

a constant in the mean equation.

11 First, they estimate univariate GARCH(1,1) models for all assets, with only constant
only in the mean equation. Second, the standardized residuals from step one are used to
get correlations from a DCC model. Third, a conditional covariance matrix is constructed
based on the variances from step one and the correlation matrix from step two. Finally, the
risk-return relationship is estimated in step four.
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3. DATA

3.1. Variables

We estimate our models using two sets of data. For the GARCH estimation,

we utilize monthly returns for the US stock market and a risk-free rate of return

from January 1928 to December 2013, i.e., 1,032 months of data. For the MIDAS

as well as for the volatility-feedback estimation, we complement the monthly

data with daily return observations for the same period. Consequently, the

beginning of the sample period matches closely to that of Ghysels et al. (2005),

but the sample period extends several years beyond, including the financial crisis

that peaked in autumn 2008 and winter 2009.

We use the month-end CRSP value-weighted total return as a proxy for

the market return. For the MIDAS estimation, we complement the dataset

with daily returns of the CRSP index. When estimating the volatility-feedback

model, we use the sum of daily squared returns as a proxy for the realized vari-

ance. The return includes dividends and is adjusted for splits and issues. The

risk-free rate for month t+1 is based on the one-month holding period return

on US Treasury bills closest to one month at the end of month t. These data

are also from the CRSP database. The excess return is obtained as the diffe-

rence between the market return and the risk-free rate of return. Continuously

compounded returns in decimal format are used throughout this study unless

otherwise stated.

For the full model, we also need a measure for the change in the risk-free

interest rate level. Here, we proxy the risk-free interest rate level with the

long-term US government bond yield taken from the Ibbotson SBBI (2014). In

addition, we need a measure for the change in the expected dividend growth

rates. To create a proxy for this change, we first calculate the dividends paid in

monetary terms in each twelve-month period during the sample. The dividend

for a given twelve-month period is obtained by multiplying the CRSP price

index a year ago with the difference between the total return and price index

returns in the twelve-month period, that is, e.g., Dt = (Rt−Rext )×Pt−12, where

returns are percentage annual returns (c.f., Cochrane, 2008). In the second

step, we calculate the realized logarithmic annual change in the log dividends,

i.e. gt = (dt − dt−12), and use it as a proxy for the future growth rate of

dividends (gt,t+1). The same approach is used to calculate our proxy for time

t + 1 dividend growth rate (gt+1). This proxy, however, produces a potential

endogeneity issue as the contemporary realized dividend is also used to calculate
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the realized return at time t+ 1. To avoid this, we adjust Dt+1 by subtracting

the contemporary monthly dividend and adding back the dividend paid in the

previous month.

When using implied volatilities, we utilize a readily available volatility index

from an options exchange – the Volatility Index calculated by the Chicago Board

Options Exchange for the US market. The updated index labeled ”VIX” is

available from the beginning of 1990 onwards. The VIX is based on the 30-day

implied volatility per annum calculated from the options traded for the stocks

included in the S&P500. VIX values are based on averaging observations from

put and call options over a wide range of strike prices, and the index measures

the volatility per annum (CBOE, 2009). Our sample period starts in January

1990 and ends in December 2013, providing us with 288 monthly observations.

The VIX is accessed on the CBOE’s website.

3.2. Descriptive analysis

Table 1 provides descriptive statistics for the monthly and daily variables.

Panel A uses data for the entire sample period (January 1928–December 2013).

Panel B provides similar descriptive statistics for the period overlapping with

the VIX data (January 1990–December 2013). In addition to the series in Panel

A, Panel B includes VIX data and their values squared.

The mean monthly risk premium over the entire sample period is 0.477 per

cent per month (or 5.72% per annum), with a volatility of 5.44 per cent per

month (18.84% p.a.). The descriptive statistics for the subsample in Panel B

show that both the average return and particularly the volatility have been

lower in recent decades. The volatility is 4.46 per month (15.45% p.a.). It is

clearly lower than the average market expectation of 20.20% p.a. as given by

the VIX index. The average dividend growth rate is 4.24% for the full sample

and 5.44% for the subsample. Government bond yields have been, on average,

5.09% and 5.43% for the full and subsample, respectively.

Almost all of the series are non-normally distributed according to the Jarque-

Bera (1987) test for normality. The monthly risk premia are negatively skewed

and show much less kurtosis in the post-1990 subsample than over the entire

sample period. As expected, the monthly risk premium shows a fairly low,

albeit significant, positive first-order autocorrelation. The dividend growth rate

shows high autocorrelation (0.697) – as expected due to overlapping dividend

observations used to calculate the growth rate – as do the government bond

yield series (0.996).
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4. EMPIRICAL RESULTS

4.1. Results with GARCH variance

We begin our analysis by studying the price of risk (lambda) using the

traditional approach. We compare the results from the traditional approach

with those obtained using the new approach developed in this paper. The

former approach is based on the underlying assumption that realized returns

are good proxies for expected returns, whereas the latter does not require

this. We begin the analysis with the generalized autoregressive conditional

heteroskedasticity-in-mean approach (GARCH-M). The quasi-maximum likeli-

hood approach (QML) is used in the estimation.12 Estimations are conducted

using monthly data from January 1928 to December 2013. Table 2 presents the

results.

First, we estimate the pricing model (3) as it has been typically estimated

in the literature, i.e., using equations (4) and (5). We begin with the standard

GARCH(1,1)-M specification. Panel A provides the results. The price of mar-

ket risk is estimated to be 0.697, which is positive as expected by the theory;

however, it is not significantly different from zero, with a t-value of 0.851. It

is also lower than one would expect, but in line with earlier studies (cf., e.g., a

value of 1.060 with a t-value of 1.292 in Ghysels et al., 2005). In addition, the

explanatory power of the traditional model is low, with an adjusted R-squared

of -0.4%.

There could be several reasons for the empirical estimation not confirming a

significant relationship between returns and variance. One potential explanation

could be that the conditional return is not normally distributed. Therefore, we

run the model assuming a t distribution instead of the normal distribution.

However, this does not materially change the results. The explanatory power of

the model drops slightly, and the estimate for the price of risk is even lower than

before: 0.628 with a t-value of 0.728. Residual diagnostics (not reported) show

that both models are able to capture the heteroskedasticity dynamics properly.

However, the normality assumption is rejected. Overall, there are no major

differences between the diagnostics of the models.

Another potential explanation for the insignificant lambda estimate could be

asymmetry in the variance process (cf., e.g., Bekaert and Wu, 2000; Cappiello

et al., 2006), indicating that the variance response of negative shocks differs

12 More details of the estimations are provided upon request.
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from that of positive shocks. To test this, we utilize the GJR-GARCH model

by Glosten, Jaganathan, and Runkle (1993) and replace equation (5) with the

following GJR-GARCH(1,1)-M model:

σ2
m,t+1 = ω + αε2

m,t + γε2
m,tIm,t + βσ2

m,t, (25)

where Im,t = 1 if εm,t < 0, and zero otherwise. In practice, the gamma para-

meter, γ, captures the effect of negative shocks. We estimate the model using

conditional normality and the t-distribution. The results are reported in Panel

A.

The degrees of freedom for the t-distribution is estimated to be 7.031 with

a t-value of 116.299 (not reported), meaning that the tails of the distribution

are fatter than is commensurate with the normal distribution. The conditional

volatility is asymmetric, with a positive response to negative shocks (the gamma

parameter estimate is statistically significant at the 5 per cent level). However,

the explanatory power of the model does not materially increase, and the price of

risk estimate remains non-significant. In fact, the lambdas are even lower than

before. As a result, it is fair to conclude that the traditional approach, when

estimated with the commonly used GARCH-in-mean approach, does not seem

able to find a statistically significant (positive) relationship between variance

and return.

Next, we use the volatility-feedback approach to estimate lambda. The

results are reported in Panel B of Table 2. The estimations are done similar to

Panel A, but realized variance is added as an explanatory variable into the mean

equation (c.f., equation (6)). The reported lambda is the sum of the estimates

for the delta and gamma parameters. Its t-value is based on the Wald-test

on the null hypothesis that their sum is zero. The results are similar to those

found in French et al. (1987). The estimated gammas – measuring the impact

of (unexpected) realized variance on realized returns – are negative and highly

significant. The explanatory power of the model is also clearly higher than

before. However, the evidence goes straight against the Merton model. None

of the lambda estimates are significant which clearly suggests that, despite the

significant volatility-feedback effect, taking the effect into account cannot help

us find support for a positive relationship between the conditional risk premium

and variance.

Finally, we turn to the new model introduced in this paper. We esti-

mate first our full model (17) and then our simplified model (18) utilizing the
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same GARCH processes as before and again with conditional normality and

t-distribution assumed. The estimation is conducted in two stages. Note that

when we are utilizing the GJR-GARCH-specification, the variance persistence

parameter is the sum of α, β, and half the asymmetry parameter, γ. The un-

conditional variance can be stated as ω/(1− α− β − γ/2). The results for the

full model are reported in Panel C of Table 2.13

In line with the results in Panels A and B, the results in Panel C show that

the estimated variance process parameters are significant in almost all cases.

However, in contrast to the results shown in Panels A and B, the lambda (b2)

estimates are all significant and within a reasonable range. With the standard

GARCH process and normality assumed, the estimate is 0.240 (t-value 1.658).

Interestingly, for the t distribution, the estimate increases to 0.569 (t-value

1.895). Utilizing the GJR-GARCH approach, the lambda estimate increases

even further, first to 0.806 (under normality) and then to 1.630 (under the t

distribution). The last two results are highly significant. The results from the

simplified version of the model (not reported) support these results. The price of

market risk estimate is highly significant except for the case of standard GARCH

under the assumption of normality. The constant b1, on the other hand, is not

significant as expected, giving further support for the model.

Our second explanatory variable, the change in the dividend growth rate

(with parameter b3), is also statistically clearly significant as the model implies.

The result is in line with Lettau and Ludvigson (2005) who find evidence that

the expected dividend growth covaries with the expected returns. Our third

explanatory variable, the change in the risk-free rate, has also a statistically

significant effect (b4).14 All coefficient estimates are positive as suggested by

our model. The explanatory power of the model is also considerably higher

than it is for the traditional or for the volatility-feedback models – especially

allowing for asymmetry in the variance process seems to improve the overall

explanatory power of the model.

The results give strong support for a positive relationship between condi-

13 Because the return series shows signs of autocorrelation, we also test for autocorrelation
in the residuals of our model. As there are indications of first-order autocorrelation, we use the
Newey-West (1987) adjustment for autocorrelation and heteroskedasticity when calculating
the standard errors for the parameters using the OLS. Thus, all reported t-values for the mean
equation parameter estimates are calculated with the adjustment.

14 To remove suspicions of endogeneity, we also estimated the model using realized market
returns instead of the excess returns. The results are similar to those reported here.
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tional equity premium and variance. One obvious question to test could be

whether the variance shock offers explanatory power over the change in the

conditional variance as in equation (18). To test this question, we first calculate

the variance shock as the difference between realized variance and the conditi-

onal variance. Then we add this variable into our model (equation (18)) and

re-estimate the model with GJR-variance and t-distribution. The results (not

reported) show that the variance shock is not significant. The volatility-feedback

parameter estimate is -0.446 (t-value -0.608) and lambda is almost unchanged

(1.765 with t-value of 8.361). As a result, we feel confident to conclude that the

volatility-feedback effect is not a sufficient explanation for the total volatility

puzzle.

4.2. Empirical results with MIDAS

Next, we turn to MIDAS estimation. First, we test the asset pricing model

using the traditional approach. The estimation is based on equations (20), (21),

and (22). As we have multiplied the squared daily returns with 22 to arrive at

a per-month form, we can interpret the coefficient for the high-frequency terms

in equation (20) as the price of market risk. The results are reported in Panels

A and B of Table 3, respectively.

The results show that the traditional lambda estimate -0.358 (t-value -1.072)

is negative and statistically not significant. The parameter θ1 is significant and

close to one. This implies that the weighting structure is mostly determined

by θ2 – a value higher than one implies less weight to older observations than

newer ones. However, the parameter estimate is not significant. This implies

that our model for high-frequency data (daily returns) may not be the best one.

Hence, we also estimate the model using the normalized exponential Almon

lag polynomial. Again, the lambda estimate is negative (-0.341 with t-value

-1.312), but neither of the MIDAS parameters are significant (not reported).

Our lambda estimate is close to Ghysels et al. (2016; contains corrected results

for the 2005 article). Using simple returns (in contrast to our continuously

compounded returns), a sample from 1928 to 2011, and normalized exponential

Almon lag polynomial weighting with high frequency lags equal to 260 days,

they estimate the lambda to be -0.0212 (t-value -0.0224).

It is evident from the results that the traditional approach is not able to

provide a significant and theoretically plausible positive lambda estimate. Thus,

we turn to the volatility-feedback version of the model, i.e. equation (6). The

results are reported in Panel A of Table 3. As with the GARCH-variance, the
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volatility-feedback effect is statistically highly significant. The lambda estimates

are still negative, this time highly significant. The same applies to the MIDAS

parameters. Overall, the fit of the model is clearly higher, but the results are

unsatisfactory as far as the Merton model is concerned.

Finally, we continue with the new approach and test our model. However, to

test the model, we must obtain conditional variances. To this end, we proceed

again with the two-step approach. First, we estimate the MIDAS model as

before, but with one main difference: we use squared monthly returns as the

dependent, lower-frequency variable. In practice, we estimate the following

model:

r2
m,t+1 = α+ βhMIDAS

t+1 + εm,t+1, εm,t+1 ∼ Distr
(
0, hMIDAS

t+1

)
, (26)

where hMIDAS
t+1 is the contemporary variance estimate based on the daily squared

returns. As a result, the beta parameter can be interpreted as a high-frequency

response, linking daily and monthly squared returns. It should be close to one if

daily variances can be used as a proxy for monthly variance. In the second stage,

we use the variance estimates from the first stage (fitted monthly variances from

the model) to test equation (17) using the OLS. For the regression, we estimate

first the variance persistence parameter with equation (23) and use it to calculate

the sigma multipliers.

The results are reported in Panel B of Table 3. The adjusted R-squared is

for the tested model (17). Interestingly, the conditional variance process does

not show the same level of persistence (the AR(1) parameter is estimated to

be 0.503) when compared with the estimates for the GARCH model (cf. Table

2). This could be due to the MIDAS approach, which arguably may be able to

track changes in the variance more quickly due to the use of higher-frequency

data.

The results show the lambda estimate (1.507 with t-value 4.870) to be sta-

tistically significant at the one per cent level. This provides further support

for the model introduced in this paper. The lambda estimate is in line with

earlier estimates from the GJR-GARCH model. The results from the simpli-

fied model confirm the significance and positivity of the lambda estimate (1.696

with t-value 4.819). Again, the change in the dividend growth rate (b3) and the

change in the risk-free rate (b4) are found statistically significant. The expla-

natory power of the model is somewhat lower than that of the GJR-GARCH

26



(21.0 vs 32.8 and 40.9 percent). The explanatory power seems to be more in

line with that of non-asymmetric GARCH modeled variance which might reflect

the fact that MIDAS may not be able to handle asymmetric responses as well

as GJR-GARCH.

4.3. Empirical results with the VIX

Our third alternative proxy for the conditional variance is the implied va-

riance based on option prices observed in the market. In practice, we utilize

squared values for the VIX data, but convert them into a monthly measure by

dividing the values by twelve. The estimation is conducted using monthly data

from January 1990 to December 2013. For comparison, we have also estimated

the results using GJR-GARCH and MIDAS for the same period. We first es-

timate the model using the traditional approach. The estimation is conducted

using equation (24). Results are reported in Panel A of Table 4. The results

show that the traditional price of market risk estimate is -0.127 and that the

estimate is not significant (t-value -0.092). In addition, the explanatory power

of the model is low. The results from the GJR-GARCH and MIDAS are similar.

Next we estimate the volatility-feedback model. As the variance is readily

available, we can directly estimate equation (6). The results in Table 4 show

that, although the volatility-feedback effect is highly significant and the expla-

natory power of the model is considerably higher than before (the adjusted R2

is 24.3 per cent), the price of market risk is still not significant and its estimate

is negative (-0.638 with t-value -1.104). The results from the GJR-GARCH and

MIDAS are basically similar although the former gives an insignificant positive

estimate for the price of risk and the latter significant, yet negative estimate

for the price of risk. The results merely go on to show that there is some type

of relationship between ex post returns and ex ante variance which the model

captures.

Finally, we turn to the new model. We first estimate the variance persistence

parameter using an AR(1) specification as in equation (23). Panel B of Table 4

shows that the implied variance exhibits a somewhat higher persistence (0.807)

than does the variance implied by the MIDAS but on the other hand it is lower

than that implied by the GARCH. After this, we calculate the sigma multipliers

and proceed with the tests of our full model (equation (17)). The results with

VIX variance again provide strong support for our model. The price of market

risk estimate (0.616) is positive, within reasonable range, and statistically highly
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significant (t-value 6.437). The explanatory power of the model is again clearly

higher than that of the traditional and volatility-feedback models.

Corresponding subsample results using GARCH and MIDAS variance con-

firm the positivity and significance of the estimated lambda parameter. Interes-

tingly, we can observe that lambda is estimated to be higher for the post-1990

subsample than for the full sample using GARCH and MIDAS variance. For

example, in case of the MIDAS, the lambda estimate is 2.107 for the sample

of 1990-2013 where the full sample estimate is 1.507. On the other hand, the

parameter estimate for the change in the risk-free rate (b4) is not statistically

significant (except with MIDAS variance) for the subsample and its sign is unex-

pectedly negative. This could be driven by the fact that the assumption for the

interest rate structure is too strong for the sub-period in question. We test this

by separating changes in short and long-term risk-free rates into two variables

and retesting equation (17) with five variables. However, there is no material

change in the results (not reported) – the changes in the short-term interest ra-

tes are not found significant all the while the changes in the long-term risk-free

rates remain significant. As such, a more complex approach may be needed to

model changes in the risk-free rates.

The VIX provides us also with an opportunity to test the model as a joint

system of two equations and thus avoiding the issues with two-step estimation.

Combining equation (23) for the conditional variance with equation (17) for the

risk premium and using the definitions for the sigma multipliers, we can estimate

the system, for example, with the seemingly unrelated regression (SUR) method.

SUR takes into account heteroskedasticity and contemporaneous correlation in

the errors across equations. The results are in line with the results reported in

Table 4. The lambda estimate is higher, 1.836, but it is still highly significant

(t-value is 5.104). As before, the parameter estimate b3 is highly significant

whereas b4 is not.15

4.4. Additional considerations and robustness checks

An obvious question is whether the results are driven by the sample period.

To study this, we use a rolling window estimation to estimate lambdas over

15 We also estimated the system with the Generalized Method of Moments (GMM). Ortho-
gonalizing on the constant and lagged values of VIX (equations (17) and (23)), contemporary
values of VIX (equation (17)), as well as lagged and contemporary values for the expected
dividend growth rate and risk-free rate, and using an iterative process for the weights, we
obtained essentially the same results.
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all possible sample periods with a fixed length. We begin the estimation with

eighty-year samples (giving us 72 possible samples, the last one beginning in

December 1933) and then shorten the sample period by ten years in each step

until we have samples covering only 20 years.

We observe a number of well-known empirical regularities. The results from

the GARCH-type estimations are sensitive to the number of observations (length

of the sample period) and the sample period itself. A number of obvious con-

vergence issues can be detected for samples shorter than 60 years even for the

simplest model. As expected, the issue is aggravated with the use of more com-

plex models. The traditional approach is slightly more sensitive to these issues

as it requires that the variance is also included in the mean equation. Obvi-

ously, a number of these issues could be avoided by fine-tuning the estimation.

Nonetheless, the results clearly indicate that using too short sample periods can

produce susceptible estimates for lambda, and, at the minimum, one should

always conduct robustness checks to guarantee that the results are not driven

by the sample in question.

As far as the results go, even with the simplest estimation setup, GARCH-

M with normally distributed errors, the traditional model does not show a

single significant lambda estimate using the 70- or 80-year samples; with 80-

year samples, the new approach (using the simplified equation (18)) has nine

significant lambda estimates out of seventy-two. When we allow for asymmetry

in the variance, the traditional model is not doing any better, whereas the new

approach finds all but one of the lambdas to be statistically significant with

80-year samples. With 70-year samples, the situation is the same. In fact,

the sample had to be shortened to 50 years to find even a single significant

lambda estimate with the traditional estimation approach. This goes to show

that having a longer sample period does not necessarily solve the total volatility

puzzle when the traditional model is used.

If one uses the GJR-GARCH variance, the traditional approach produces

negative lambda estimates whereas the new approach gives positive ones with

only few negative lambdas. For example, all traditional lambdas estimated using

70-year samples starting in July 1939 or later are negative. The new approach

does not show even a single negative lambda. Hence, we can conclude that the

main empirical result in this paper is not driven by the selection of the sample

period nor the choice of the GARCH specification. Moreover, the results are

similar for the full model (equation (17)) all the while the parameter estimates

for the changes in the dividend growth rate and risk-free rate are also significant.
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We also analyze the effect of replacing the constant in the mean equation

with equation (4) in the first step when we estimate our model (equation (18)).

Otherwise the estimation proceeds as before. The results are again basically

the same. This is as expected given the poor performance of the traditional

model. For example, using the 80-year samples, the average value for lambda

was 1.124, but with the revised mean equation, it is 1.186. There are no major

differences in the estimates’ statistical significance either.

Another question is whether our proxy variables for the sum of the changes

in investors’ views on future risk-free rates as well as dividend growth rates

are justifiable. To study this, we first test whether changes in our proxy, the

US government long-term bond yield, are positively related to changes in the

short-term interest rate and the intermediate-term bond yield. Using the CRSP

three-month interest rates and the Ibbotson intermediate US government bond

yields, we find the contemporary correlations to be 0.485 and 0.825. These

results show that changes in the long-term bond yield seems to reflect also

changes in the short- and intermediate-term interest rates and thus movements

in the yield curve. Admittedly, these three interest rates do not represent the

whole yield curve and the relationship between the yield curve and the future

interest rates is not exactly one-to-one. However, these results give reasonable

justification for the assumption that higher long-term bond yields are associated

with higher interest rates and vice versa.

Correspondingly, we study whether our dividend growth proxy is able to

predict realized dividend growth in the future. Using our proxy variable to fore-

cast realized dividend growth in the future, we find a positive and statistically

significant relationship for one, two, and twelve periods. Hence we feel confident

that our proxy is able to predict dividend growth and that it can be used as a

proxy for changes in investors’ views.

A related, yet slightly different question, is whether the results are robust to

our choice of using past values of dividend growth as a forecast for the future

growth. To test this, we estimate our model in Panel C of Table 2 with a
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number of alternative proxies for the dividend growth.16 Overall, the main result

continues to hold. In all cases, the parameter estimate for the price of variance

risk is positive and significant – the effect on the lambda estimate is typically

±0.2. The significance of the dividend growth component (i.e., parameter b3 in

equation (17)) seems to be slightly responsive to the proxy used, but this merely

reflects the overall difficulty in forecasting dividend growth.17

We also perform a number of additional robustness checks.18 For example,

we use simple returns instead of continuously compounded returns and different

distributional assumptions for the GARCH process. The results are robust in

all cases. We also test whether the lambda estimate is sensitive to the sampling

frequency and the length of the return measurement horizon. Using one-, two-,

five-, and ten-day non-overlapping returns over the same sample period, the

traditional lambda estimates are all insignificant whereas the results from the

new approach, on the other hand, show that lambdas are significant in all cases

and that the estimates are aligned. Overall, we are confident that our results

are robust.

Finally, we analyze the questions raised in the introduction. The first two

questions are related to explaining why the lambdas calculated using the tra-

ditional approach differ from the lambdas based on the new approach and why

they are typically smaller. Econometrically, the answer is obvious and based on

an analogy for omitted variables bias. If the true model is yt = b0 + b1xt + et,

where xt = zt− zt−1 (here: change in the conditional variance corresponding to

the simplified model), estimating wrongly the model yt = b0 +b1zt−1 +et means

that one is estimating yt = b0 + b1(−xt + zt) + et, which typically leads to a

16 For example, we use the dividend growth over six-month periods instead of twelve months
as well as the annual dividends calculated from monthly observations as in Golez (2014). Then
we estimate AR(1) and AR(12) models for the original growth rate series and use the predicted
dividend growth from the model. Finally, in the spirit of Jagannathan and Liu (2019), we
estimate a VAR(1) model for the dividend growth and log price to dividend with and without
the log of Shiller’s CAPE, and use the model prediction as the dividend growth to re-estimate
our model.

17 The discussion in this paragraph is partly applicable also to our forecast for the risk-free
rates. However, contrary to the dividend growth rate, the government long-term bond yield
is a commonly agreed measure, and the future risk-free interest rates are interlinked via the
term structure. We estimate the last model (GJR-GARCH with t-distributed residuals) in
Panel C of Table 2 using the yield on intermediate government bonds as well as having the
term related to the risk-free rates broken down into two components: the short-term (ST,
3-month T-bill) rate and the long-term (LT) government bond yield (in effect, in equation
(17) we have b4,ST and b4,LT ). Again the main result is robust, the effect of the interest rate
proxy is small on the price of market risk.

18A more in-depth analysis of the tests and the results is available upon request.
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lower estimate for the parameter b1 even if one takes into account the positive

correlation between zt and xt. Another explanation is based on the fact that

the traditional estimation approach is based on an implicit assumption that an

increase in the variance affects the risk premium, which applies to investment

periods across all time horizons – implicitly assuming that the term structure

of the cost of capital is flat. Thus, if the investors take the convergence of

the variance back to its long-term level into account, the estimated relationship

between realized return to variance is smaller than assumed.

The third and the fourth questions are related to whether the sample period

and the choice of the time aggregation can explain some of the different results

in the literature as well as whether the same effect carries over to the new testing

approach. To answer the third question, we note that the theoretical relationship

in equation (3) tells us that at any point in time, lambda can be observed as

the ratio of expected excess return divided by the conditional variance, i.e.,

λm = Et[r
e
m,t+1]/σ2

t (rm,t+1). If one replaces expected return with the realized

return – as done in the traditional approach – a negative observation would

imply a negative λTm. Conversely, using equation (16) to solve for the price of

market risk gives us

λm ≈
rm,t+1 − k2 − (gt+1 − gt,t+1) · ϕd − (rft − rft+1) · ϕrf

(σ2
t,t+1 − ρσ2

t+1,t+2) · ϕ∆σ + σ2 · ϕσ
. (27)

Now, we can see that observing a negative realized return need not lead to a

negative λm, because the denominator can also be negative during the same

period, ceteris paribus.

If we consider our estimates for lambda, equation (4) gives us the following

estimate for the traditional lambda: λ̂Tm = Cov(σ2
m,t+1, r

e
m,t+1)/V ar(σ2

m,t+1).

It can become negative if the nominator is negative, i.e., E[σ2
m,t+1r

e
m,t+1] <

(σ2
mE[rem]). One can say that the traditional approach works best when the

volatility surprises are fairly small as high volatility surprises cause negative

outliers into the realized returns which bias the traditional estimate downwards

(c.f., Ghysels et al., 2016).

The new approach gives the following estimate for lambda (for tractability,

using the simplified equation (18)) λ̂ = ϕ∆σCov(σ2
t,t+1−ρσ2

t+1,t+2, r
e
m,t+1)/ϕ2

∆σV ar(σ
2
t,t+1−

ρσ2
t+1,t+2). Now, the nominator can be negative if E[(σ2

t,t+1−ρσ2
t+1,t+2)rem,t+1] <

(1 − ρ)(σ2
mE[rem]), but given a situation where the traditional lambda can be

negative (highly negative realized return driven by volatility surprises), we can

see that the nominator does not need to be negative if high negative realized
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returns are associated with an increase in conditional variance.

To answer the fourth question, we can see that λ̂Tm is in principle unaffected

by the time aggregation if the variance time-aggregates linearly as returns do.

However, this is not the case if the returns show autocorrelation. If the variance

decreases slower than linearly for less-aggregated returns, traditional lambdas,

estimated using returns measured over short periods, can be biased downwards

in samples with positive average excess returns. This does not necessarily hap-

pen for lambdas estimated with the approach presented here if the variance

persistence parameter varies for different return aggregation periods.

5. SUMMARY AND CONCLUSIONS

In this paper, we develop a new intuitive approach for testing conditional

asset pricing models. This new reverse testing approach avoids the issues that

arise when realized returns or their time series forecasts are used as a proxy for

the expected returns in asset pricing tests.

When the new approach is applied to the Merton (1980) asset pricing model

and combined with the assumption of mean-reverting conditional variance, it

suggests an empirical model that links the realized equity premium to the price

of market risk and to the change in the conditional variance and to its long-term

persistence as well as to the changes in the expected dividend growth rate and

the risk-free rate.

Empirically, we study the relationship between the conditional equity market

risk premium and variance using data for the US stock market from 1928 to

2013. For the empirical estimation of the model, we compare the traditional and

the volatility-feedback testing approaches against the new approach introduced

in this paper. We utilize and compare three different approaches to model

the conditional variance. Our first specification utilizes the commonly used

GARCH-M framework. In addition, we utilize the MIDAS approach of Ghysels

et al. (2005, 2013) and the implied variance (VIX-index) observed on the options

market.

The results show that neither the traditional nor the volatility-feedback ap-

proach give support for a positive relationship between conditional variance and

equity premium. The price of market risk estimate is close to zero, and at times

even negative. On the other hand, the price of market risk estimates from the

new model are consistently statistically and economically significant, positive,

and higher than those estimated using the traditional approach giving strong

33



support for the Merton (1980) model. The results from the new approach are

not dependent on the method used to estimate the variance, and they are also

less sensitive to the timing of the sample and its length. In addition, the ap-

proach works even on return measurement horizons shorter than one month.

We also find support for the importance of the changes in investors’ view on

dividend growth, but less so on the risk-free rate.

Overall, the results give support for the new testing approach. Although

the reverse (flipped) testing approach is simple and intuitive to use, it comes

with a cost, as one has to apply auxiliary assumptions to reach convergence

in its components. However, as such, the new approach helps to explain why

earlier results may have been unable to uncover the risk-return relationship. It

also suggests that we need to revisit some of the earlier empirical results on

conditional asset pricing models. A natural extension is to study whether the

hedging components are also priced and whether the price of risk is time-varying.

However, these questions are left for future study.
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