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Abstract: Traditional chemotherapy, along with antiangiogenesis drugs (combination cancer therapy),
has shown reduced tumor recurrence and improved antitumor effects, as tumor growth and metastasis
are often dependent on tumor vascularization. However, the effect of combination chemotherapy,
including synergism and additive and even antagonism effects, depends on drug combinations
in an optimized ratio. Hence, nanoformulations are ideal, demonstrating a great potential for the
combination therapy of chemo-antiangiogenesis for cancer. The rationale for designing various
nanocarriers for combination therapy is derived from organic (polymer, lipid), inorganic, or hybrid
materials. In particular, hybrid nanocarriers that consist of more than one material construct provide
flexibility for different modes of entrapment within the same carrier—e.g., physical adsorption,
encapsulation, and chemical conjugation strategies. These multifunctional nanocarriers can thus
be used to co-deliver chemo- and antiangiogenesis drugs with tunable drug release at target sites.
Hence, this review attempts to survey the most recent advances in nanoformulations and their
impact on cancer treatment in a combined regimen—i.e., conventional cytotoxic and antiangiogenesis
agents. The mechanisms and site-specific co-delivery strategies are also discussed herein, along with
future prospects.
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1. Introduction

Cancer is one of the leading causes of death, and its treatment remains one of the most severe
challenges worldwide. Globally, about 1 in 6 deaths is due to cancer. The World Health Organization
(WHO) projected that cancer was responsible for an estimated 9.6 million deaths in the year 2018.
The number of global cancer deaths is currently projected to increase by 45% between 2008 and
2030 [1]. Carcinogenesis is a complex and dynamic process, comprised of cancer-associated fibroblasts
and myofibroblasts, neuroendocrine cells, adipose cells, immune and inflammatory cells, blood and
lymphatic vascular networks, and an extracellular matrix (ECM). These processes altogether establish
a complex cross-talk within the tumor microenvironment. Hence, cancer is described as a group of
diseases characterized by uncontrolled growth/proliferation and the spread of abnormal cells [2–6].
Conventional treatment approaches for cancer include surgery; radiotherapy; and systemic treatments
such as chemotherapy, endocrine therapy, and antiangiogenic therapy [7–10]. This paper will present
the recent nanoformulation developments of anticancer (chemotherapy) and antiangiogenesis agents.
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Chemotherapy for cancer treatment involves the use of various anticancer drugs with different
mechanisms of action, viz, preventing cell division, triggering apoptosis, and targeting the cancer
cells [11–14]. Though chemotherapy has gained widespread momentum in cancer treatment, the adverse
drug reactions outweigh the therapeutic efficacy. On the other hand, antiangiogenic agents act on
tumor blood vessels and block tumor growth and malignancy [10,15]. Angiogenesis is a physiological
process through which new blood vessels form from pre-existing vessels [16–20]. Tumor growth
requires a sufficient supply of oxygen and nutrients to support their further growth and metastasis
and a variety of growth factors secreted by tumors, such as vascular endothelial growth factor (VEGF),
matrix metalloproteinase (MMP), epidermal growth factor (EGF), and platelet-derived growth factor
(PDGF) [17]. Among the abovementioned growth factors, VEGF is the most important proangiogenic
cytokine that regulates angiogenesis. VEGF binds to its receptor (VEGFR) and activates the receptor
that triggers downstream signals, which subsequently promote the proliferation, migration, and tube
formation of endothelial cells, finally promoting angiogenesis [17,21–24]. Hence, the inhibition of
tumor angiogenesis by interfering with the VEGF pathway either by the direct inhibition of VEGF (e.g.,
Bevacizumab) or by the inhibition of autophosphorylation of VEGFR2 (e.g., sunitinib, sorafenib) has
become a therapeutic target for cancer therapy and other angiogenesis-dependent diseases [25–27].
This approach has been shown to contract the tumor size and prevent its further growth. Therefore,
several angiogenesis inhibitors (antiangiogenic agents) have entered clinical practice [28–32].

A plethora of evidence for cancer treatment indicate the usage of a single anticancer drug
such as doxorubicin (Dox), paclitaxel (PTX), camptothecin (CPT), docetaxel (DTX), cisplatin, 5-and
fluorouracil, etc. [33–38]. However, the main limitations of these compounds are the lack of selectivity
and dose-dependent side effects, such as bone marrow toxicity, cardiotoxicity, nephrotoxicity,
and hepatotoxicity [39,40]. To overcome these limitations, in the past few decades numerous
nanoformulations—including liposomes, polymer-drug conjugates, polymeric nanoparticles, micelles,
hydrogels, mesoporous silica nanoparticles (MSNs) and so forth—of these anticancer drugs have been
extensively investigated. Some of the advantages of these drug delivery systems are high efficacy,
increased tumor selectivity, reduced side effects, and the imparted enhanced water solubility of the
carried drug [41–45]. The high efficacy and increased tumor selectivity are due to their prolonged
circulation time and selective accumulation into tumor tissue through the enhanced permeability and
retention (EPR) effect [46–49]. These nanosized drug delivery systems have been found to be promising
in the field of cancer therapy due to their improved pharmacokinetic (PK) profiles over low molecular
weight drugs [50–52]. The clinical success of these nanoformulations has already been proven with
marketed products—e.g., Doxil®, a liposomal formulation of Dox. This was the first nanoformulation
that has been successfully approved by the Food and Drug Administration (FDA) for the treatment
of Kaposi’s sarcoma and other cancers [53]. Several other FDA-approved nanoformulations (e.g.,
Abraxane®, DaunoXome®) mainly reduce toxicity of the parent compound and thereby improve
its therapeutic index [54,55]. Similarly, another nanoformulation—e.g., the so-called polymer-drug
conjugate (PDC) of PTX—has been synthesized, and showed a reduced toxicity in comparison to free
PTX; it has now reached the advanced clinical trials phase (Phase III) [56–59].

The clinical success of the aforementioned nanoformulations used for cancer treatment may
not be sufficient for therapeutic efficacy, which may be attributed to the physiological complexity of
the tumor microenvironment. Combination chemotherapy is widely exploited to achieve the best
therapeutic effect from bench to bedside [60–75]. Cancer combination therapy is usually designed to
achieve a therapeutic synergy that is greater than the sum of each drug treatment alone. Following this,
the FDA approved a liposome-based nanoformulation of CPX-351 (Vyxeos®) for the treatment of acute
myeloid leukemia, which delivered two of the most commonly used anticancer drugs (cytarabine and
daunorubicin with a fixed 5:1 molar ratio) [76–78]. Another liposome-based nanoformulation of a
combination of two anticancer drugs, irinotecan and floxuridine, was also reported for the treatment of
advanced colorectal cancer that has now reached in phase II trials [79].
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Numerous other nanoformulations of combinations with two different mechanisms of action of
the drugs (e.g., anticancer/antiangiogenic drugs) in optimized ratios have also been explored. However,
such systems have not been extensively clinically explored, despite their exploration in preclinical
studies. The importance of combining conventional chemotherapy with antiangiogenesis can be
explained through tumor vascularization, as both the tumor growth and metastasis are dependent
on it. Hence, the combination therapy with these two agents can prevent the tumor recurrence and
improve the antitumor effect. Nanoformulations of anticancer/antiangiogenic drugs would allow the
optimization of drugs to reduce the dose-related side effects and maximize the synergy of the drugs.
Recently developed nanoformulations of anticancer and antiangiogenic drugs in a nanocarrier using
different approaches covered in this review are presented in Figure 1 and Table 1. Similarly, different
approaches for the implementation of two drugs in a nanocarrier are depicted in Figure 2. Hence,
this review explores ongoing research and presents future prospects for the potential therapeutics of
nanoformulations of anticancer and antiangiogenic drug combinations for more effective combination
cancer therapy.
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Figure 1. Nanoformulations for combination therapy. (A) polymer based nanoformulations:
(a) polymer-drug conjugate, (b) micelle, (c) hydrogel, (d) dendrimer, (e) polymeric nanoparticle;
(B) Lipid based nanoformulations: (a) liposome, (b) solid lipid nanoparticle, (c) nanocell; (C) Inorganic
material based nanoformulations: (a) mesoporous silica particle, (b) gold nanoparticle, (c) iron
nanoparticle, (d) lipid-core/shell nanoparticle, (e) polymer-core/shell nanoparticle. (NP denotes
nanoparticle).
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Table 1. Recently developed nanoformulations of anticancer and antiangiogenic drugs for combination cancer therapy.

Type of
Nanoformulations Nanocarrier Materials Combination Drugs Encapsulation

Method
Cancer Types

(In Vivo) Outcome Ref

Polymer based

Polymeric nanoparticles
D-a-tocopheryl poly-ethylene

glycol 1000-block-poly(b-amino
ester) polymers

Doxorubicin and
Curcumin

Physical
encapsulation +

Physical
encapsulation

Hepatocellular
carcinoma (human
tumour xenograft

model)

pH-sensitive nano-carrier
enhanced the synergistic effect of

simultaneous delivery of Dox
and Cur

[80]

Polymer-self-assembled
nanoparticles

Polyethylene glycol-vitamin E
succinate Curcumin and Sorafenib

Intermolecular
hydrophobic
interactions

Hepatocellular
carcinoma (human
tumour xenograft

model)

Co-assembled nanoparticles
provided higher therapeutic

efficacy against tumor
progression compared with free
drug monotherapy or their free

combination

[81]

Polymeric nanoparticles

Methoxypoly (ethylene
glycol)-block-poly(d,l-lactide)

copolymer and poly(acrylic
acid-co-4-vubylphenylbornonic

acid

7-ethyl-10-
hydroxycamptothecin

(SN38) and
Combretastatin-A4

Chemical conjugation
+ Chemical
conjugation

Colon cancer (human
tumour tumors

model)

Synergistic antiproliferative and
antiangiogenic effects observed [82]

Hydrogel

Poly(N-(3,4-
dihydroxyphenethyl)

methacrylamide-co-polyethylene
glycol methyl ether

methacrylate

Doxorubicin and
Combretastatin-A4

Phosphate

Electrostatic +
Physical

encapsulation

Hepatocellular
carcinoma (HepG2
xenograft model)

Sequential local delivery with
superior in vivo efficacy observed [83]

Micelle Polyethylene glycol Camptothecin and
Combretastatin A4

Chemical conjugation
+ Chemical
conjugation

- Enhanced anticancer activity
with a strong synergistic effect [84]

Polymeric-self- assemble
nanoparticles

Cyclo Arg-Gly-Asp-d-Tyr-Lys
and low molecular weight

heparin

Gambogic acid and cyclo
(Arg-Gly-Asp-D-Tyr-Lys)

peptide
Chemical conjugation Glioblastoma (tumour

xenograft model)

Efficiently inhibited the tumor
growth in xenograft model with

a reduced side-toxicity
[85]

Polymer-drug conjugate N-(2-hydroxypropyl)meth
acrylamide copolymer

Paclitaxel and
Alendronate

Chemical conjugation
+ Chemical
conjugation

Breast Cancer Bone
Metastasis

(4T-mCherry
adenocarcinoma

model)

Improved antitumor and
antiangiogenic activity observed [86]
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Table 1. Cont.

Type of
Nanoformulations Nanocarrier Materials Combination Drugs Encapsulation

Method
Cancer Types

(In Vivo) Outcome Ref

Micelle

α-Aminopropyl-ω-methoxy-
poly(ethylene glycol) and
β-benzyl-l-aspartate
N-carboxyanhydride

Paclitaxel and Rapamycin
Chemical conjugation

+ Chemical
conjugation

Ovarian Cancer (ES2
murine xenograft

model)

Synergistic apoptotic and
antiangiogenic effects observed [87]

Micelle Poly(ethylene
glycol)-b-poly(d,l-lactide)

Doxorubicin and
Combretastatin-A4

Physical
encapsulation +

Physical
encapsulation

Skin and lung cancer
(B16-F10

tumor-bearing mice)

Exhibited stronger tumor growth
inhibition and greater survival
rate compared with the other

treatment groups

[88]

Lipid based

Nanocell Poly(lactic-co-glycolic
acid)copolymer

Doxorubicin and
Combretastatin-A4

Chemical conjugation
+ Physical

encapsulation

Skin and lung cancer
(B16/F10 melanoma

and Lewis lung
carcinoma

Improved therapeutic index with
reduced toxicity [89]

Liposome

Egg phosphatidylcholine +
1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[
amino(polyethylene glycol)

+Cholesterol

Doxorubicin and
Combretastatin-A4

Physical
encapsulation +

Physical
encapsulation

Breast cancer (tumor
bearing xenografts

model)

Programmed in vitro drug
release observed with sequential
in vivo Cytotoxic effects of these

two drugs

[90]

Liposome

Egg phosphatidylcholine +
1,2-distearoyl-sn-glycero-3-
phosphoethanolamine N-[

amino(polyethylene glycol)] +
Cholesterol +

arginine-glycine-aspartic acid

Doxorubicin and
Combretastatin-A4

Physical
encapsulation +

Physical
encapsulation

B16F10 melanoma
(C57BL/6 xenografts

model)

Synergistic effect of the combined
therapeutics with the increased
anti-tumor response observed

[91]

Inorganic based

Super magnetic iron
oxide nanoparticles

Super magnetic iron oxide and
albumin/bovine serum albumin Curcumin and Sunitinib

Physical
encapsulation +

Physical
encapsulation

Breast cancer (MCF-7
xenograft mouse

model)

Observed significant tumor
inhibition with a reduced

systemic toxicity
[92]

Mesoporous silica
nanoparticle

Cetyltrimethylammonium
chloride tetraethyl orthosilicate
+arginine-glycine-aspartic acid

Doxorubicin and
Combretastatin-A4

Physical
encapsulation +

Physical conjugation

Human cervical
adenocarcinoma
(HeLa xenograft

model)

Observed synergistic anticancer
and antiangiogenic effected [93]

Gold nanoparticles

Thiol polyethylene glycol/folic
acid-tethered thiol

polyethylene glycol and
polydopamine-coated gold

Doxorubicin and
dopamine

Electrostatic
interactions

Breast cancer
(MCF-7/Adriamycin

resistance cells) tumor
xenograft model

Superior tumor inhibitory effects
against multidrug resistance

cancer
[94]
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Figure 2. Pictorial representation of different approaches to implement two drugs in a single nanocarrier.
(A) Physical encapsulation: (a) two different drugs physically encapsulated, (b) two different drugs
physically encapsulated one after the other; (B) chemical conjugation: (a) two different drugs chemically
conjugated, (b) two different drugs chemically conjugated one after the other; (C) physical and chemical
conjugation of two different drugs one after the other: (a) drug1 physically encapsulated and drug2
chemically conjugated, (b) drug1 chemically conjugated and drug2 physically encapsulated; (D) physical
encapsulation and adsorption and conjugation on the surface: (a) drug1 physically encapsulated and
drug2 absorbed on the surface, (b) drug1 physically encapsulated and drug2 chemically conjugated on
the surface.

2. Nanoformulations of Anticancer and Antiangiogenesis Drugs for Combination
Cancer Therapy

Organic (e.g., polymers, lipids) and inorganic (e.g., mesoporous silica nanoparticles or MSNs,
gold) material-based nanoformulations have been extensively developed, investigated, and used for
dual-drug combinations. In particular, nanoformulations presented in Table 1, developed to deliver
antiangiogenic and anticancer drugs in order to increase their therapeutic efficacies, are discussed below
for their use in combination cancer therapy. The combination of the drugs used in the below-mentioned
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nanoformulations have been reported to act in a synergistic manner, where the cumulative effect of the
antiangiogenic and anticancer drugs is greater than the sum of the individual effects of each drug.

2.1. Polymeric-Based Nanoformulations

Polymers offer superior advantages and vast usage for nanodrug delivery among all the commonly
used biodegradable nanomaterials. Biocompatible polymers provide a versatile platform to load
multiple low molecular weight drugs to generate different types of nanoformulations, such as
polymer nanoparticles, polymer-drug conjugates, polymer-based micelles, dendrimers, and hydrogels.
Hence, this section highlights and discusses the recent advances and impacts of polymer-based
nanoformulations, which have shown potential effectiveness for combination cancer therapy.

Jinming Zhang et al. developed a pH-sensitive polymeric nanoparticle using an amphiphilic poly
(b-amino ester) copolymer to deliver Dox and curcumin (Cur) in optimized ratios for the treatment of
hepatocellular carcinoma (HCC) [80]. Dox is commonly used as anticancer drug that causes DNA damage
and activate apoptosis. Cur is a bioactive compound derived from the herb Curcuma longa L. (known as
turmeric) and exhibits a potent antiangiogenic activity. The Dox and Cur nanoformulation showed a low
polydispersity, high encapsulation efficiency, and enhanced release in the acidic environment of tumor
cells. Likewise, an enhanced cellular internalization was observed in human liver cancer cells and human
umbilical vein endothelial cells as compared to their free-drug counterparts. This nanoformulation also
exhibited a high rate of apoptosis in human liver cancer cells and greater antiangiogenic effects both
in vitro and in vivo (Figure 3). Overall, this pH-sensitive polymeric nanocarrier containing Dox and Cur
drugs was demonstrated to inhibit cancer cell proliferation and angiogenesis in a synergistic manner,
suppressing the tumor growth in HCC [80].
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Figure 3. Antitumor effect of pH-sensitive polymeric nanoparticles of co-loaded Dox and Cur in
hepatocellular carcinoma: (A) Tumor volume, (B) tumor weight, (C) body weight at the end of the
experiment, (D) picture of excised tumors at the end of the experiment [80]. Reprinted with permission
from ref. [80], copyright (2017) Elsevier.

In another study, Haiqiang Cao et al. designed polymeric self-assembled nanoparticles (SCNs)
with sizes of 84.97 ± 6.03 nm (homogeneous nanometric spherical particles) to enhance the therapeutic
effect in HCC. This nanoparticle comprised of two hydrophobic drugs-sorafenib (Sora) and Cur-
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and polyethylene glycol-vitamin E succinate (PEG-VES). These could be directly self-assembled into
SCN due to their intermolecular hydrophobic interactions, thereby combining two drugs within a
single nanocarrier [81]. These SCNs presented superior effects in vitro (using BEL-7402 and Hep G2
cancer cells) in comparison to Sora, Cur, and their physical mixture (Sora + Cur) in terms of enhanced
cytotoxicity, cell apoptosis, and antiangiogenesis activities in tube formation and micro vessel formation
from aortic rings. Specifically, in a tumor xenograft model of human hepatocellular carcinoma cell lines
of BEL-7402, SCN showed an enhanced inhibitory effect on tumor progression when compared to free
drugs or their physical mixture, along with significantly greater antiproliferation and antiangiogenesis
properties. Thus, these co-delivered nanoassemblies of Sora and Cur have been shown to enhance the
therapeutic effect on antiangiogenesis and antiproliferation activities for combination cancer therapy
in an in vivo model of hepatic cellular carcinoma (Figure 4) [81].
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Figure 4. Self-assembled nanoparticles (SCNs) for the co-delivery of sorafenib and curcumin enhance
their therapeutic effect in hepatocellular carcinoma: (A) schematic representation of SCNs, (B) tumor
tissues from each group, (C) tumor growth profile [81]. Reprinted with permission from ref. [81],
copyright (2015) American Chemical Society.

Prodrug-assembled polymeric nanoparticles for the delivery of two drugs [CA4 and 7-ethyl-
10-hydroxycamptothecin (SN38)] in a sequential manner on demand at the target site was developed by
Hangxiang Wang et al. CA4, an antiangiogenic agent, can disrupt the tumor neovasculature, causing
vascular shutdown, while SN38, a chemotherapeutic drug, can inhibit the DNA topoisomerase 1 of
cancer cells. The obtained amphiphilic-assembled polymeric nanoparticles exhibited a sequential
release of two drugs: initially, CA4, followed by SN38. A HT-29 colon tumor-bearing mousse model
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in an in vivo study indicated that the CA4/SN38 co-encapsulated polymeric nanoparticles displayed
synergistic activities in inhibiting the tumor growth (Figure 5) [82].
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after 48 h at pH 6.5. This nanogel exhibited a high inhibitory activity on the cancer cell proliferation 
(MCF-7 and normal 3T3-L1 cells) in vitro, with a superior antitumor therapeutic efficacy with a single 
injection in HCC xenograft tumor-bearing mice (Figure 6) [83]. 

Figure 5. (A) (a) Schematic illustration of self-assembled nanoparticles of block copolymers and
prodrugs of CA4 derivatives (2 and 3) and linolenic acid-7-ethyl- 10-hydroxycamptothecin (SN38)
conjugates; (b) chemical structures of CA4 and its ester derivatives 2 and 3 and derivatives of SN38.
(B) Mice bearing subcutaneous HT-29 tumors were intravenously treated with different drug-loaded
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Wen Jing Yang et al. attempted using poly(acrylic acid-co-4-vinylphenylboronic acid) to
develop a synergistic pH/redox stimuli-responsive nanohydrogel for the sequential local delivery
of combretastatin A-4 phosphate (CA4P) and Dox for antiangiogenesis and anticancer combination
therapy. This nanoformulation also released CA4P and Dox in a sequential manner at the target site on
demand. A cumulative release was observed, with about 57.2% released at 9 h and almost 90.7% after
48 h at pH 6.5. This nanogel exhibited a high inhibitory activity on the cancer cell proliferation (MCF-7
and normal 3T3-L1 cells) in vitro, with a superior antitumor therapeutic efficacy with a single injection
in HCC xenograft tumor-bearing mice (Figure 6) [83].
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Mohyeddin Assali et al. prepared self-assembled micelles combining combretastatin A4 (CA4)
and camptothecin (CPT) by using click chemistry. These micelles displayed enhanced stability and
water solubility at pH 7.4, with a low critical micelle concentration (CMC) of 0.9 mM. Furthermore,
this micelle formulation encompassing two drugs displayed five times higher cytotoxicity against
HeLa cancer cells when compared to the free drugs. Moreover, a combination index (CI) of less than 1
suggested a synergistic activity by the micelles. Imaging studies of HeLa cells treated with FITC-loaded
micelles showed a rapid internalization. Based on these results, in vivo studies to determine the
anticancer activity were suggested [84].

Fatima Zohra Dahmani et al. developed a heparin–gambogic acid conjugate (cRHG) and
c(RGDyK)-functionalized (targeting ligand) self-assembled polymeric amphiphilic nanoformulations.
These nanoformulations showed considerable the inhibition of VEGF, hypoxia inducible factor-1 alpha,
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and CD31 expression, with the significant downregulation of phosphorylated vascular endothelial
growth factor receptor-2 (pVEGFR2). These results also demonstrated a versatile nanoplatform
for efficient combinational tumor therapy in vivo (Figure 7). Hence, a combination of chemo- and
antiangiogenesis therapy holds immense potential for effective tumor growth inhibition [85].
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Figure 7. (A) Schematic representation of the self-assembled heparin–gambogic acid conjugate (cRHG)
nanoparticles; (B) passive accumulation of cRHG in the tumor site via the enhanced permeability
and retention (EPR) effect targeted at tumor cells and neovasculature. (I) Binding to angiogenic
factors (VEGF), (II) inhibition of VEGFR2 phosphorylation, (III) recognition of cRHG by αvβ3 integrin,
(IV) αvβ3 integrin-mediated internalization of cRHG, (V) disassembly and drug release. (C) In vivo
antitumor efficacy assay-the U87MG tumor growth curves after the intravenous injection of different
GA formulations at a dose of 2 mg kg−1; (D) body weight changes of U87MG tumor-bearing mice after
10 d administration of different formulations [85]. Reprinted with permission from ref. [85], Copyright
(2016) John Wiley & Sons, Inc. * p < 0.05 and ** p < 0.01.

Keren Miller et al. engineered a novel polymer-drug conjugate, namely N-(2-Hydroxypropyl)
methacrylamide (HPMA)-copolymer-paclitaxel-alendronate (HPMA-PTX-ALN) conjugate, to improve
antitumor and antiangiogenic activity in breast cancer. The chemical synthesis scheme (Figure 8A)
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shows that PTX and ALN were conjugated to HPMA co-polymer via a phe-lys-p-aminobenzyl carbonate
(FK-PABC), which showed a sustained release by cathepsin B. This conjugate showed the highest
antitumor activity compared to free PTX or with a combination of free PTX plus ALN in 4T1-mcherry
mammary adenocarcinoma in the tibia (Figure 8) [86].
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Figure 8. (A) Chemical structure of N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer-
paclitaxel (PTX)-alendronate (ALN) conjugate and the release of the drugs PTX and ALN by cathepsin
B; (B) conjugate inhibits 4T1-mCherry mammary adenocarcinoma in the tibia, (a) antitumor efficacy
measured by intravital noninvasive fluorescence imaging, (b) fluorescence images; (C) body weight
change (presented as % change from initial weight); (D) White blood cells (WBC) counts from blood
samples collected on day 11. Data represent mean (SEM of six mice per group. * p < 0.05 value of
mice treated with HPMA copolymer-PTX-ALN conjugate was analyzed against saline control mice.
* p < 0.05 value of free PTX or combination of free PTX plus ALN was analyzed against control mice
treated with PTX vehicle. [86]. Reprinted with permission from ref. [86], copyright (2011) American
Chemical Society.
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Deepa A Rao et al. developed individual and mixed micelles of polymeric-paclitaxel (PTX)
conjugates and polymeric-rapamycin (RAP) conjugates with an acid-sensitive linker. This acid-sensitive
linker released the drugs from the micelles in a preferential manner at pH 5.5 in lysosomes.
The micelles displayed antiproliferative activity in a synergistic manner against ovarian cell lines (human
Caucasian ovarian adenocarcinoma and human ovarian clear cell carcinoma) and endothelial cell line.
The inhibition of endothelial cell migration and tube formation were also reported. No acute toxicity was
observed in healthy mice for over 21 days at a dose of 60 mg/kg of the micelles. The individual micelles
exhibited only antiangiogenic activity, whereas the mixed micelles demonstrated both antiangiogenic
and apoptosis induction activity in an epithelial ovarian cancer xenograft model in efficacy studies at
20 mg/kg/drug dosed every 4 days and assessed after 21 days (Figure 9) [87].
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Figure 9. Pictorial representation of individual and mixed micelle polymer-conjugates of paclitaxel
(PTX) and rapamycin (RAP): (A) synthesis schematic for polymeric-paclitaxel conjugate and
polymeric-rapamycin conjugate and their micelles formulation, (B) pH-dependent drug release from
micelles, (C) accessibility and accumulation of micelles for human umbilical vein endothelial cells
HUVECs and cancer cells (ovarian) in the tumor environment [87]. Reprinted with permission from
ref. [87], copyright (2016) American Chemical Society.

Yiguang Wang et al. synthesized arginine-glycine-aspartic acid (RGD)-functionalized polymeric
micelles of poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-PLA). Here, Dox and CA4 were encapsulated
into micelles (namely, RFPMs-DOX-CA4) of 29.2 ± 2.5 nm size. These micelles (RFPMs-DOX-CA4) was
demonstrated to sequentially release both drugs, resulting in the sequential killing of endothelial cells
and tumor cells in vitro. In addition, these micelles were reported to exhibit a greater tumor growth
inhibition and higher survival rate in comparison to free drugs and their combination in B16-F10
tumor-bearing mice. Further, the in vivo evaluation of these micelles showed a significant reduction
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in the tumor vasculature and cell proliferation, which suggests these micelles can be effective for
combination cancer therapy (Figure 10) [88].
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Reprinted with permission from ref. [88], copyright (2011) Elsevier. ** p < 0.01.

In summary, this section explored cancer targeting through polymer-based nanoformulations of
anticancer and antiangiogenic agents in a single nanocarrier for combination therapy at lower doses,
with an aim to reduce the toxicity and enhance the therapeutic efficacy.

The hallmark of these above-mentioned nanoformulations is the selection of appropriate polymers,
which could be based on polymeric nanoparticles, polymeric conjugates, micelles, and hydrogels.
The ideal polymer would be one which is non-toxic, water soluble, non-immunogenic, and has
a high drug loading capacity. Apart from this, one of the key factors that plays a critical role
in polymer pharmacokinetics and biodistribution is the molecular weight (MW) of the polymer,
which ensures a long circulation in the bloodstream to allow EPR-mediated accumulation. Indeed,
for non-biodegradable polymers, the MW must be less than 40–50 kDa (renal clearance threshold)
to ensure renal elimination [95]. In general, a MW of 30–100 kDa is employed as an optimum range
for drug delivery; however, it needs to be tailored to the particular polymer based on its architecture
and biodegradability. Considering the key attributes of the polymers, as stated above, significant
efforts were made to elucidate the synergetic effects achieved by the combination therapy, which led to
advanced drug delivery strategies rather than simply an additive effect of the partner drugs [96,97].

For instance, D-a-tocopheryl poly-ethylene glycol-block-poly (b-amino ester) amphiphilic
copolymers used a pH-sensitive nanoparticle with an enhanced pH sensitivity and stability in
the physiological environment and encapsulated anticancer and antiangiogenic drugs simultaneously
by self-assembly [80]. In another study, a PEG derivative of vitamin E succinate and CA4 and SN38
derivatives could be directly self-assembled into polymeric nanoparticles due to the intermolecular
hydrophobic interactions among them, which combined two drugs within a nanovehicle to exert the
desired effect for effective combination therapy [81]. In another experiment, polymer-based hydrogel
was used to deliver antiangiogenic and anticancer drugs with sequential drug release profiles, which
subsequently led to the sustained long-term release of the drugs [83]. In one study, HPMA copolymer
facilitated the attachment of chemotherapeutic and antiangiogenic drugs to a polymeric backbone,
as well as targeting moieties, such as the bone-targeting agent ALN [86]. Overall, these polymer-based
nanoformulations help with implementing a robust and successful combinational cancer therapy.
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2.2. Lipid Based Nanoformulations

Lipid-based nanocarriers, such as liposomes, solid lipid nanoparticles, nanocells, and lipid-coated
nanoparticles have emerged as promising nanovehicles for cancer therapy. This section focusses on the
recent advancements of lipid-based and other organic nanoformulations for combination chemo- and
antiangiogenesis therapy.

Shiladitya Sengupta et al. incorporated two drugs (Dox and CA4) for a lipid-based nanoformulation
in a two-step process. CA4 was incorporated into the lipid layer, whereas Dox was loaded into the
polymeric core. The nanoformulation was preferentially taken up by the tumor within 5 h and inhibited
the temporal targeting of tumor cells and neovasculature together in a sequential manner and retained
for at least 24 h. The synergistic effects of inhibiting the tumor vessels and proliferation of tumor cells
were achieved in in vitro and in vivo studies [89].

In another study, Wenbing Dai et al. constructed a novel liposomal delivery system with the
traditional chemotherapy drug Dox and antiangiogenesis agent CA4 with surface modification by the
targeting ligand octreotide (Oct). The release kinetics of drugs from the nanoformulation confirmed
the rapid release of CA4, followed by a slow release of Dox in vitro. In addition, sequential killing
effects were confirmed in vivo using nude mice bearing MCF-7 tumors. The active targeted liposomes
Oct-liposome of CA4 and Dox showed a specific cellular uptake through ligand-receptor interaction
and a higher antitumor effect in vitro against somatostatin receptor (SSTR) positive cell lines [98–100].
This study concluded that the liposome-based nanoformulation can be a potential nanodrug delivery
system for the treatment of malignant solid tumors [90].

Yi-Fei Zhang et al. developed an arginine–glycine–aspartic acid (RGD)-modified liposome,
co-encapsulating Dox and CA4 with the aim of assessing sequential release and enhancing tumor
inhibition responses. The results showed that the release rate of Dox was much slower than that of
CA4 in vitro. The intracellular uptake of liposomal drugs by B16/B16F10 melanoma tumor cells and
human umbilical vein endothelial cells (HUVECs) was enhanced based on flow cytometry and laser
confocal scanning microscopy assessments. A cytotoxicity assay demonstrated the lower half maximal
inhibitory concentration (IC50) of RGD-modified liposomes than the corresponding unmodified
liposomes. Prominent synergistic effects on tumor reduction were observed with RGD-modified
liposomes co-encapsulating CA4 and Dox, delineating the importance of a targeted drug delivery system
for the co-encapsulation of antiangiogenic and anticancer agents for cancer treatment (Figure 11) [91].

In summary, the development of lipid-based nanoparticles/nanocarriers, and particularly
liposomes, as discussed in the above-cited studies, has been reported as an alternative modality
for cancer therapy. These lipid-based nanoformulations work by means of passive and active targeting,
thereby reducing the toxicity associated with anticancer and antiangiogenic agents and subsequently
improving the efficacy of these drugs similarly to various other types of nanoformulations. Nonetheless,
lipid-based nanoparticles have been found to be more beneficial than some of their counterparts, owing
to their ingredients being more biocompatible and biodegradable in nature. Moreover, the amphiphilic
properties of liposomes allow these nanoparticles to encapsulate both hydrophobic and hydrophilic
anticancer and antiangiogenic drugs. Hence, lipid-based nanoparticles may help in improving the
therapeutic efficacy and safety profile of combination chemotherapy and, ultimately, the prognosis of
cancer patients.
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2.3. Inorganic Material-Based Nanoformulations

As evident from the above-mentioned numerous nanoformulations, most nanodrug delivery
systems in clinical trials and in clinical use are based on organic (mostly liposomal or polymer)
platforms. In particular, liposomal formulations- e.g., Doxil—used for monotherapy for cancer
as well in combination chemotherapy have been successfully translated to the clinic. Meanwhile,
nanoformulations based on inorganic materials such as MSNs, iron oxides (Fe3O4), gold (Au), and
silver (Ag) have also become a very important class of nanodrug delivery vehicle. The following
discussion illustrates the recent advances in inorganic-based nanoformulations, especially MSNs, iron
oxide, and gold-based nanoformulations, for chemo and antiangiogenesis combination cancer therapy.

Sunhui Chen et al. developed bovine serum albumin-coated superparamagnetic iron oxide
(BSA-SPIO) nanoparticles and further co-loaded this nanosystem into two drugs—the cytotoxic drug
Cur and tyrosine kinase inhibitor (TKI) sunitinib (Sun)—to achieve synergistic effect. The BSA-SPIOs
and dual-drug (Sun and Cur)-loaded BSA-SPIO nanoparticles, when compared to free drugs, displayed
the most significant tumor inhibition in an MCF-7 tumor xenograft mouse model. In addition, these NPs
were used for in vivo MR imaging and prompted a good targeting to the tumor site with well-preserved
stability and long-circulation potential, rendering them promising candidates for both tumor diagnosis
and therapy. These nanoparticles exhibit both in vivo MR imaging and tumor therapy capability,
thus being a promising theragnostic material (Figure 12) [92].
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Figure 12. (A) Schematic representation of bovine serum albumin-coated superparamagnetic iron
oxide (BSA-SPIO) nanoparticles further co-loaded with two drugs (Sun and Cur) to achieve combined
cancer therapy. (B) antitumor activity of BSA-SPIOs and drug-loaded BSA-SPIOs in an MCF-7 tumor
xenograft mouse model. The mice were treated with free Sun, free Cur, free Sun + Cur, and SPIO-SC
every other day by tail vein injection at doses of 15 mg/kg for sun and 30 mg/kg for cur. (a) The
growth of tumor volumes, (d) Nude mouse survival time of each group; (e) Nude mouse weight of
each group [92]. Reprinted with permission from ref. [92] copyright (2017) Royal Society of Chemistry.
* p < 0.05, ** p < 0.01, *** p < 0.001.

Xiaoyu Li et al. reported a MSN-based nanoformulation loaded with two different drugs, CA4 and
Dox. Additionally, 9-amino acid (CRGDKGPDC) cyclic (iRGD) peptide was used as a targeting ligand
conjugated onto the MSN surface. Particularly, iRGD peptide targeted α2β3 integrin receptors, which
are overexpressed in cancer and tumor vascular cells. Therefore, this nanocarrier targeted tumor
vasculature specifically and was used for combined chemo- and antiangiogenesis therapy. When these
dual-drug-loaded MSNs were injected into the blood circulation, they accumulated at the targeted
tumor via the α2 β3 integrin receptors in the tumor environment. Most of the antiangiogenic drug was
released first, while only a small amount of Dox was released during the same time period due to the
negatively charged MSNs interacting electrostatically and via hydrogen bonding with the positively
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charged Dox. Sequentially, after reaching deep into the tumor, Dox quickly released in the lower pH
environment. The further uptake by tumor cells and release of Dox efficiently induced the apoptosis of
the cancer cells. Such nanoformulation showed a synergetic effect and greatly enhanced the cytotoxic
effect of Dox in cancer cells (Figure 13) [93].
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You-Hong You et al. engineered a multifunctional (PDA)-coated gold (Au) nanostar (NS@PPFA)
nanoformulation containing Dox (NS-D@PPFA) for combination cancer therapy to target drug resistance
in breast cancer. Breast cancer MCF-7 and drug-resistant MCF-7/Adriamycin (ADR) cells demonstrated
the effective intracellular uptake and cytotoxicity of the designed nanoformulation. These nanoagents
were found to be more active in inhibiting VEGF-induced VEGFR angiogenesis. The CD31 and
pVEGFR2 levels were also significantly reduced in vivo. The investigation of the antitumor activity of
NS-D@PPFA (6 mg/kg Au, 1.8 mg/kg Dox) in comparison to PBS as a control and free Dox (5 mg/kg),
plus near-infrared (NIR) laser in MCF-7/ADR tumor-bearing mice, showed that the inhibition of the
tumor cells and endothelial cells proliferation was achieved by combined chemo and photothermal
effects (chemo-PTT). The photothermal effect and triggered drug release was induced by NIR laser
(808 nm)/808-nm irradiation (Figure 14) [94]. From the in vitro and in vivo results, this nanoformulation
simultaneously presented a remarkable antitumor efficacy by chemo-PTT combination therapy,
triggered by a single NIR laser (Figure 14) [94]. Overall, this study found to a new therapeutic strategy
against antiangiogenic cancer therapy and multidrug-resistant cancers.

In summary, given the variety of inherent properties that different inorganic materials possess—as
discussed above, for instance superparamagnetic (iron oxides) and photothermal (gold) activity—these
are highly interesting constructs to be included in the design of hybrid nanocarriers for combination
therapies. Many inorganic materials possess inherent imaging activity, rendering them suitable to
be tracked by different biological or medical imaging techniques. As mentioned above, this not
only allows easy tracking in the biological or physiological environment during the investigation
of the behavior of the nanocarrier, but also implies their potential as theragnostic agents. A couple
of other examples showed how the modularity and robustness of the mesoporous silica matrix
could be utilized to load multiple drugs simultaneously, while separately functionalizing the outside
particle surface with targeting ligands. Nevertheless, inorganic materials usually require organic
functionalization to reach the desired responsiveness and, in many cases, biocompatibility in the
physiological environment, as well as for the conjugation of targeting ligands. In the above-discussed
cases, organic coatings were utilized, e.g., to facilitate pH-sensitive drug release (PDA) and long
circulation time, and low immunogenicity (BSA) and drug loading capability. Such properties are
usually dependent on the interaction of the nanosystem with the surrounding environment (sometimes
referred to as the “bio-nano interface”), while the inherent properties of inorganic materials (robustness
for drug incorporation and protection, imaging activity, photothermal and photodynamic activity)
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are not in general dependent on direct contact. Consequently, constructing hybrid nanocarriers by
making use of an inorganic platform with organic functionalization appears to be an especially flexible
approach for the development of synergistic nanocarriers for combined chemo- and antiangiogenetic
therapy, even combined with other therapeutic strategies.Pharmaceutics 2020, 12, x 20 of 27 
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Figure 14. Schematic representation of the synthesis of polydopamine (PDA)-coated gold (Au) nanostar
(NS@PPFA) for combined anticancer and antiangiogenic treatment: antitumor activity of polydopamine
(PDA)-coated gold (Au)-Dox nanostar (NS-D@PPFA) in MCF-7/Adriamycin (ADR) tumor-bearing
mice. (A) Tumor growth curve of mice receiving intravenously administration of PBS, Dox (5 mg/kg),
and NS-D@PPFA (6 mg/kg Au; 1.8 mg/kg Dox) at day 0 and day 14, respectively. Tumors were treated
with NIR irradiation (0.9 W/cm2, 3 min, 3 times) at 24 h and 48 h after each injection. (B) Tumor weight
was measured on excised tumors at day 28 after different treatments. (C) Body weight monitoring of
the treated mice over a period of 28 days [94]. Reprinted with permission from ref. [94]. * p < 0.05, N.S.:
not significant.

3. Future Perspectives, Outlook, and Conclusions

On one hand, the drug resistance and multiple side effects associated with conventional
chemotherapy remains a significant barrier in the treatment of cancer. On the other hand, monotherapy
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of antiangiogenic drugs has demonstrated only a temporary response in clinical trials, with some
serious dose limiting toxicities and allergic reactions. Nevertheless, the tumor tissue exposure to
combination therapy of antiangiogenesis and chemotherapeutic agents with dissimilar chemical and
pharmacological properties remains very challenging. To overcome this, various nanoformulations
with tunable and predictable release of multiple drugs have been investigated in preclinical studies
(mice models), and the same needs to be validated in different species such as rat, rabbit, and monkey
and thus eventually among cancer patients before these nanoformulations can be launched into
the market.

Despite the wide array of advantages of nanoformulation-mediated combination
chemo-antiangiogenesis cancer therapy—e.g., reduction in tumor growth, the regulation of drug
resistance, and overall synergistically improved therapeutic efficacy—there are certain challenges
that remain in their preparation and efficient translation. These include unknown toxicity and
immunogenicity aspects, inefficient drug targeting, the lack of collaboration from bench to bedside
between experts in the particular fields, and the cost of industrial production. Although nanotechnology
has had a major contribution in medicine, particularly in cancer therapy, a common nanotoxicology
consensus remains undefined [50]. For instance, long-term toxicity and safety profiles associated
with nanoparticles need to be determined, but so far acute toxicity have largely been explored on a
case-by-case basis. Specifically, the molecular interactions between nanocarriers and the endothelial
cell lining should be unraveled, as most of these drug formulations are administered intravenously.
In order to minimize the systemic toxicity, certain design principles can be considered, such as
overall size and physical and chemical surface properties, as well as the selection and tailoring of the
nanoformulations [101]. In the best-case scenario, functionalizing the nanocarrier with targeting ligands
should help to reduce side effects by selectively increasing the drug accumulation at target sites and
thereby reducing systemic exposure, eventually improving the therapeutic outcome [102]. Additionally,
novel screening tests need to be designed to assess the biodistribution and understand the biochemical
pathways that regulate cell functions. Although liposome-based nanoformulations are frequently
used due to their non-immunogenicity, their short half-life, low solubility, and high production costs
are to their disadvantage [103]. Polymeric-based nanoformulations have the advantage of being
biodegradable, but at the same time, their drug release takes place in an uncontrolled manner, which
is disadvantageous from an optimal nanoformulation point of view [104,105]. Moreover, there is a
need to consider the cost of production for these nanoformulations for clinical use, as the cost of these
combined chemo-antiangiogenic nanoformulations may supposedly be higher than the total cost of
each drug altogether. The potential solution to the above-mentioned challenges lies in bringing the
interdisciplinary experts and collaborators from academics, clinicians, scientists, and regulatory bodies
to ensure a goal to establish the improved therapeutic outcomes of combined chemo-antiangiogenesis
therapy and, ultimately, improving the quality of life of cancer patients.

Furthermore, the exploration of nanoformulations comprising anticancer drugs in combination
with anti-inflammatory drugs [106–108], radioligands [109–112] and specific target genes is highly
warranted [113]. These approaches would be beneficial in improving the therapeutic outcome,
in addition to studies addressing the long-term toxicity and safety of the nanoformulations. Different
biodegradable linkers can also be engineered to deliver the parent drugs through a controllable and
targetable fashion, with the drug released sequentially or simultaneously via specific mechanisms in
the tumor microenvironment, with the potential to achieve great advances in cancer therapy. Moreover,
the incorporation of imaging agents (e.g., radionuclides or inorganic constructs) would also allow
clinicians to tailor combination therapies in a more personalized manner and/or for complex cancers
such ovarian cancer [114,115]. In conclusion, nanoformulations based on different nanocarriers, such
as polymeric nanoparticles, micelles, hydrogels, liposomes, mesoporous silica nanoparticles, and gold
nanoparticles containing anticancer and antiangiogenic agents have been established as a promising
cancer treatment strategy in preclinical models. Nevertheless, there is still a long road for clinical
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application in terms of patient outcomes; however, these approaches offer flexible and robust platforms
for the realization of the presented combination therapy concepts down the road.
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