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Abstract
There has been recent interest in a hybrid form of the celebrated conjectures of Hardy–Littlewood and of Chowla.
We prove that for any 𝑘, ℓ ≥ 1 and distinct integers ℎ2, . . . , ℎ𝑘 , 𝑎1, . . . , 𝑎ℓ , we have:∑

𝑛≤𝑋

𝜇(𝑛 + ℎ1) · · · 𝜇(𝑛 + ℎ𝑘 )Λ(𝑛 + 𝑎1) · · ·Λ(𝑛 + 𝑎ℓ ) = 𝑜(𝑋)

for all except 𝑜(𝐻) values of ℎ1 ≤ 𝐻, so long as 𝐻 ≥ (log 𝑋)ℓ+𝜀 . This improves on the range 𝐻 ≥ (log 𝑋)𝜓 (𝑋 ) ,
𝜓(𝑋) → ∞, obtained in previous work of the first author. Our results also generalise from the Möbius function 𝜇
to arbitrary (non-pretentious) multiplicative functions.
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1. Introduction

Let 𝜇 and Λ denote the Möbius and von Mangoldt functions, respectively, defined by

𝜇(𝑛) =
{
(−1)𝑟 𝑛 = 𝑝1 · · · 𝑝𝑟 , 𝑝𝑖 distinct,
0 else.

and Λ(𝑛) =
{

log 𝑝 𝑛 = 𝑝𝑒, 𝑒 ≥ 1,
0 else.

Also, let 𝜆 be the Liouville function given by 𝜆(𝑛) = (−1)Ω(𝑛) , where Ω(𝑛) is the total number of prime
factors of n with multiplicities. For technical convenience, we extend these functions to the non-positive
integers as zero (the choice of the extension makes no difference). Recall that the prime number theorem
is equivalent to the average bounds

∑
𝑛≤𝑋 𝜇(𝑛) = 𝑜(𝑋) and

∑
𝑛≤𝑋 Λ(𝑛) = (1 + 𝑜(1))𝑋 . The influential

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution-NonCommercial-ShareAlike licence (https://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial
re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly
cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

https://doi.org/10.1017/fms.2022.54 Published online by Cambridge University Press

doi:10.1017/fms.2022.54
https://orcid.org/0000-0002-8303-5051
https://orcid.org/0000-0001-6258-8004
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2022.54&domain=pdf
https://doi.org/10.1017/fms.2022.54


2 Jared Duker Lichtman and Joni Teräväinen

conjectures of Chowla [2] and Hardy–Littlewood [6] assert that for any fixed tuple of distinct integers
ℎ1, . . . , ℎ𝑘 , ∑

𝑛≤𝑋

𝜇(𝑛 + ℎ1) · · · 𝜇(𝑛 + ℎ𝑘 ) = 𝑜(𝑋),∑
𝑛≤𝑋

Λ(𝑛 + ℎ1) · · ·Λ(𝑛 + ℎ𝑘 ) = (𝔖(H) + 𝑜(1))𝑋,

where H = {ℎ1, . . . , ℎ𝑘 } and the singular series is given by

𝔖(H) =
∏

𝑝

1 − 𝜈𝑝 (H)/𝑝
(1 − 1/𝑝)𝑘

, (1.1)

where 𝜈𝑝 (H) = |{ℎ (mod 𝑝) : ℎ ∈ H}|. Both conjectures remain open for any 𝑘 ≥ 2.
It is natural to consider the following hybrid conjecture, which, following [10] and [20], we call the

Hardy–Littlewood–Chowla conjecture.

Conjecture 1.1 (Hardy–Littlewood–Chowla). Let 𝑘, ℓ ≥ 0, and let ℎ1, . . . , ℎ𝑘 , 𝑎1, . . . , 𝑎ℓ be distinct
integers. Then we have1∑

𝑛≤𝑋

𝜇(𝑛 + ℎ1) · · · 𝜇(𝑛 + ℎ𝑘 )Λ(𝑛 + 𝑎1) · · ·Λ(𝑛 + 𝑎ℓ ) = (𝔖 + 𝑜(1))𝑋. (1.2)

Here, 𝔖 =𝔖({𝑎1, . . . , 𝑎ℓ }) as in (1.1) if 𝑘 = 0, and 𝔖 = 0 if 𝑘 > 0.

The ‘pure’ cases 𝑘 = 0 and ℓ = 0 specialise to the original conjectures of Hardy–Littlewood and of
Chowla, respectively. We remark that under the hypothetical assumption of infinitely many Siegel zeros,
Conjecture 1.1 was recently verified for ℓ ≤ 2 by Tao and the second author [20] (generalising works of
Heath-Brown [7] and Chinis [1]). In the current paper, we will be concerned with unconditional results.

Our main result is an averaged form of Conjecture 1.1 for the genuinely ‘hybrid’ cases 𝑘, ℓ ≥ 1.

Theorem 1.2 (Hardy–Littlewood–Chowla on average). Let 𝜀 > 0 and 𝑘, ℓ ≥ 1 be fixed, and let
ℎ2, . . . , ℎ𝑘 , 𝑎1, . . . , 𝑎ℓ be fixed and distinct positive integers.

(i) Let (log 𝑋)ℓ+𝜀 ≤ 𝐻 ≤ exp((log 𝑋)𝑎) with 𝑎 = 𝑎(𝜀, ℓ) > 0 small enough. Then∑
ℎ1≤𝐻

���� ∑
𝑛≤𝑋

𝜇(𝑛 + ℎ1) · · · 𝜇(𝑛 + ℎ𝑘 )Λ(𝑛 + 𝑎1) · · ·Λ(𝑛 + 𝑎ℓ)
���� � 𝐻𝑋

log log𝐻
log𝐻

. (1.3)

(ii) Let 𝐶 ≥ 1 be fixed, and let (log 𝑋)ℓ+𝜀 ≤ 𝐻 ≤ (log 𝑋)𝐶 . There exists an absolute constant 𝑐 > 0,
such that for any 104ℓ𝜀−1(log log𝐻)/(log𝐻) ≤ 𝛿 ≤ 𝑐/𝐶, we have���� ∑

𝑛≤𝑋

𝜇(𝑛 + ℎ1) · · · 𝜇(𝑛 + ℎ𝑘 )Λ(𝑛 + 𝑎1) · · ·Λ(𝑛 + 𝑎ℓ)
���� ≤ 𝛿𝑋

for all except � 𝐻1−𝑐𝛿𝜀/ℓ values of ℎ1 ≤ 𝐻.

In particular, (1.2) holds for all but 𝑜(𝐻) values of ℎ1 ≤ 𝐻 (and the exceptional set can be taken to
be nearly power saving).

As is clear from the proof, Theorem 1.2 holds equally well with the Liouville function in place of
the Möbius function.

1Here, we use the convention that an empty product equals to 1.
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Remark 1.3. It is likely that with some extra effort (in particular, refining Proposition 2.1 for 𝜇 in the
spirit of [10, Theorem 2.2]), Theorem 1.2(ii) could be extended to the regime (log 𝑋)ℓ+𝜀 ≤ 𝐻 ≤ 𝑋 .
However, our main interest here is in taking H as small as possible.

Earlier, Matomäki, Radziwiłłand Tao [12] proved the case ℓ = 0 of Conjecture 1.1 for almost all
ℎ1 ≤ 𝐻, with 𝐻 = 𝜓(𝑋) tending to infinity arbitrarily slowly. In [13], they considered the case 𝑘 = 0,
ℓ = 2 and proved the conjecture for almost all ℎ1 ≤ 𝐻, with 𝐻 ≥ 𝑋8/33+𝜀 . The first author [10] obtained
cancellation in the range 𝐻 ≥ (log 𝑋)𝜓 (𝑋 ) , implied by the stronger quantitative bound∑

ℎ1 ,...,ℎ𝑘 ≤𝐻

���� ∑
𝑛≤𝑋

𝜇(𝑛 + ℎ1) · · · 𝜇(𝑛 + ℎ𝑘 )Λ(𝑛 + 𝑎1) · · ·Λ(𝑛 + 𝑎ℓ)
����

� 𝐻𝑘𝑋

min
{
𝜓(𝑋)𝑘 , (log 𝑋)𝑘/3−𝑜 (1)

} .
The simplest hybrid case 𝑘 = ℓ = 1 reduces to the Möbius function on shifted primes. It is a folklore

conjecture and a well-known model case for the parity problem in sieve theory that∑
𝑝≤𝑋

𝜇(𝑝 + ℎ) = 𝑜(𝜋(𝑋))

for any fixed shift ℎ ≠ 0. This has appeared in print (for ℎ = 1) at least since Hildebrand [9] (see also
Pintz [18] and Murty–Vatwani [16, Equation (1.2)]). Theorem 1.2 directly implies an averaged form of
this conjecture for 𝐻 ≥ (log 𝑋)1+𝜀 .

Corollary 1.4. Let 𝜀 > 0. Then, for 𝑋 ≥ 𝐻 ≥ (log 𝑋)1+𝜀 , we have∑
𝑝≤𝑋

𝜇(𝑝 + ℎ) = 𝑜(𝜋(𝑋)) (1.4)

for all except 𝑜(𝐻) values of ℎ ≤ 𝐻.

This improves on work of the first author [10] that established Corollary 1.4 when 𝐻 ≥ (log 𝑋)𝜓 (𝑋 )

for any function 𝜓(𝑋) tending to infinity with X.

1.1. Other multiplicative functions

We also consider a variant of Conjecture 1.1, where the occurrences of the Möbius function are replaced
with other 1-bounded multiplicative functions 𝑓𝑖 : N → C, with 𝑓1 not pretending to be a twisted
character 𝜒(𝑛)𝑛𝑖𝑡 for any 𝜒 (mod 𝑞) and 𝑡 ∈ R. Here, following Granville and Soundararajan [5],
pretentiousness is measured by the pretentious distance

D( 𝑓 , 𝑔; 𝑋) =
( ∑

𝑝≤𝑋

1 − Re( 𝑓 (𝑝)𝑔(𝑝))
𝑝

)1/2

and the related quantity

𝑀 ( 𝑓 ; 𝑋,𝑄) = inf
|𝑡 | ≤𝑋

𝜒 (𝑞) , 𝑞≤𝑄

D
(
𝑓 , 𝑛 ↦→ 𝑛𝑖𝑡 𝜒(𝑛); 𝑋

)2
. (1.5)

The following generalisation of Conjecture 1.1 is closely related to Elliott’s conjecture [3] on correlations
of multiplicative functions (in fact, the case ℓ = 0 is precisely Elliott’s conjecture), so we shall call it
the Hardy–Littlewood–Elliott conjecture.
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Conjecture 1.5 (Hardy–Littlewood–Elliott). Let ℎ1, . . . , ℎ𝑘 , 𝑎1, . . . , 𝑎ℓ be distinct integers. Fix
1-bounded multiplicative functions 𝑓1, . . . , 𝑓𝑘 . Suppose that 𝑓1 is non-pretentious in the sense that

𝑀 ( 𝑓1; 𝑋,𝑄) 𝑋→∞−−−−−→ ∞

for any 𝑄 ≥ 1. Then we have∑
𝑛≤𝑋

𝑓1(𝑛 + ℎ1) · · · 𝑓𝑘 (𝑛 + ℎ𝑘 )Λ(𝑛 + 𝑎1) · · ·Λ(𝑛 + 𝑎ℓ) = 𝑜(𝑋). (1.6)

The case ℓ = 0 of this is Elliott’s conjecture (in the slightly corrected formulation of
[19, Conjecture 1.3]).

We extend our results to non-pretentious multiplicative functions in the regime 𝐻 ≥ (log 𝑋)ℓ+𝜀 .

Theorem 1.6 (Hardy–Littlewood–Elliott on average). Let 𝜀 > 0, 𝑘, ℓ ≥ 1 be fixed, and let
ℎ2, . . . , ℎ𝑘 , 𝑎1, . . . , 𝑎ℓ be fixed and distinct positive integers. Let (log 𝑋)ℓ+𝜀 ≤ 𝐻 ≤ exp((log 𝑋)1/1000).
Let 𝑓1, . . . , 𝑓𝑘 be 1-bounded multiplicative functions. Then we have∑

ℎ1≤𝐻

���� ∑
𝑛≤𝑋

𝑓1(𝑛 + ℎ1) · · · 𝑓𝑘 (𝑛 + ℎ𝑘 )Λ(𝑛 + 𝑎1) · · ·Λ(𝑛 + 𝑎ℓ)
����

� 𝐻𝑋

(
exp

(
−𝑀 ( 𝑓1; 𝑋,min{(log 𝑋)1/125, (log𝐻)5}

)
/(10 000ℓ𝜀−1) + log log𝐻

log𝐻

)
.

In particular, if (log 𝑋)ℓ+𝜀 ≤ 𝐻 ≤ exp((log 𝑋)1/1000) and

𝑀 ( 𝑓1; 𝑋,min{(log 𝑋)1/125, (log𝐻)5}) 𝑋→∞−−−−−→ ∞,

then (1.6) holds for all except 𝑜(𝐻) values of ℎ1 ≤ 𝐻.

Remark 1.7. As a well-known consequence of the Vinogradov–Korobov zero-free region for
L-functions, for any fixed 𝜖 > 0, 𝐴 ≥ 1 we have

𝑀 (𝜇; 𝑋, (log 𝑋)𝐴) ≥ inf
|𝑡 | ≤𝑋

𝜒 (𝑞) , 𝑞≤𝑄

∑
exp( (log 𝑋 )2/3+𝜖 ) ≤𝑝≤𝑋

1 + Re(𝜒(𝑝)𝑝𝑖𝑡 )
𝑝

≥
(1
3
− 𝜖

)
log log 𝑋 +𝑂 (1).

(1.7)

Hence, the bound of Theorem 1.6 in the case of 𝑓1 = 𝜇 simplifies to∑
ℎ1≤𝐻

���� ∑
𝑛≤𝑋

𝜇(𝑛 + ℎ1) · · · 𝑓𝑘 (𝑛 + ℎ𝑘 )Λ(𝑛 + 𝑎1) · · ·Λ(𝑛 + 𝑎ℓ)
����

� 𝐻𝑋

(
log log𝐻

log𝐻
+ (log 𝑋)−𝑎

)
for some constant 𝑎 = 𝑎(𝜀, ℓ) > 0. The same holds with 𝜆 in place of 𝜇, since (1.7) holds equally well
for 𝜆. Restricting to exp((log 𝑋)𝑎) ≥ 𝐻 ≥ (log 𝑋)ℓ+𝜀 , the bound simplifies to � 𝐻𝑋 (log log𝐻)/log𝐻.
Hence, Theorem 1.2(i) is a special case of Theorem 1.6. The rest of the paper is therefore devoted to the
proofs of Theorems 1.2(ii) and 1.6.

Theorem 1.6 improves on the range 𝐻 ≥ exp((log 𝑋)5/8+𝜀), which follows (under a slightly different
pretentiousness hypothesis) from Fourier uniformity bounds of Matomäki, Radziwiłł, Tao, Ziegler and
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the second author [15, Theorem 1.8] (see [10, Theorem 1.8] for the details of this implication).2 We
also note that the case ℓ = 0 of Conjecture 1.5 was proven on average by Matomäki–Radziwiłł–Tao [12]
in the regime 𝐻 = 𝜓(𝑋) → ∞.

1.2. Outline of the proof

The proof method of Theorem 1.2 (and Theorem 1.6) is somewhat different from that of [10] (or [12]).
Both proofs begin with Fourier-analytic identities, namely, [10, Lemma 2.1] and Proposition 3.2 below.
The latter allows one to study mixed 2-point correlations on average, for some functions f and g which
satisfy certain technical hypotheses. Crucially, in Proposition 3.2, having qualitative cancellation for the
exponential sum of f on average over short intervals [𝑥, 𝑥 + 𝐻] suffices, whereas in [10, Lemma 2.1],
one needs to save a factor comparable to ((1/𝑋)

∑
𝑛≤𝑋 |𝑔(𝑛) |2)−1/2 (but no additional hypotheses were

required of 𝑓 , 𝑔). For intervals of length 𝐻 = (log 𝑋)𝑂 (1) , the bound in [12] for the exponential sum
of a multiplicative f on average over short intervals [𝑥, 𝑥 + 𝐻] saves less than (log 𝑋)−𝑜 (1) , which is
problematic if the mean value of |𝑔 |2 is a power of log 𝑋 , so the weakening of the Fourier assumption
on f in Proposition 3.2 is important for us.

One ultimately applies Proposition 3.2 for the choices 𝑓 = 𝜇 (say) and 𝑔(𝑛) = 𝜇(𝑛 + ℎ2) · · · 𝜇(𝑛 +
ℎ𝑘 )Λ(𝑛 + 𝑎1) · · ·Λ(𝑛 + 𝑎ℓ ), in which case, verifying the technical hypotheses may be reduced to the
following problems:

(I) cancellation in short exponential sums of 𝜇 on average,
(II) moment estimates for short exponential sums over primes, that is, for ‘typical’ x,∫ 1

0

���� ∑
𝑥≤𝑛≤𝑥+𝐻

Λ(𝑛)𝑒(𝛼𝑛)
����2𝑚

d𝛼 � 𝐻2𝑚−1.

Here, (I) is deduced from the work of Matomäki–Radziwiłł–Tao [12], with special care paid to the
shape of the error terms in order to obtain a power-saving error term in Theorem 1.2(ii). This is carried
out in Proposition 2.1.

For (II), the intervals involved are too short for sieve methods to provide us with a strong enough
pointwise bound on these moments. However, on average over x, in Proposition 2.7, we show that the
moments above are of the expected order of magnitude by applying upper bounds for prime tuples
coming from Selberg’s sieve, and by performing an analysis of the resulting singular series.

The method presented is rather flexible and could be applied (with some additional effort) to other
correlation problems as well, such as the sums∑

𝑛≤𝑋

𝜇(𝑛 + ℎ)Λ(𝑃(𝑛)) or
∑
𝑛≤𝑋

𝜇(𝑛 + ℎ)1∃𝑎,𝑏∈Z : 𝑛=𝑎2+𝑏2

on average over h (with 𝑃(𝑌 ) ∈ Z[𝑌 ]). We leave the details of such generalisations to the interested
reader.

2. Auxiliary results

2.1. A short exponential sum estimate

As in [12], we introduce a set S𝑃1 ,𝑄1 ,𝑋 (depending on parameters 10 < 𝑃1 < 𝑄1 ≤ 𝑋) consisting of the
‘typical’ numbers having prime factors from certain long ranges. More precisely, S𝑃1 ,𝑄1 ,𝑋 is the set of
positive integers having a prime factor in each of the ranges [𝑃 𝑗 , 𝑄 𝑗 ], 𝑗 = 1, . . . , 𝐽, where for 𝑗 > 1,

2[10, Theorem 1.8] relies on [14, Theorem 1.4] as the Fourier uniformity input, and, hence, produces a result for 𝐻 = 𝑋 𝜃 .
Inserting instead [15, Theorem 1.12] into the argument produces a result for 𝐻 = exp( (log 𝑋 )5/8+𝜀) .
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we define:

𝑃 𝑗 = exp( 𝑗4 𝑗 (log𝑄1) 𝑗−1(log 𝑃1)),
𝑄 𝑗 = exp( 𝑗4 𝑗+2(log𝑄1) 𝑗 )

and J is the largest index, such that 𝑄𝐽 ≤ exp(
√

1
2 log 𝑋). If S𝑐

𝑃1 ,𝑄1 ,𝑋 denotes the complement of
S𝑃1 ,𝑄1 ,𝑋 in N ∩ [1, 𝑋], then the fundamental lemma of sieve theory [4, Lemma 6.17] tells us that��S𝑐

𝑃1 ,𝑄1 ,𝑋

�� � ∑
𝑗≤𝐽

log 𝑃 𝑗

log𝑄 𝑗
𝑋 � log 𝑃1

log𝑄1
𝑋. (2.1)

We then have the following exponential sum estimate (with the supremum outside) for short sums of
multiplicative functions, which follows from [12, Theorem 2.3].

Proposition 2.1. Let 3 ≤ 𝐻 ≤ exp((log 𝑋)1/1000) and

log log𝐻
log𝐻

≤ 𝛿 ≤ 1
2000

.

Let f be a 1-bounded multiplicative function. Then there exist 10 < 𝑃1 < 𝑄1 ≤ 𝑋 , such that

log 𝑃1
log𝑄1

� 𝛿 + exp(−𝑀 ( 𝑓 ; 𝑋,𝑄)/2000) (2.2)

and, such that for S = S𝑃1 ,𝑄1 ,𝑋 , we have

sup
𝛼

∫ 𝑋

0

���� ∑
𝑥≤𝑛≤𝑥+𝐻

𝑓 (𝑛)1S (𝑛)𝑒(𝑛𝛼)
����d𝑥 �

(
exp(−𝑀 ( 𝑓 ; 𝑋,𝑄)/2000) + 𝐻−𝛿

)
𝐻𝑋, (2.3)

where 𝑄 = min{(log 𝑋)1/125, (log𝐻)5}.

Remark 2.2. Applying (1.7), and assuming that 𝐻 ≤ (log 𝑋)𝐶 , the bound (2.3) in the case of 𝑓 = 𝜇
simplifies to

sup
𝛼

∫ 𝑋

0

���� ∑
𝑥≤𝑛≤𝑥+𝐻

𝜇(𝑛)1S (𝑛)𝑒(𝑛𝛼)
����d𝑥 � 𝐻1−𝛿𝑋 (2.4)

for some 𝛿 = 𝛿(𝐶) > 0, and the same holds with 𝜆 in place of 𝜇. Moreover, (2.2) then simplifies to
(log 𝑃1)/(log𝑄1) � 𝛿.

Proof. Without loss of generality, we may assume that 𝐻 ≥ 𝐻0 for a large enough constant 𝐻0. Denote
the integral in (2.3) by 𝐽 𝑓 . Suppose first that

(log𝐻)6 ≤ exp(𝑀 ( 𝑓 ; 𝑋,𝑄)/300).

Let

𝑊 = min{𝐻6𝛿 , exp(𝑀 ( 𝑓 ; 𝑋,𝑄)/300)},

and let 𝑃1 = 𝑊200, 𝑄1 = 𝐻/𝑊3 be as in [12, Theorem 2.3]. Note that 𝑊 � (log 𝑋)1/150 by the fact
that 𝑀 ( 𝑓 ; 𝑋,𝑄) ≤ 2 log log 𝑋 + 𝑂 (1). Note also that log 𝑃1

log 𝑄1
� log 𝑊

log 𝐻 � 𝛿 and that all the conditions
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for W in [12, Theorem 2.3] are satisfied (that is,𝑊 ≥ (log𝐻)5 and 𝑊 ≤ min{𝐻1/250, (log 𝑋)1/125} and
𝑊 ≤ exp(𝑀 ( 𝑓 ; 𝑋,𝑄)/3)), so we obtain

𝐽 𝑓 � (log𝐻)1/4(log log𝐻)
𝑊1/4 𝐻𝑋 � (𝐻−𝛿 + exp(−𝑀 ( 𝑓 ; 𝑋,𝑄)/2000))𝐻𝑋.

Suppose then that

exp(𝑀 ( 𝑓 ; 𝑋,𝑄)/300) := (log𝐻1)6 < (log𝐻)6.

Let

𝑊 = (log𝐻1)6 = exp(𝑀 ( 𝑓 ; 𝑋,𝑄)/300), (2.5)

and let 𝑃1 = 𝑊200, 𝑄1 = 𝐻/𝑊3 as before. We may assume 𝐻1 ≥ 1000, since otherwise, the claim is
trivial. Now, by noting that log 𝑃1

log 𝑄1
� exp(−𝑀 ( 𝑓 ; 𝑋,𝑄)/2000) and splitting the sum on H in (2.3) into

shorter sums of length in [𝐻1/4, 𝐻1/2], it suffices to prove that

sup
𝛼

∫ 𝑋

0

���� ∑
𝑥≤𝑛≤𝑥+𝐻 ′

𝑓 (𝑛)1S (𝑛)𝑒(𝑛𝛼)
����d𝑥 � exp(−𝑀 ( 𝑓 ; 𝑋,𝑄)/2000)𝐻 ′𝑋,

uniformly for 𝐻 ′ ∈ [𝐻1/4, 𝐻1/2]. Since the conditions for W in [12, Theorem 2.3] are satisfied,
we can again apply that theorem to obtain the desired bound (noting that (log 𝐻1)1/4 (log log 𝐻1)

𝑊 1/4 �
exp(−𝑀 ( 𝑓 ; 𝑋,𝑄)/2000) in this situation). This completes the proof. �

2.2. Upper-bounding correlations of primes

The goal of this subsection is to prove Proposition 2.7 below, which gives optimal bounds for even
moments of the short exponential sums associated with correlations of the von Mangoldt function. We
first need a few lemmas on tuples of primes and averages of singular series.

Recall for a tuple H of integers, 𝜈𝑝 (H) = |{ℎ(mod 𝑝) : ℎ ∈ H}|. A well-known application of
Selberg’s sieve upper bounds the number of k-tuples of primes, for fixed k.

Lemma 2.3. Let 𝑘 ≥ 1 be fixed, let 𝑋 ≥ 𝑋0 (𝑘) and suppose that ℎ1, . . . , ℎ𝑘 ∈ [−𝑋, 𝑋] are distinct
integers. Denote H = {ℎ1, . . . , ℎ𝑘 }. Then we have��{𝑛 ≤ 𝑋 : 𝑛 + ℎ1, . . . , 𝑛 + ℎ𝑘 ∈ P}

�� ≤ 𝑘! · 2𝑘 𝔖(H)𝑋
(log 𝑋)𝑘

(
1 +𝑂

( log log 𝑋
log 𝑋

))
,

where the singular series is given by

𝔖(H) :=
∏

𝑝

(
1 −

𝜈𝑝 (H)
𝑝

) (
1 − 1

𝑝

)−𝑘
.

Proof. This is [4, Theorem 7.16]. �

We have a trivial upper bound for the values of the singular series, which we will need in what follows.

Lemma 2.4. Let 𝑘 ≥ 1, and let H = {ℎ1, . . . , ℎ𝑘 } be a tuple of distinct integers. Then

𝔖(H) �𝑘

∏
1≤𝑖< 𝑗≤𝑘

( |ℎ𝑖 − ℎ 𝑗 |
𝜑(|ℎ𝑖 − ℎ 𝑗 |)

) 𝑘
.
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Proof. Note that 𝜈𝑝 (H) ≤ 𝑘 , and that if 𝜈𝑝 (H) < 𝑘 , then p must divide ℎ𝑖 − ℎ 𝑗 for some 𝑖 < 𝑗 . Hence

𝔖(H) ≤
∏

𝜈𝑝 (H)=𝑘

(
1 − 𝑘

𝑝

) (
1 − 1

𝑝

)−𝑘 ∏
𝜈𝑝 (H)<𝑘

(
1 − 1

𝑝

)−𝑘

≤
∏
𝑝>𝑘

(
1 − 𝑘

𝑝

) (
1 − 1

𝑝

)−𝑘 ∏
1≤𝑖< 𝑗≤𝑘

∏
𝑝 |ℎ𝑖−ℎ 𝑗

(
1 − 1

𝑝

)−𝑘

�𝑘

∏
1≤𝑖< 𝑗≤𝑘

( |ℎ𝑖 − ℎ 𝑗 |
𝜑(|ℎ𝑖 − ℎ 𝑗 |)

) 𝑘
,

as claimed. �

We will also need an upper bound for the autocorrelations of ℎ/𝜑(ℎ).

Lemma 2.5. Let 𝐻 ≥ 1, and let 𝐶, 𝑘, 𝑟 ≥ 1 be fixed. Then we have3∑
ℎ≤𝐻

𝑟∏
𝑖=1

(
|𝐿𝑖 (ℎ) |

𝜑(|𝐿𝑖 (ℎ) |)

) 𝑘

�𝑟 ,𝑘,𝐶 𝐻

uniformly for any linear functions 𝐿𝑖 (ℎ) = 𝑎𝑖ℎ + 𝑏𝑖 with 𝑎𝑖 , 𝑏𝑖 ∈ [−𝐶,𝐶] ∩ Z.

Proof. First note that for 𝐻 ′ ≥ 1 and any integer 𝑚 ≥ 1, we have∑
ℎ≤𝐻 ′

(
ℎ

𝜑(ℎ)

)𝑚

=
∑

ℎ≤𝐻 ′

(∑
𝑑 |ℎ

1
𝑑

)𝑚

=
∑

𝑑1 ,...,𝑑𝑚≥1

1
𝑑1 · · · 𝑑𝑚

∑
ℎ≤𝐻 ′

𝑑𝑖 |ℎ ∀𝑖≤𝑚

1

� 𝐻 ′
∑

𝑑1 ,...,𝑑𝑚≥1

1
𝑑1 · · · 𝑑𝑚 [𝑑1, . . . , 𝑑𝑚]

� 𝐻 ′
∏

𝑝1 ,..., 𝑝𝑚

�����1 +
∑

𝑗1 ,..., 𝑗𝑚≥0
( 𝑗1 ,..., 𝑗𝑚)≠(0,...,0)

1
𝑝

𝑗1
1 · · · 𝑝 𝑗𝑚

𝑚 [𝑝 𝑗1
1 , . . . , 𝑝

𝑗𝑚
𝑚 ]

����� �𝑚 𝐻 ′. (2.6)

Then, by Hölder’s inequality and (2.6) with 𝐻 ′ = (𝐶 + 1)𝐻, we have

∑
ℎ≤𝐻

∏
𝑖≤𝑟

(
|𝐿𝑖 (ℎ) |

𝜑(|𝐿𝑖 (ℎ) |)

) 𝑘

≤
∏
𝑖≤𝑟

( ∑
ℎ≤𝐻

(
|𝐿𝑖 (ℎ) |

𝜑(|𝐿𝑖 (ℎ) |)

)𝑟 𝑘
)1/𝑟

≤
∏
𝑖≤𝑟

���
∑

ℎ≤(𝐶+1)𝐻

(
ℎ

𝜑(ℎ)

)𝑟 𝑘���
1/𝑟

�𝑟 ,𝑘,𝐶 𝐻,

using the fact that 𝐿𝑖 (·) takes any integer value at most once. �

The previous lemmas lead to the following corollary.

Corollary 2.6. Let 𝑘 ≥ 𝑚 ≥ 1 be fixed. Then∑
h∈[0,𝐻 ]𝑚

sup
𝐿1 ,...,𝐿𝑘

𝔖({𝐿1(h), . . . , 𝐿𝑘 (h)}) �𝑘,𝐴 𝐻𝑚,

where the supremum ranges over affine-linear forms 𝐿 𝑗 (ℎ1, . . . , ℎ𝑚) = 𝑎 𝑗 +
∑𝑚

𝑖=1 𝑎𝑖, 𝑗ℎ𝑖 with integer
coefficients and with |𝑎𝑖, 𝑗 |, |𝑎 𝑗 | ≤ 𝐴.

3In what follows, we interpret 0/𝜑 (0) as 0, say.
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Proof. Denote by Σ the sum of interest on the left-hand side. Since there are 𝑂𝑘,𝐴(1) many choices of
affine-linear forms 𝐿1, . . . , 𝐿𝑘 with A-bounded coefficients, it suffices to take the supremum outside the
sum in Σ. Then for each 𝐿1, . . . , 𝐿𝑘 , by Lemma 2.4, we bound Σ as

Σ �𝑘

∑
h∈[0,𝐻 ]𝑚

∏
1≤ 𝑗< 𝑗′ ≤𝑘

( |𝐿 𝑗 (h) − 𝐿 𝑗′ (h) |
𝜑(|𝐿 𝑗 (h) − 𝐿 𝑗′ (h) |)

) 𝑘

=
∑

h∈[0,𝐻 ]𝑚−1

∑
ℎ≤𝐻

∏
1≤ 𝑗< 𝑗′ ≤𝑘

( |𝐿 𝑗 , 𝑗′,h (ℎ) |
𝜑(|𝐿 𝑗 , 𝑗′,h (ℎ)) |

) 𝑘

�
∑

h∈[0,𝐻 ]𝑚−1

𝐻 � 𝐻𝑚,

since to each h ∈ [0, 𝐻]𝑚−1 we can apply Lemma 2.5 with 𝑟 =
(𝑘
2
)
, 𝐶 = 𝑚𝐴 and linear functions

𝐿 𝑗 , 𝑗′,h (ℎ) := 𝐿 𝑗 (h, ℎ) − 𝐿 𝑗′ (h, ℎ). �

Using Corollary 2.6, we can prove the following bound for high moments of short exponential sums
associated with the correlations of the von Mangoldt function. This estimate will be needed in Section 4.

Proposition 2.7. Let ℓ ≥ 1, 𝑘 ≥ 2 be fixed, and let 𝑎1, . . . , 𝑎ℓ be distinct fixed integers. For 𝑋 ≥ 𝐻 ≥ 2
and |𝑔(𝑛) | ≤ 1, we have

𝑀2𝑘 :=
∫ 𝑋

0

∫ 1

0

���� ∑
𝑥≤𝑛≤𝑥+𝐻

𝑔(𝑛)𝑒(𝛼𝑛)
ℓ∏

𝑗=1
Λ(𝑛 + 𝑎 𝑗 )

����2𝑘

d𝛼d𝑥

� 𝑋 (𝐻2𝑘−1 + 𝐻𝑘 (log 𝑋)𝑘ℓ + 𝐻 (log 𝑋) (2𝑘−1)ℓ).

In particular, if 𝐻 ≥ (log 𝑋)ℓ𝑘/(𝑘−1) , then

𝑀2𝑘 � 𝑋𝐻2𝑘−1. (2.7)

Remark 2.8. The bound above for 𝑀2𝑘 is optimal up to a constant factor, assuming the Hardy–
Littlewood prime tuples conjecture. Indeed, one can show that 𝑀2𝑘 
 𝑋𝐻2𝑘−1 in the case 𝑔(𝑛) ≡ 1,
assuming the Hardy–Littlewood conjecture (this is done by considering the contribution to (2.8) below
coming from those (𝑛1, . . . , 𝑛2𝑘 ) with 𝐻 > |𝑛𝑖 − 𝑛 𝑗 | > max𝑖 |𝑎𝑖 | for all 𝑖 ≠ 𝑗). Similarly, one can show
𝑀2𝑘 
 𝑋𝐻𝑘 (log 𝑋)𝑘ℓ (by considering the contribution to (2.8) below coming from those (𝑛1, . . . , 𝑛2𝑘 )
with 𝑛𝑘+𝑖 = 𝑛𝑖 for all 𝑖 ≤ 𝑘 and𝐻 > |𝑛𝑖−𝑛 𝑗 | > max𝑖 |𝑎𝑖 |). Last, one can show 𝑀2𝑘 
 𝑋𝐻 (log 𝑋) (2𝑘−1)ℓ

(by considering the contribution to (2.8) below coming from those (𝑛1, . . . , 𝑛2𝑘 ) with 𝑛1 = · · · = 𝑛2𝑘 ).

Proof. Expanding out the definition of 𝑀2𝑘 using orthogonality, we obtain

𝑀2𝑘 =
∫ 𝑋

0

∑
𝑥≤𝑛1 ,...,𝑛2𝑘 ≤𝑥+𝐻

𝑛1+···+𝑛𝑘=𝑛𝑘+1+···+𝑛2𝑘

𝑔(𝑛1) · · · 𝑔(𝑛𝑘 )𝑔(𝑛𝑘+1) · · · 𝑔(𝑛2𝑘 )
∏
𝑗≤ℓ

𝑖≤2𝑘

Λ(𝑛𝑖 + 𝑎 𝑗 )d𝑥, (2.8)

and so |𝑔(𝑛) | ≤ 1 implies

𝑀2𝑘 ≤
∑

𝑛1 ,...,𝑛2𝑘 ≤𝑋+𝐻
𝑛1+···+𝑛𝑘=𝑛𝑘+1+···+𝑛2𝑘

∏
𝑗≤ℓ

𝑖≤2𝑘

Λ(𝑛𝑖 + 𝑎 𝑗 ) ·
∫ 𝑋

0
1𝑥≤𝑛1≤𝑥+𝐻 · · · 1𝑥≤𝑛2𝑘 ≤𝑥+𝐻 d𝑥. (2.9)

For each 𝑛1, . . . , 𝑛2𝑘 ≤ 𝑋 + 𝐻, denote 𝑀 = max1≤𝑖, 𝑗≤2𝑘 |𝑛𝑖 − 𝑛 𝑗 |, so that∫ 𝑋

0
1𝑥≤𝑛1≤𝑥+𝐻 · · · 1𝑥≤𝑛2𝑘 ≤𝑥+𝐻 d𝑥 = (𝐻 − 𝑀)10≤𝑀 ≤𝐻 ≤ 𝐻10≤𝑀<𝐻 ,
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and if we let 𝑛 = 𝑛2𝑘 , ℎ𝑖 = 𝑛𝑖 − 𝑛 (so ℎ2𝑘 = 0), then (2.9) becomes

𝑀2𝑘 ≤ 𝐻
∑

𝑛1 ,...,𝑛2𝑘 ≤𝑋+𝐻
𝑛1+···+𝑛𝑘=𝑛𝑘+1+···+𝑛2𝑘

max𝑖, 𝑗 |𝑛𝑖−𝑛 𝑗 |<𝐻

∏
𝑗≤ℓ

𝑖≤2𝑘

Λ(𝑛𝑖 + 𝑎 𝑗 )

≤ 𝐻
∑

−𝐻 ≤ℎ1 ,...,ℎ2𝑘−1≤𝐻
ℎ1+···+ℎ𝑘=ℎ𝑘+1+···+ℎ2𝑘−1

∑
𝑛≤𝑋+𝐻

∏
1≤ 𝑗≤ℓ

0≤𝑖≤2𝑘−1

Λ(𝑛 + ℎ𝑖 + 𝑎 𝑗 ).

Write A = {𝑎1, . . . , 𝑎ℓ } and H = {0, ℎ1, . . . , ℎ2𝑘−1} (note ℎ2𝑘−1 = ℎ1 + · · · + ℎ𝑘−1 − ℎ𝑘 − · · · − ℎ2𝑘−2).
Let A +H denote the sumset, and observe that |A +H| ∈ [ℓ, 2𝑘ℓ]. In what follows, for convenience of
notation, we denote ℎ0 = 0.

Now, we partition the tuples H according to |A +H|, namely, for 𝑚 ∈ [0, (2𝑘 − 1)ℓ], denote

H𝑚 =
{
(ℎ1, . . . , ℎ2𝑘−2) : |ℎ𝑖 | ≤ 𝐻, |A +H| = 2𝑘ℓ − 𝑚

}
,

so that by Lemma 2.3,

𝑀2𝑘 � 𝑋𝐻

(2𝑘−1)ℓ∑
𝑚=0

(log 𝑋)𝑚
∑

(ℎ1 ,...,ℎ2𝑘−2) ∈H𝑚

𝔖
(
A +H

)
. (2.10)

Let 𝐴 = max𝑎∈A |𝑎 |. We claim that��I �� ≥ �𝑚/ℓ�, where I :=
{
0 ≤ 𝑖 ≤ 2𝑘 − 1 : ∃𝑖′ > 𝑖 : ℎ𝑖 − ℎ𝑖′ ∈ [−𝐴, 𝐴]

}
.

To show this, first note that all the sums 𝑎 𝑗 + ℎ𝑖 , 𝑗 ≤ ℓ, 𝑖 ∉ I are distinct, since if there was a coincidence
𝑎 + ℎ𝑖 = 𝑎′ + ℎ𝑖′ for some 𝑎, 𝑎′ ∈ A, 𝑖′ > 𝑖, then ℎ𝑖 − ℎ𝑖′ = 𝑎′ − 𝑎 ∈ [−𝐴, 𝐴] and so 𝑖 ∈ I. Thus, we
must have

2𝑘ℓ − 𝑚 = |A +H| ≥ (2𝑘 − |I |)ℓ,

so |I | ≥ 𝑚/ℓ, as claimed. Now, for 𝐼 := |I |, we have a system of 𝐼 + 1 linear inequalities constraining
the vector (ℎ1, . . . , ℎ2𝑘−1) ∈ [−𝐻, 𝐻]2𝑘−1{

ℎ1 + · · · + ℎ𝑘−1 − ℎ𝑘 − · · · − ℎ2𝑘−2 − ℎ2𝑘−1 = 0
|ℎ𝑖 − ℎ𝜎 (𝑖) | ≤ 𝐴, 𝑖 ∈ I,

where ℎ0 = 0, and 𝜎(𝑖) ∈ [𝑖 + 1, 2𝑘 − 1] are some integers.
Let 𝐼 ′ = 𝐼 + 1 if 𝐼 ≤ 𝑘 − 1, and let 𝐼 ′ = 𝐼 if 𝐼 ≥ 𝑘 . Then, by basic linear algebra, the set of

𝐼 + 1 linear forms above contains a subset of 𝐼 ′ linearly independent forms, so there exists a vector
u = (𝑢1, . . . , 𝑢2𝑘−1−𝐼 ′ ) ∈ [−𝐻, 𝐻]2𝑘−1−𝐼 ′ (depending on ℎ𝑖) and linear forms 𝐿𝑖 : Z2𝑘−2−𝐼 ′ → Z with
bounded coefficients (and with 𝐿0 ≡ 0), such that by denoting 𝐿𝑖, 𝑗 (u) = 𝑎 𝑗 + 𝐿𝑖 (u), we have

H = {𝐿0(u) +𝑂 (1), . . . , 𝐿2𝑘−1(u) +𝑂 (1)}
A +H = {𝐿𝑖, 𝑗 (u) +𝑂 (1) : 0 ≤ 𝑖 ≤ 2𝑘 − 1, 𝑗 ≤ ℓ}. (2.11)

Thus, by Corollary 2.6 and the fact that 𝐼 ′ ≥ �𝑚/ℓ� + 1𝑚≤(𝑘−1)ℓ , for each m, we have∑
(ℎ1 ,...,ℎ2𝑘−2) ∈H𝑚

𝔖
(
A +H

)
≤

∑
u∈[−𝐻,𝐻 ]2𝑘−2−�𝑚/ℓ�+1𝑚> (𝑘−1)ℓ

𝔖
( (
𝐿𝑖, 𝑗 (u) + 𝑟

)
0≤𝑖≤2𝑘−1, 𝑗≤ℓ,𝑟=𝑂 (1)

)
� 𝐻2𝑘−2−�𝑚/ℓ �+1𝑚> (𝑘−1)ℓ .

(2.12)
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Hence, the bound in (2.10) becomes

𝑀2𝑘 � 𝑋𝐻

(2𝑘−1)ℓ∑
𝑚=0

(log 𝑋)𝑚𝐻2𝑘−2−�𝑚/ℓ �+1𝑚> (𝑘−1)ℓ

� 𝑋 (𝐻2𝑘−1 + 𝐻𝑘 (log 𝑋)𝑘ℓ + 𝐻 (log 𝑋) (2𝑘−1)ℓ).

Finally, the assumption 𝐻 ≥ (log 𝑋)ℓ𝑘/(𝑘−1) implies 𝑀2𝑘 � 𝑋𝐻2𝑘−1 as claimed. �

2.3. Correlations of primes and integers having typical factorisation

In this subsection, we will prove Lemma 2.11, which upper bounds the correlations of the von Mangoldt
function and the indicator of numbers having prime factors in prescribed intervals.

We first consider a class of multiplicative functions with ‘moderate growth’.

Definition 2.9. Denote the set M of multiplicative 𝑓 : N→ R≥0 with

(i) 𝑓 (𝑝𝜈) ≤ 2𝜈 for all primes p, 𝜈 ≥ 1;
(ii) for all 𝜀 > 0, there exists 𝐵 = 𝐵(𝜀), such that 𝑓 (𝑛) ≤ 𝐵𝑛𝜀 for all 𝑛 ≥ 1.

Now, we give a special case of a general bound of Henriot [8] for the class M. Henriot’s result refines
earlier work of Nair–Tenenbaum [17], and importantly, it is uniform in the discriminant.

Lemma 2.10. Given 𝑘 ≥ 1 and a tuple H = {ℎ1, . . . , ℎ𝑘 } ⊂ [1, 𝑋], denote 𝜈𝑝 (H) = |{ℎ (mod 𝑝) :
ℎ ∈ H}|. Then for any multiplicative functions 𝑓 𝑗 ∈ M,∑

√
𝑋 ≤𝑛≤𝑋

𝑘∏
𝑗=1

𝑓 𝑗 (𝑛 + ℎ 𝑗 ) �𝑘 Δ𝐷 𝑋
∏

𝑝≤
√

𝑋

(
1 −

𝜈𝑝 (H)
𝑝

) 𝑘∏
𝑗=1

∑
𝑛≤

√
𝑋

𝑓 𝑗 (𝑛)
𝑛

, (2.13)

where 𝐷 = 𝐷 (H) =
∏

𝑖< 𝑗 (ℎ 𝑗 − ℎ𝑖)2, and

Δ𝐷 =
∏
𝑝 |𝐷

(
1 +

∑
0≤𝜈1 ,...,𝜈𝑘 ≤1

(𝜈1 ,...,𝜈𝑘 )≠(0,...,0)

|{𝑛 (mod 𝑝2) : 𝑝𝜈 𝑗 | | 𝑛 + ℎ 𝑗 ∀ 𝑗}|
𝑝2

𝑘∏
𝑗=1

𝑓 𝑗 (𝑝)
)
.

In particular, if | 𝑓 (𝑝) | ≤ 1 for all p, we have Δ𝐷 ≤
∏

𝑝 |𝐷 (1 + 2𝑘/𝑝).

Proof. This is [8, Theorem 3] in the special case of 𝑥 =
√
𝑋 , 𝑦 = 𝑋 , 𝛿 = 1/(2𝑘), with linear polynomials

𝑄 𝑗 (𝑛) = 𝑛 + ℎ 𝑗 , 𝑄(𝑛) =
∏𝑘

𝑗=1 𝑄 𝑗 (𝑛), and the multiplicative function 𝐹 (𝑛1, . . . , 𝑛𝑘 ) =
∏𝑘

𝑗=1 𝑓 𝑗 (𝑛 𝑗 ).
Note, that the discriminant of the polynomial Q is

∏
𝑖< 𝑗 (ℎ𝑖 − ℎ 𝑗 )2 = 𝐷 and the sum of coefficients is

‖𝑄‖ �
∏𝑘

𝑗=1 ℎ 𝑗 � 𝑋 𝑘 . �

We remark that the bound (2.13) is of the correct order of magnitude when the functions 𝑓 𝑗 are not
too small, for example, 𝑓 𝑗 (𝑛) ≥ 𝜂Ω(𝑛) for some 𝜂 > 0 (see [8, Theorem 6].

As mentioned, we will need in Section 4 a simple upper bound for the correlations of the primes and
integers with prescribed factorisation patterns.

Lemma 2.11. Let ℓ ≥ 1 be fixed, and let 𝑎1, . . . , 𝑎ℓ be fixed and distinct. Let 𝑋 ≥ 2 and 1 ≤ ℎ ≤ 𝑋
with ℎ ≠ 𝑎 𝑗 for all 1 ≤ 𝑗 ≤ ℓ. Let I ⊂ [1, 𝑋], and let N be the set of positive integers having no prime
factors from I. Then we have∑

𝑛≤𝑋

1N (𝑛 + ℎ)Λ(𝑛 + 𝑎1) · · ·Λ(𝑛 + 𝑎ℓ) � 𝑋
ℓ∏

𝑗=1

( |ℎ − 𝑎 𝑗 |
𝜑(|ℎ − 𝑎 𝑗 |)

)2ℓ+1 ∏
𝑝∈I

(
1 − 1

𝑝

)
. (2.14)
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Proof. Let 𝑃(𝑧) =
∏

𝑝<𝑧 𝑝. We may assume that the summation in (2.14) runs over (2𝑋)1/2 ≤ 𝑛 ≤ 𝑋 ,
since the contribution of 𝑛 < (2𝑋)1/2 is negligible. Therefore, the proof of (2.14) has been reduced to
showing:

∑
𝑛≤𝑋

1N (𝑛 + ℎ)
ℓ∏

𝑗=1
1(𝑛+𝑎 𝑗 ,𝑃 ( (2𝑋 )1/2))=1 � 𝑋 (log 𝑋)−ℓ

ℓ∏
𝑗=1

( |ℎ − 𝑎 𝑗 |
𝜑(|ℎ − 𝑎 𝑗 |)

)2ℓ+1 ∏
𝑝∈I

(
1 − 1

𝑝

)
. (2.15)

Note that all the indicator functions above are multiplicative. Denote 𝐷 =
∏

1≤𝑖< 𝑗≤ℓ (𝑎𝑖 − 𝑎 𝑗 )
∏

𝑗≤ℓ

(ℎ − 𝑎 𝑗 ). Now, by Lemma 2.10, we have

∑
𝑛≤𝑋

1N (𝑛 + ℎ)
ℓ∏

𝑗=1
1(𝑛+𝑎 𝑗 ,𝑃 ( (2𝑋 )1/2))=1

� Δ𝐷𝑋
∏
𝑝≤𝑋

(
1 − ℓ + 1

𝑝

) ∑
𝑛0 ,𝑛1 ,...,𝑛ℓ ≤𝑋

1N (𝑛0)
∏ℓ

𝑗=1 1(𝑛 𝑗 ,𝑃 ( (2𝑋 )1/2))=1

𝑛0𝑛1 · · · 𝑛ℓ
, (2.16)

where Δ𝐷 is crudely bounded as

Δ𝐷 ≤
∏
𝑝 |𝐷

(
1 + 2ℓ+1

𝑝

)
�

ℓ∏
𝑗=1

( |ℎ − 𝑎 𝑗 |
𝜑(|ℎ − 𝑎 𝑗 |)

)2ℓ+1

.

Now, (2.15) follows by noting that by Euler products and Mertens’s theorem∑
𝑛≤𝑋

1N (𝑛)
𝑛

≤
∏
𝑝≤𝑋
𝑝∉I

(
1 + 1

𝑝
+ 1
𝑝2 + · · ·

)
=

∏
𝑝≤𝑋

(
1 + 1

𝑝
+ 1
𝑝2 + · · ·

) ∏
𝑝∈I

(
1 − 1

𝑝

)

� (log 𝑋)−ℓ
∏
𝑝≤𝑋

(
1 − ℓ + 1

𝑝

)−1 ∏
𝑝∈I

(
1 − 1

𝑝

)
,

and also by Mertens’s theorem∑
𝑛≤𝑋

1(𝑛,𝑃 ( (2𝑋 )1/2))=1

𝑛
= 1 +

∑
(2𝑋 )1/2≤𝑝≤𝑋

1
𝑝
� 1. �

3. A Fourier-analytic argument

Our main theorems will be a consequence of the propositions in the previous section and
Proposition 3.2 below on correlations on average under suitable hypotheses. We begin by formulating
the necessary hypotheses.

In the rest of the paper, given a function 𝑓 : N → C, let 𝐸 𝑓 be a convenient upper bound for the
average of f, so that

1
𝑋

∑
𝑛≤𝑋

| 𝑓 (𝑛) | ≤ 𝐸 𝑓 (𝑋).

For example, we may simply take 𝐸 𝑓 = 𝑂 (1) if f is bounded, or if 𝑓 = Λ.
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Definition 3.1. Let 𝑋, 𝐻,𝐶, 𝑝 > 1 and 𝜂 > 0, and let 𝑓 : N → C. We say that f satisfies hypothesis
H1 (𝑋, 𝐻,𝐶, 𝑝) if ∫ 𝑋

0

∫ 1

0

���� ∑
𝑥≤𝑛≤𝑥+2𝐻

𝑓 (𝑛)𝑒(𝛼𝑛)
����𝑝 d𝛼 d𝑥 ≤ 𝐶𝐻 𝑝−1𝑋𝐸 𝑓 (𝑋) 𝑝 .

We say that f satisfies hypothesis H2 (𝑋, 𝐻, 𝜂) if

sup
𝛼

∫ 𝑋

0

���� ∑
𝑥≤𝑛≤𝑥+2𝐻

𝑓 (𝑛)𝑒(𝛼𝑛)
����2 d𝑥 ≤ 𝜂𝐻2𝑋𝐸 𝑓 (𝑋)2.

Proposition 3.2. Let 𝑋 ≥ 𝐻 ≥ 2. Let𝐶 ≥ 1, 𝑝 ≥ 2 and 𝜂 > 0. Let 𝑓 : N→ C be any function supported
on [0, 𝑋] and satisfying H2 (𝑋, 𝐻, 𝜂), and let 𝑔 : N → C be any function satisfying H1 (𝑋, 𝐻,𝐶, 𝑝).
Then we have ∑

ℎ≤𝐻

���� ∑
𝑛≤𝑋

𝑓 (𝑛 + ℎ)𝑔(𝑛)
���� � (𝜂𝐶)1/𝑝𝐻𝑋𝐸 | 𝑓 |+ | 𝑓 |2 (𝑋)𝐸𝑔 (𝑋).

Note that if | 𝑓 (𝑛) | ≤ 1, we can simply take 𝐸 | 𝑓 |+ | 𝑓 |2 (𝑋) = 𝑂 (𝐸 | 𝑓 | (𝑋)).

Proof. Let us denote

𝑆 𝑓 ,𝑔 :=
∑
ℎ≤𝐻

��� ∑
𝑛≤𝑋

𝑓 (𝑛 + ℎ)𝑔(𝑛)
���.

Then the task is to show that if f satisfies H2 (𝑋, 𝐻, 𝜂) and g satisfies H1 (𝑋, 𝐻,𝐶, 𝑝), then

𝑆 𝑓 ,𝑔 � 𝜂1/𝑝𝐶1/𝑝𝐻𝑋𝐸 | 𝑓 |+ | 𝑓 |2 (𝑋)𝐸𝑔 (𝑋).

For proving this, we first note that

𝑆 𝑓 ,𝑔 ≤ 1
𝐻

∑
ℎ≤2𝐻

(2𝐻 − ℎ)
��� ∑
𝑛≤𝑋

𝑓 (𝑛 + ℎ)𝑔(𝑛)
���.

We introduce unimodular coefficients 𝑐(ℎ) to denote the phase of
∑

𝑛≤𝑋 𝑓 (𝑛 + ℎ)𝑔(𝑛), so that

|𝑆 𝑓 ,𝑔 | ≤
1
𝐻

∑
ℎ≤2𝐻

(2𝐻 − ℎ)𝑐(ℎ)
∑
𝑛≤𝑋

𝑓 (𝑛 + ℎ)𝑔(𝑛)

=
1
𝐻

∑
ℎ≤2𝐻

𝑐(ℎ)
∑

𝑛≤𝑋+2𝐻

𝑓 (𝑛)
∑
𝑚≤𝑋

𝑔(𝑚)1𝑛=𝑚+ℎ ·
∫ 𝑋

0
1𝑥≤𝑛,𝑚≤𝑥+2𝐻 d𝑥

=
1
𝐻

∫ 𝑋

0

∫ 1

0

∑
ℎ≤2𝐻

𝑐(ℎ)𝑒(ℎ𝛼)
∑

𝑥≤𝑛,𝑚≤𝑥+2𝐻

𝑓 (𝑛)𝑔(𝑚)𝑒
(
(𝑚 − 𝑛)𝛼

)
d𝛼d𝑥,

where we used the orthogonality relation 1𝑛=0 =
∫ 1

0 𝑒(𝑛𝛼)d𝛼. Therefore, we have the upper bound

|𝑆 𝑓 ,𝑔 | ≤ 1
𝐻

����∫ 𝑋

0

∫ 1

0
𝐶0 (𝛼)𝐹𝑥 (−𝛼)𝐺𝑥 (𝛼)d𝛼d𝑥

����, (3.1)

https://doi.org/10.1017/fms.2022.54 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.54


14 Jared Duker Lichtman and Joni Teräväinen

where in the triple convolution integral, the three exponential sums are

𝐶0 (𝛼) :=
∑

ℎ≤2𝐻

𝑐(ℎ)𝑒(ℎ𝛼),

𝐹𝑥 (𝛼) :=
∑

𝑥≤𝑛≤𝑥+2𝐻

𝑓 (𝑛)𝑒(𝑛𝛼),

𝐺𝑥 (𝛼) :=
∑

𝑥≤𝑚≤𝑥+2𝐻

𝑔(𝑚)𝑒(𝑚𝛼).

By Fubini’s theorem, the triangle inequality and Cauchy–Schwarz, from (3.1), we deduce that

|𝑆 𝑓 ,𝑔 | ≤
1
𝐻

∫ 1

0
|𝐶0 (𝛼) |

(∫ 𝑋

0
|𝐹𝑥 (−𝛼) |2d𝑥

) 1
2
(∫ 𝑋

0
|𝐺𝑥 (𝛼) |2d𝑥

) 1
2

d𝛼.

Let q satisfy 1/𝑝 + 1/𝑞 = 1/2. By taking the supremum of the integral with 𝐹𝑥 (−𝛼) to the power 1/𝑝
and applying Hölder’s inequality with exponents (2, 𝑞, 𝑝), we obtain

|𝑆 𝑓 ,𝑔 | ≤
1
𝐻

sup
𝛼

(∫ 𝑋

0
|𝐹𝑥 (−𝛼) |2d𝑥

) 1
𝑝
(∫ 1

0
|𝐶0 (𝛼) |2d𝛼

) 1
2

·
(∫ 1

0

∫ 𝑋

0
|𝐹𝑥 (−𝛼) |2d𝑥d𝛼

) 1
𝑞
(∫ 1

0

(∫ 𝑋

0
|𝐺𝑥 (𝛼) |2d𝑥

) 𝑝
2

d𝛼

) 1
𝑝

=:
1
𝐻
𝐼1/𝑝
0 𝐼1/2

1 𝐼1/𝑞
2 𝐼1/𝑝

3 ,

say. Since f satisfies H2 (𝑋, 𝐻, 𝜂), we have

𝐼0 ≤ 𝜂𝐻2𝑋𝐸 𝑓 (𝑋)2.

By Parseval, we have

𝐼1 ≤ 2𝐻, 𝐼2 ≤ 2𝐻
∑

𝑛≤𝑋+2𝐻

| 𝑓 (𝑛) |2 ≤ 2𝐻𝑋𝐸 | 𝑓 |2 (𝑋).

Last, using Hölder’s inequality and the fact that g satisfies H1 (𝑋, 𝐻,𝐶, 𝑝), we have

𝐼3 ≤ 𝑋 𝑝/2−1
∫ 1

0

∫ 𝑋

0
|𝐺𝑥 (𝛼) |𝑝d𝑥d𝛼 ≤ 𝐶𝐻 𝑝−1𝑋 𝑝/2𝐸𝑔 (𝑋) 𝑝 .

Combining the bounds, we see that

|𝑆 𝑓 ,𝑔 | � 𝐻−1 (𝜂𝐻2𝑋𝐸 𝑓 (𝑋)2)1/𝑝
𝐻1/2 (𝐻𝑋𝐸 | 𝑓 |2 (𝑋)2)1/𝑞 (

𝐶𝐻 𝑝−1𝑋 𝑝/2𝐸𝑔 (𝑋) 𝑝 )1/𝑝

� (𝜂𝐶)1/𝑝𝐻𝑋𝐸 | 𝑓 |+ | 𝑓 |2 (𝑋)𝐸𝑔 (𝑋),

as desired. �

4. Proofs of the main theorems

We are now ready to prove Theorem 1.6. As already discussed in Remark 1.7, Theorem 1.2(i) concerning
the Möbius case follows immediately as a special case. As we shall see, Theorem 1.2(ii) also follows
with essentially the same proof.
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Proof of Theorem 1.6. Fix 𝜀 ∈ (0, 1) and 𝑘, ℓ ≥ 1, and let 2 ≤ (log 𝑋)ℓ+𝜀 ≤ 𝐻 ≤ exp((log 𝑋)1/1000).
Let:

𝛿 = 104 ℓ

𝜀

log log𝐻
log𝐻

.

Set:

𝑓 (𝑛) = 𝑓1(𝑛)1S (𝑛)1[0,𝑋 ] (𝑛), and 𝑔(𝑛) =
𝑘∏

𝑖=2
𝑓𝑖 (𝑛 + ℎ𝑖)

ℓ∏
𝑗=1

Λ(𝑛 + 𝑎 𝑗 ),

where S is the set of positive integers having a prime factor in each of the intervals [𝑃𝑖 , 𝑄𝑖], with 𝑃𝑖 , 𝑄𝑖

as in Proposition 2.1 and 𝛿 as above. Then, by Lemma 2.11 (and the fact that S𝑐 ⊂
⋃

𝑗≤𝐽 S𝑐
𝑗 , where S𝑐

𝑗
is the set of integers having no prime factors in [𝑃 𝑗 , 𝑄 𝑗 ]), for all 𝑋 ≥ 2, we have���� ∑

𝑛≤𝑋
𝑛+ℎ∉S

𝑓1(𝑛 + ℎ)𝑔(𝑛)
���� ≤ ∑

𝑛≤𝑋

1S𝑐 (𝑛 + ℎ)
ℓ∏

𝑗=1
Λ(𝑛 + 𝑎 𝑗 )

�
∑
𝑗≤𝐽

𝑋
∏

𝑝∈[𝑃𝑗 ,𝑄 𝑗 ]

(
1 − 1

𝑝

) ℓ∏
𝑗=1

( |ℎ − 𝑎 𝑗 |
𝜑(|ℎ − 𝑎 𝑗 |)

)2ℓ+1

. (4.1)

By (2.1), we have∑
𝑗≤𝐽

∏
𝑝∈[𝑃𝑗 ,𝑄 𝑗 ]

(
1 − 1

𝑝

)
�

∑
𝑗≤𝐽

log 𝑃 𝑗

log𝑄 𝑗
� log 𝑃1

log𝑄1
� 𝛿 + exp(−𝑀 ( 𝑓 ; 𝑋,𝑄)/2000) =: 𝛿′.

Also, by Lemma 2.5, we have ∑
ℎ≤𝐻

ℓ∏
𝑗=1

( |ℎ − 𝑎 𝑗 |
𝜑(|ℎ − 𝑎 𝑗 |)

)2ℓ+1

� 𝐻,

and so plugging back into (4.1) gives∑
ℎ≤𝐻

���� ∑
𝑛≤𝑋

𝑛+ℎ∉S

𝑓1(𝑛 + ℎ)𝑔(𝑛)
���� � 𝛿′ 𝑋𝐻. (4.2)

Let

𝑝 := 2 + 2�ℓ/𝜀� .

In view of (4.2), to prove Theorem 1.6, it suffices to show that∑
ℎ≤𝐻

���� ∑
𝑛≤𝑋

𝑓 (𝑛 + ℎ)𝑔(𝑛)
���� � (

log log𝐻
log𝐻

+ exp(−𝑀 ( 𝑓 ; 𝑋,𝑄)/(2000𝑝))
)
𝐻𝑋, (4.3)

since we can crudely estimate 2000𝑝 < 10 000ℓ/𝜀. Note that by Lemma 2.3, we can take

𝐸𝑔 (𝑋) � 1,

and we can trivially take 𝐸 𝑓 (𝑋), 𝐸 | 𝑓 |+ | 𝑓 |2 (𝑋) � 1, so it suffices to prove (4.3) with an extra factor of
𝐸 | 𝑓 |+ | 𝑓 |2 (𝑋)𝐸𝑔 (𝑋) on the right-hand side.
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By Proposition 2.7 (and the fact that p is even and satisfies ℓ+𝜀 > ℓ𝑝/(𝑝−2)), there exists a constant
𝐵 = 𝐵ℓ,𝜀 > 0, for which∫ 1

0

∫ 𝑋

0

���� ∑
𝑥≤𝑛≤𝑥+2𝐻

𝑒(𝛼𝑛)
𝑘∏

𝑖=2
𝑓𝑖 (𝑛 + ℎ𝑖)

ℓ∏
𝑗=1

Λ(𝑛 + 𝑎 𝑗 )
����𝑝d𝑥d𝛼 ≤ 𝐵𝑋𝐻 𝑝−1.

Therefore, g satisfies hypothesis H1 (𝑋, 𝐻, 𝐵′, 𝑝) for some 𝐵′ � 1.
We also note that by Proposition 2.1, f satisfies H2 (𝑋, 𝐻, 𝜂) with

𝜂 � 𝐻−𝛿 + exp(−𝑀 ( 𝑓 ; 𝑋,𝑄)/2000).

Now, applying Proposition 3.2 with the choices of 𝑓 , 𝑔 above, we obtain∑
ℎ≤𝐻

���� ∑
𝑛≤𝑋

𝑓11S (𝑛 + ℎ)
𝑘∏

𝑖=2
𝑓𝑖 (𝑛 + ℎ𝑖)

ℓ∏
𝑗=1

Λ(𝑛 + 𝑎 𝑗 )
����

� 𝜂1/𝑝𝐻𝑋 � (𝐻−𝛿/𝑝 + exp(−𝑀 ( 𝑓 ; 𝑋,𝑄)/(2000𝑝)))𝐻𝑋.

(4.4)

Thus, since 𝛿 = 104ℓ𝜀−1(log log𝐻)/(log𝐻), this gives (4.3), as desired. The proof of Theorem 1.6
(and, hence, of Theorem 1.2(i)) is now complete. �

Proof of Theorem 1.2(ii). Let 𝛿 be as in the theorem, so that, in particular, 𝛿 ≤ 𝑐/𝐶 with 𝑐 > 0 be small
enough. Take 𝑐 = 1/10 000. Applying (4.4) and Markov’s inequality, we see that���� ∑

𝑛≤𝑋

𝜇1S (𝑛 + ℎ)
𝑘∏

𝑖=2
𝜇(𝑛 + ℎ𝑖)

ℓ∏
𝑗=1

Λ(𝑛 + 𝑎 𝑗 )
����

� (𝐻−𝛿/(2𝑝) + 𝐻 𝛿/(2𝑝) exp(−𝑀 (𝜇; 𝑋,𝑄)/(2000𝑝)))𝐻𝑋

for all but � 𝐻1−𝛿/(2𝑝) integers ℎ ≤ 𝐻. By (1.7), we have 𝑀 (𝜇; 𝑋,𝑄) ≥ 1
4 log log 𝑋 +𝑂 (1), so we see

that

𝐻 𝛿/(2𝑝) exp(−𝑀 (𝜇; 𝑋,𝑄)/(2000𝑝)) � 𝐻−𝛿/(4𝑝) � 𝛿,

and the claim follows. �
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