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Quantum-memory-enhanced dissipative entanglement creation in nonequilibrium steady states
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This article investigates dissipative preparation of entangled nonequilibrium steady states (NESS). We con-
struct a collision model where the open system consists of two qubits which are coupled to heat reservoirs
with different temperatures. The baths are modeled by sequences of qubits interacting with the open system.
The model can be studied in different dynamical regimes: with and without environmental memory effects. We
report that only a certain bath temperature range allows for entangled NESS. Furthermore, we obtain minimal
and maximal critical values for the heat current through the system. Surprisingly, quantum memory effects play a
crucial role in the long-time limit. First, memory effects broaden the parameter region where quantum correlated
NESS may be dissipatively prepared and, second, they increase the attainable concurrence. Most remarkably, we
find a heat current range that does not only allow, but even guarantees that the NESS is entangled. Thus, the heat
current can witness entanglement of nonequilibrium steady states.
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I. INTRODUCTION

Entanglement is one of the key resources for quantum
information processing and quantum technologies [1]. It is
known to be a fragile property of multipartite quantum states
which is easily lost due to thermal fluctuations or decoher-
ence emerging from the unavoidable coupling of the system
of interest to external degrees of freedom. One may try
to counteract the dissipative effects to protect the fragile
quantum properties [2,3] or utilize them as a part of the state
preparation procedure [4–16].

In this article, we investigate quantum correlations in
dissipatively prepared nonequilibrium steady states (NESS).
Although the field of equilibrium quantum thermodynamics
is well established [17,18], nonequilibrium thermodynamics
is rapidly developing. Concepts, such as quantum fluctua-
tion theorems [19–24], thermodynamic uncertainty relations
[25–28], and quantum heat engines [29–35] but also the basic
definitions of work and heat in quantum systems and the
fundamental differences from their classical counterparts are
still under debate [36–41].

One way to prepare a nonequilibrium steady state is to
couple an open system to two heat reservoirs with differing
temperatures and letting the open system relax. Due to the
temperature difference of the heat reservoirs, a typical char-
acteristic of the NESS is a persistent heat current through
the open system [42–45]. We investigate such a scenario by
coupling an open quantum system, consisting of two qubits,
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to a hot and a cold thermal reservoir. We use collision mod-
els, which have become a very popular tool to analyze open
quantum system dynamics in recent years [46–51]. One grow-
ing field of applications are quantum transport phenomena,
which also include energy transport due to heat currents
[52–56]. Furthermore, collision models provide a transparent
approach for describing the dynamics of quantum correla-
tions between the open system and its environment [57–59],
which is particularly interesting for the understanding of non-
Markovian quantum dynamics [60–62].

Non-Markovianity, initially studied mainly in the context
of general open quantum dynamics, soon emerged as an im-
portant aspect of quantum thermodynamic scenarios. Memory
effects due to the reservoirs have, for example, been shown to
affect the performance of quantum heat engines [32,63] and
refrigerators [34,64], and play a crucial role in the study of en-
tropy production and fluctuation relations [65–68]. Motivated
by these observations, in the present article we especially
study how such memory effects in the relaxation dynamics
influence the quantum correlations of the NESS in a heat
transport scenario. It has been reported in Ref. [55] that in
specific models the occurrence of entanglement in the NESS
is restricted to certain temperature regions of the heat baths
and requires a critical minimal heat current. Interestingly, we
observe that in our model also a maximal critical value for
the heat current exists beyond which the NESS is necessar-
ily separable again. We find that memory effects increase
these parameter regions, thus, allowing for a buildup of en-
tanglement for temperatures and heat currents which would
always lead to a separable NESS in the memoryless case. This
allows to certify memory effects in the relaxation dynamics
from the steady-state properties of the system. Analyzing the
relation between the heat current and the maximal possible
concurrence in the NESS, we observe a further surprising
feature emerging from the memory effects. Namely, certain
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FIG. 1. Sketch of the collision model. The two-qubit system
S1 + S2 couples to a sequence of hot and cold reservoir subenviron-
ments (B1,2). Dotted lines show possible interactions. The interaction
between S and B can be either direct [with probability (1 − p)] or
mediated by memory qubits M1,2 (with probability p).

heat current values do not only allow, but also even guarantee
that the corresponding NESS is entangled.

The outline of the remainder of this article is the following.
In Sec. II we describe our collision model. Then in Sec. III we
analyze the memoryless case. Memory effects are included in
Sec. IV before we study the relation between entanglement
and heat current in Sec. V. In Sec. VI we comment on the
non-Markovianity of the quantum dynamics generated by the
model. We present our final conclusions in Sec. VII.

II. COLLISION MODEL

In this paper, we investigate a two-qubit system S = S1 +
S2 with Hamiltonian HS = ω

2 (σS1
z + σS2

z ) which couples to
two thermal reservoirs B1 and B2 with temperatures T1 and
T2. In the framework of collision models, the reservoirs are
modeled as products of qubit subenvironments where each
subenvironment interacts only once with the system (see
Fig. 1). By Bn

1,2 we denote the nth subenvironment in B1 or B2,
respectively. The local Hamiltonian for each subenvironmen-
tal qubit is given by HBn

1,2
= ω

2 σz. The subenvironments are

initially in a thermal state ξ1,2 = 1
2 (1 + z1,2 σz ), where z1,2 ∈

[−1, 0] are temperature parameters related to the Boltzmann
factor of the respective temperatures T1 and T2 [69],

z = 1 − e(ω/kBT )

1 + e(ω/kBT )
. (1)

A value of z = −1 corresponds to T = 0 K, whereas z = 0 is
equivalent to T → ∞. Thus, the state of the subenvironments
before the collision is given by

ξ = ξ1 ⊗ ξ2 = 1
2 (1 + z1σz ) ⊗ 1

2 (1 + z2σz ). (2)

For z1,2 ∈ (0, 1] the subenvironment qubit is in a population
inverted state, and we call such a state an inverted thermal
state in this article.

We additionally introduce two memory qubits M1 and
M2 which are not discarded in between the collisions and,
thus, allow information to propagate over the sequence of
system-bath interactions. Each collision model step consists
of an inner-system transformation mediated by U, which is
followed by an interaction between each of the system qubits
with its respective bath. With a probability (1 − p), the suben-
vironmental qubit Bn

i couples directly via Wi to the system
qubit Si. With a probability p, Bn

i couples via W̃i to the

respective memory qubit Mi, which then interacts via the
operation Yi with Si. Thus, the model effectively describes a
situation where each system qubit is probabilistically damped
by one of two baths, one with and one without memory.
The parameter p can tune the relative weight between these
different damping channels. For p = 1, this model is equiv-
alent to the collision model presented in Ref. [60] where
system environment correlations are propagated by swap-
ping the “collided” and “fresh” subenvironment in between
system-environment interactions. In the context of dissipative
entanglement generation a similar model has been studied in
Refs. [70,71]. For p ∈ (0, 1), the collision model is closely
related to the models presented in Refs. [72,73] where the
swapping is done probabilistically.

We work in the interaction picture. Since the qubits are in
resonance, the evolution is then determined by the excitation
number conserving unitary operators,

U = US1S2 = e−i� �t[σ+⊗σ−+σ−⊗σ+],

Wi = WBiSi = e−i
√

�i�t[σ+⊗σ−+σ−⊗σ+],

W̃i = W̃BiMi = e−i
√

�i�t[σ+⊗σ−+σ−⊗σ+],

Yi = YSiMi = e−iϒi�t[σ+⊗σ−+σ−⊗σ+], (3)

where �, �1,2, and ϒ1,2 are the respective coupling strengths
and �t is the duration of one collision. In the above notation
it is understood that the operators σ+ and σ− act on the
Hilbert spaces of the qubits specified in the indices after the
first equality sign in each line. The probability that one of
the two system qubits couples via the memory qubit in a
given collision model step is independent from the type of
interaction that is undergone by the other qubit. We, thus, have
four possible one-step maps for the evolution of the joint state
ρSM of the system and the memory qubits. We define the
operators,

T1 = W̃1Y1W̃2Y2U, T3 = W̃1Y1W2U,

T2 = W1W2U, T4 = W1W̃2Y2U, (4)

where T1 describes the coupling via both memory qubits,
T2 describes the direct coupling between the system and the
reservoirs, and the T3,4’s describe the scenarios in which one
system qubit couples directly to the reservoir whereas the
other one couples via its memory qubit. The four one-step
maps are, thus, given by

Ei[ρSM] = TrB[Ti(ρSM ⊗ ξ )T†
i ]. (5)

Therefore, the one-step map for the evolution of ρSM is the
statistical mixture,

ρn+1
SM = E[ρn

SM], (6)

E = p2E1 + (1 − p)2E2 + p(1 − p)[E3 + E4]. (7)

The model is, by construction, discrete in time. However,
the different scaling in �t in Eq. (4) is chosen such that a
time-continuous limit of the dynamics can be derived [46]. By
expanding the map in Eq. (6) up to first order in �t and taking
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the limit �t → 0, we obtain the following four-qubit Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL) master equation
governing the dynamics of system and memory together
[74,75]:

ρ̇SM(t ) = −i

[
�σ

S1S2
int + p

2∑
k=1

ϒkσ
SkMk
int , ρSM(t )

]

+ (1 − p)
2∑

k=1

�k (z−
k D[σ-

Sk ]

+ z+
k D[σ+Sk ])ρSM(t )

+ p
2∑

k=1

�k (z−
k D[σ-

Mk ] + z+
k D[σ+Mk ])ρSM(t )

= LSM[ρSM(t )]. (8)

with z±
k = (1 ± zk )/2, D[A]ρ = AρA† − 1

2 (A†Aρ + ρA†A),
σint = (σ+ ⊗ σ- + σ- ⊗ σ+), and the superscripts indicate the
subsystems on which the operators act. We note that, in ac-
cordance with the fermionic nature of a qubit bath, the rates
z±

k agree with the dissipation rates for a fermionic reservoir,
i.e., z+ = nF and z− = 1 − nF , where nF is the Fermi-Dirac
distribution.

III. MEMORYLESS CASE

We first consider the memoryless scenario (p = 0), i.e., the
system qubits always couple directly to the reservoir subenvi-
ronments by the unitary transformations W1 and W2 and the
memory qubits M1 and M2 are not involved in the interac-
tion. A similar model has been studied earlier, for example, in
Refs. [55,76].

The dynamics of the system alone is given by the GKSL
master equation,

ρ̇S (t ) = −i�[σ+ ⊗ σ− + σ− ⊗ σ+, ρS (t )]

+�1(z−
1 D[σ− ⊗ 1] + z+

1 D[σ+ ⊗ 1])ρS (t )

+�2(z−
2 D[1 ⊗ σ−] + z+

2 D[1 ⊗ σ+])ρS (t )

= L[ρS (t )]. (9)

As a consequence of Eq. (9), the evolution of the system reads

ρS (t ) = e(t−t0 )L[ρS (t0)], (10)

with the generator L. For the further treatment of the problem,
we introduce the ratios γ1,2 between the system-bath and the
inner-system coupling,

γ1,2 = �1,2/�. (11)

A. Steady state

The steady-state ρ∞
S of the open system satisfies

L[ρ∞
S ] = 0. (12)

It follows directly from the form of the generator L in Eq. (9),
that this steady state only depends on the two ratios γ1,2. For
γ1,2 > 0, the system has a unique steady-state ρ∞

S (z1,2, γ1,2)

which is reached in the limit t → ∞. This steady state can be
written as

ρ∞
S = ρ∞

S1
⊗ ρ∞

S2
+ χ, (13)

with the local reduced states of the two qubits ρ∞
S1,2

and the
matrix,

χ =

⎛⎜⎜⎝
−η2 0 0 0

0 η2 iη 0
0 −iη η2 0
0 0 0 −η2

⎞⎟⎟⎠, (14)

with the real-valued function,

η = (z1 − z2)
γ1γ2

(γ1 + γ2)(γ1γ2 + 4)
. (15)

χ describes the correlations arising between the two sub-
systems in the computational basis. We find that in the
steady-state regime the local states of the two system qubits
are thermal states themselves,

ρ∞
S1,2

= TrS2,1 [ρ∞
S ] = 1

2 (1 + s1,2σz ). (16)

The parameters s1,2 given by

s1 = z1 − 4
η

γ1
, s2 = z2 + 4

η

γ2
(17)

describe the temperatures of the individual qubits S1 and
S2. For z1 ≶ z2 (i.e., T1 ≶ T2) a temperature gradient can be
observed

z1 ≶ s1 ≶ s2 ≶ z2. (18)

As can be directly seen from the equations above, for z1 = z2

no correlations build up and the steady state is just the ther-
malized product state,

ρ∞
S (z1 = z2) = ξ1 ⊗ ξ1 = ξ2 ⊗ ξ2. (19)

Another limit is reached for γ1, γ2 � 1 (i.e., the system-bath
coupling is much stronger than the inner-system coupling) in
which case we observe η → 0 and

ρ∞
S (γ1, γ2 � 1) ≈ ξ1 ⊗ ξ2. (20)

Although this might be an expected result, it interestingly still
holds if just one of the two system-bath couplings is chosen to
be much stronger than the inner-system coupling as one can
see from Eq. (15). In this case not just the strongly coupled
qubit almost thermalizes with its bath, but also the state of
the second system qubit shifts towards the thermal state of the
subenvironment it couples to. We will see later that such an
asymmetric parameter choice leads to a heat insulating effect.

B. Heat current

Due to the coupling of the two-qubit open system to ther-
mal reservoirs, heat is transferred between the baths and the
system. Since we are mainly interested in the properties of
the NESS, we define heat only for the steady-state regime. In
doing so, we avoid subtleties of distinguishing heat from work
because the latter vanishes in this case. Any energy transfer
can then be considered as heat. As pointed out in Ref. [53],
the heat exchanged between the system, and the reservoirs
during one collision can be seen as the energy change in the
subenvironment qubits taking part in the interaction.
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Energy conservation ensures that the definition of heat as
an observable on the baths yields the same results as the usual
definition based on the dissipators of the master equation
[77]. Operationally, a definition on the subenvironments is
appealing since it allows, in principle, to measure the heat
current continuously without disturbing the system state.

With the Hamiltonian HBn
1

for the nth qubit in B1 and the
operator T2 in Eq. (4), the change in energy in B1 during the
nth interaction with the system is given by

�En
1 = Tr

[
HBn

1

(
n

[
ξ n

1

] − ξ n
1

)]
, (21)

with

n[ξ n
1 ] = TrS,B2 [T2(ρn−1

S ⊗ ξ n)T†
2] (22)

being the quantum channel for the nth environmental qubit
interacting with the system. When the system has reached the
steady-state ρ∞

S we find in the time-continuous limit,

lim
�t→0

�E∞
1

�t
= ˙̃Q1 = −2

(z1 − z2)ω�γ1γ2

(γ1 + γ2)(γ1γ2 + 4)

= −2ω�η. (23)

In agreement with energy conservation, we analogously find
for B2,

˙̃Q2 = − ˙̃Q1. (24)

Throughout the rest of the article we analyze the scaled heat
current,

Q̇ =
˙̃Q

ω�
. (25)

From Eqs. (23) and (24) we can immediately see that the
heat current follows the temperature gradient between the two
baths (i.e., Q̇1 ≶ 0 for T1 ≷ T2) and grows with the increasing
temperature difference between the two baths as we would
expect. The largest heat current between the two baths is
achieved for γ1 = γ2 = 2, i.e., the case in which the coupling
between the system qubits and the respective reservoirs is
twice as strong as the inner-system coupling,∣∣Q̇∣∣

max =
∣∣∣∣1

4
(z1 − z2)

∣∣∣∣. (26)

In analogy to Sec. III A, we can also observe that for
γ1 � 1 the value of |Q̇|max decreases as 1/γ1, leading to a heat
insulating effect for the two-qubit system. The same result
holds for γ2 � 1.

C. Steady-state entanglement of the system

The matrix χ in Sec. III A describes the correlations be-
tween the two open system qubits. Naturally, the question
arises under which circumstances the two qubits are entangled
in the steady state.

As can be seen from Eqs. (13) and (14), the steady state of
the two-qubit system is an X state with ρ14 = ρ41 = 0. Thus,
the concurrence of the steady state is given by [78]

C = 2 max{0, |ρ23| − √
ρ11ρ44}, (27)

and is a function of the temperatures z1,2 and the coupling
parameters γ1,2. In order to investigate which bath temper-
atures lead to an entangled NESS, we numerically optimize

FIG. 2. Largest possible concurrence in the steady state for given
z1,2. The black line corresponds to the boundary for pairs (z1, z2) for
which Cmax = 0. For each pair of bath temperatures z1 and z2 the
coupling parameters are numerically optimized to achieve the max-
imum concurrence. The hatched area highlights the region in which
the bath qubits ξ1, ξ2 are in thermal states. The largest concurrence
can be reached if one bath is at zero temperature and the other one
is in a fully inverted thermal state (z = 1). In this case the reservoirs
are maximally different as their initial states are orthogonal to each
other.

γ1,2 to find the maximum concurrence Cmax for given values
of z1,2. The results are visualized in Fig. 2. The hatched area
corresponds to the region in which the environmental baths are
in thermal states (z1,2 ∈ [−1, 0]), whereas in the nonhatched
area, at least one of the reservoirs consists of qubits in inverted
thermal states (with zi ∈ (0, 1]).

We find that steady-state entanglement can be created for
all pairs (z1, z2) satisfying

z1z2 +
√

9

8
|z1 − z2| > 1. (28)

Thus, above (below) the boundary,

zhigh, low
2 = 4 ± 3

√
2z1

4z1 ± 3
√

2
, (29)

the values of γ1 and γ2 can be chosen such that the NESS is
entangled (see Fig. 2). The parameters yielding the boundary
Cmax = |ρ23| − √

ρ11ρ44 = 0 are given by

γ
high, low
1 = 2√

2 ± z1

, γ
high, low
2 = 4

√
2 − γ

high, low
1 .

(30)

In the next Sec. we will see that memory effects in the relax-
ation dynamics can increase the correlations in the NESS.

IV. COUPLING WITH MEMORY

In what follows, the memory qubits M1,2 are taken into
account in the collision model (p > 0). We will investigate
to what extent dynamical memory effects have an influence
on the entanglement in the nonequilibrium steady state of our
heat transport model. As shown earlier, entanglement in the

052426-4



QUANTUM-MEMORY-ENHANCED DISSIPATIVE … PHYSICAL REVIEW A 104, 052426 (2021)

FIG. 3. The dashed lines indicate how the boundary of the re-
gion where entangled NESSs are feasible changes with the memory
parameter p. The region of pairs (z1, z2) in which entanglement can
be created (Cmax > 0) monotonically increases with p. The density
plot of the maximum concurrence Cmax corresponds to the case of
full memory p = 1. Cmax is obtained by numerically optimizing all
coupling parameters in the model for the given temperatures (z1, z2).

NESS is only possible in a certain temperature regime. As we
will see, memory effects can increase the parameter region
where entanglement can occur.

For p > 0 the dynamics of the open system, in general,
cannot be described by a GKSL master equation but could be
obtained from the four-qubit evolution of S and M by tracing
out the memory qubits,

ρS (t ) = TrM[ρSM(t )]. (31)

Here, we are only interested in the steady state. Therefore,
we compute the steady-state ρ∞

SM of the four-qubit GKSL
dynamics [Eq. (8)] and recover the system steady state as
ρ∞
S = TrM[ρ∞

SM]. A closed analytical solution cannot be
given for an arbitrary choice of the model parameters and,
thus, the results for the case with memory have been evaluated
numerically.

Steady-state entanglement

In analogy to the approach in Sec. III C, we analyze the
entanglement that can be generated between the two qubits S1

and S2 in the steady-state regime. By optimizing the coupling
parameters,

γ1,2 = �1,2/�, υ1,2 = ϒ1,2/�, (32)

to maximize the concurrence between S1 and S2 for a fixed
pair of environmental temperature parameters (z1, z2), we ob-
tain Fig. 3. We observe that the region of pairs (z1, z2) in
which entanglement can be created, (Cmax > 0) monotonically
increases with p. The value of the concurrence achievable
for a fixed pair (z1, z2) is higher than in the case of the
memoryless coupling (Fig. 2) considered before. In fact, for
all pairs (z1, z2), the reachable entanglement Cmax between
the two system qubits grows also monotonically with p and
is maximal for p = 1. Thus, the entanglement in the steady
state can witness memory effects in the environment if the

concurrence reaches values beyond the limit attainable by the
memoryless scenario.

V. RELATION BETWEEN HEAT CURRENT AND
ENTANGLEMENT

We have seen a clear connection between the reachable
steady-state entanglement Cmax and the memory parameter
p, always with respect to a fixed pair of bath temperatures
z1,2. Even though this gives insight for which temperatures
one can expect to find entanglement in the steady state at all,
the correct temperature regime is, of course, not sufficient.
For each pair of temperatures one can always find coupling
parameters which lead to a separable steady state (e.g., by
setting γ1,2 → ∞).

Therefore, in order to get a better understanding of how
the energy transport influences the quantum correlations in the
NESS, we will now investigate the relation between the reach-
able steady-state entanglement and the heat current through
the system. The definition of the heat current as the time-
continuous limit of the change in energy in the baths during
one collision is independent of the type of coupling between
the the system and the baths and, therefore, allows to compare
the cases with and without memory. In both cases all interac-
tions are energy conserving to ensure that no external energy
input is hidden in the different couplings.

For the memoryless case, it follows from Eqs. (27) and (23)
and the form of the steady state given by Eq. (13) that the
steady state is entangled if and only if we have

|Q̇| > 2
√

ρ11ρ44. (33)

This condition was first introduced in Ref. [55]. It provides
a necessary and sufficient criterion for steady-state entangle-
ment but requires full knowledge of the temperatures and
coupling parameters. In particular, entangled steady states re-
quire a nonzero heat flow. In this section, we analyze relations
between heat flow and entanglement that can be observed
without any knowledge of the coupling parameters of the
system.

A. Critical heat current

To understand which amount of concurrence C can be
obtained for a given heat current |Q̇|, we scan the steady states
for a large set of coupling parameters γ1,2 ∈ (0, 1000] and for
fixed temperatures z1 = 0 and z2 ∈ {−1,−0.975,−0.95}. The
solid blue (dark gray) area in Fig. 4 shows which concurrences
can be obtained in a memoryless scenario. For comparison,
the dashed line gives the boundary for the case with maximal
memory (p = 1) and was obtained by optimizing over the
coupling parameters. As we might expect already from pre-
vious considerations, the memory effects enlarge the region
that supports NESSs which are entangled.

As can be seen from Fig. 4, for given temperature param-
eters z1, z2, not all heat current values allow for entangled
steady states. In fact, we can define thresholds,

|Q̇|crit
min, max = |Q̇|crit

min, max(z1, z2), (34)

depending solely on the temperatures, which constrain the
range of values that the heat current can assume for an
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FIG. 4. The blue (dark gray) area depicts all possible pairs
(|Q̇|,C) of steady-state heat current vs concurrence for a fixed pair
of temperatures in the memoryless scenario. The dashed black line
shows the boundary of the area in the case with memory (p = 1)
for the respective temperatures and was obtained by optimizing
over the coupling parameters. In all plots, z1 = 0, whereas z2 ∈
{−1,−0.975, −0.95} (from top to bottom). The red (gray) tick on
the abscissa denotes the maximal heat current |Q̇|max = |(z1 − z2)/4|
which can be obtained for the respective choice of temperatures in the
memoryless scenario [cf. Eq. (26)]. It is important to note that there
are always states with C = 0 for all 0 � |Q̇| � |Q̇|max, i.e., there are
choices for the coupling parameters that lead to the given heat flow
but do not create any entanglement in the NESS.

entangled steady state in the sense that

C > 0 ⇒ |Q̇| ∈ (|Q̇|crit
min, |Q̇|crit

max). (35)

In general, these thresholds differ from the extremal heat
currents |Q̇|min = 0 and |Q̇|max [see Eq. (26)]. In Fig. 5 we plot
the critical values for the memoryless case in dependence of
the temperature z2 for a fixed temperature z1 = 0. It is worth
noting that the condition,

|Q̇|crit
min < |Q̇| < |Q̇|crit

max (36)

establishes a necessary, but not sufficient criterion for steady-
state entanglement. This might seem to be in contradiction to
Eq. (33) which also provides a sufficient criterion. However,
whereas Eq. (33) depends on the specific coupling parameters,
the boundaries in Eq. (36) are optimized over all coupling
strengths and, thus, depend solely on the bath temperatures.

FIG. 5. Critical heat current values as a function of z2 for fixed
z1 = 0 in the memoryless case. The hatching depicts the region for
which we can potentially find entangled steady states.

B. Heat current as a witness for entanglement

The area in the C(|Q̇|) plot (Fig. 4) depends on the choice
of the temperatures z1,2 and is maximized for the largest possi-
ble temperature difference. In Fig. 6 we plot C(|Q̇|) again for
the maximal thermal temperature difference (z1 = −1, z2 =
0) in comparison to the nonthermal case (z1 = −1, z2 = +1)
for couplings with and without memory. The nonthermal

FIG. 6. C(|Q̇|) areas for (a) the memoryless scenario and (b) cou-
pling with memory. The blue (dark gray) area corresponds to the
(|Q̇|,C) values that can be reached by steady states when coupled to
thermal environments (z1 = 0, z2 = −1), whereas the orange (light
gray) area depicts the points that are obtained when the system cou-
ples to a thermal and an inverted thermal environment (z1 = 1, z2 =
−1). The hatching in (b) highlights the region where an overhang
exists in the thermal regime. The corresponding heat current interval
ensures entanglement in the system. The solid black boundary is
given by |Q̇| = 1

5 (1 + 4C ∓ √
1 − 2C − 4C2). The dotted black lines

are numerical boundaries obtained by finding the extremal values of
C for a fixed |Q̇|.
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curve in Fig. 6(a) (memoryless scenario) shows an overhang.
Thus, there are heat current values which can only be obtained
if the corresponding nonequilibrium steady state is entangled.
However, it has to be noted that the second bath is not in a
thermal but in an inverted thermal state.

Figure 6(b) where we consider the coupling with memory
(p = 1) shows interesting details. The curves look similar to
the memoryless case, but the heat current region for which
entanglement is possible increases, and the reachable concur-
rence is higher as could be expected already from the results of
Sec. III. Most remarkably, the overhang now also shows up for
the thermal case (both heat reservoirs in thermal states). This
means that there is a certain range for the heat current which
guarantees that the steady state of the system is entangled.
An experimentally measurable heat current could, therefore,
witness entanglement in the system if this suitable interval
is reached. The idea of an entanglement witness based on
heat currents has previously been put forward in Ref. [55].
Interestingly, in our setup the witness becomes independent
of any detailed knowledge about the involved coupling pa-
rameters in the overhang region. The blue (dark gray) area
in Fig. 6(b) only shows the case of a maximal thermal tem-
perature spread where the overhang becomes most visible.
However, the respective C(|Q̇|) areas for smaller temperature
differences always lie inside the boundary of the maximal
case, ensuring that a heat current in the overhang range is an
entanglement witness independently of the concrete choice of
temperatures.

Crucially, the heat current can only serve as an entangle-
ment witness if it can be measured by an observable. This is
the case in our collision model setup which explicitly includes
the baths. In a master equation approach, solely defined on the
system, the heat current is, in general, not an observable and,
therefore, could not constitute such a witness.

VI. ON THE DIVISIBILITY OF THE DYNAMICS

Memory effects are often related to a non-Markovian be-
havior of the open quantum system dynamics. Even though we
mainly study the influence of memory effects on the steady-
state properties of the system, we would like to comment
on the non-Markovianity of the quantum dynamics that lead
to these steady states. In particular, we provide numerical
evidence that the steady states with the maximal entanglement
for given temperatures are always reached by nondivisible
quantum dynamics.

Non-Markovianity is usually studied as a transient phe-
nomenon. Several nonequivalent criteria for non-Markovian
quantum dynamics have been proposed in the literature
[79–81]. We will focus here on the geometrical P-divisibility
criterion introduced in Ref. [82] because of its numerical
stability for the given data.

A quantum dynamical map t : ρ(0) → ρ(t ) = t [ρ(0)]
is called CP divisible if it can be decomposed as

t = t,ss, (37)

where the two-times map t,s = t
−1
s is completely posi-

tive and trace-preserving for all s < t . If t,s is positive but not
completely positive for some values of t, s then the dynamics

is said to be P divisible. A dynamical map t is indivisible if
it is not P divisible.

P divisibility is characterized by a monotonic decrease of
the state space volume reachable by the dynamics [82]. A
density operator ρ of a d-dimensional quantum system can
be decomposed as

ρ =
d2−1∑
i=0

Tr[ρGi] Gi =
d2−1∑
i=0

�riGi, (38)

where the G1,...,d2−1 are the Hermitian and traceless generators
of the group SU (d ) and G0 = 1/

√
d . The vector �r can be seen

as a generalized Bloch vector. The map t can then be written
in the basis {Gi}, acting on �r as

�r(t ) = F (t )�r(0), Fi j (t ) = Tr [Git [Gj]], (39)

and the concatenation of maps in Eq. (37) is given by the
matrix multiplication,

F (t ) = F (t, s)F (s). (40)

It has been shown in Ref. [83] that the absolute value of the
determinant of a positive map F (s) can only decrease under
composition with another positive map F (t, s),

| det F (s)| � | det[F (t, s)F (s)]| = | det F (t )|. (41)

Thus, if the dynamics is P divisible [i.e., F (t, s) is positive
for all t > s] then | det F (t )| can only decrease over time.
An increase in | det F (t )| indicates that the dynamics is not
P divisible and, therefore, also not CP divisible.

Based on this observation, the following measure for non-
divisibility has been proposed in Ref. [82]:

N =
∫

∂
∂t | det F (t )|>0

∂

∂t
| det F (t )|dt . (42)

Using the nondivisibility measure N we numerically ana-
lyze the dynamics generated by our model with memory,

t [ρ] = TrM [etLSM [ξ1 ⊗ ρ ⊗ ξ2]], (43)

with the generator LSM as defined in Eq. (8).
First of all one should note that a collision model with

memory effects (i.e., p > 0 in our setup) does not guarantee
nondivisible dynamics. Even in the case p = 1 the resulting
dynamics can be divisible depending on the choice of the
coupling parameters. This is an expected behavior and well
described in the literature [60,84].

To make the connection to the main question of this paper,
namely, the entanglement generation in the steady state, we
focus here on the dynamics which induce the maximal pos-
sible concurrence Cmax in the NESS for given temperatures
(z1, z2). We can numerically verify that the optimized param-
eters found in Sec. IV A, i.e., those that generate maximal
entanglement Cmax, always lead to N > 0. In other words,
the maximal steady-state entanglement is reached through
indivisible dynamics.

In Fig. 7 we show N for the temperature region where
the NESS of the dynamics is entangled (Cmax > 0). Although
the temperature pairs with maximal nondivisibility (z1 =
±1, z2 = ∓1) agree with those that reach the maximal Cmax,
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FIG. 7. For the optimized coupling parameters that lead to the
highest steady-state entanglement Cmax for a given temperature pair
(z1, z2) we plot the nondivisibility N of the associated quantum
dynamics in the memory case p = 1. The dynamics which lead to
the maximal entanglement Cmax in the NESS are always nondivisible.
However, the nondivisibility N is not monotonically related to the
maximal concurrence Cmax as can been seen by a comparison with
Fig. 3. The spread of N over several orders of magnitude is related
to the fact that | det F (t )| typically decays exponentially over time
[82]. The magnitude of N then strongly depends on where the time
range with ∂

∂t | det F (t )| > 0 is situated with respect to the timescale
of the decaying dynamics which, in turn, depends on the interplay of
the different coupling parameters in the model.

there is, in general, no monotonic relation between N and
Cmax as one can see by comparing Fig. 7 to Fig. 3. In particu-
lar, the maximal thermal temperature spread (z1 = −1, z2 =
0) shows a rather low N whereas the associated Cmax at this
point is maximal for the thermal regime.

We can state that our model is able to generate non-
Markovian quantum dynamics and that maximal entan-
glement in the NESS even requires the dynamics to be
indivisible. However, a clear relation between transient non-
Markovianity and steady-state quantities, such as quantum
correlations in the NESS is missing to date, and this inter-
esting question needs further investigation.

VII. CONCLUSIONS

In this article we investigate the heat flow through a two-
qubit open quantum system which is in contact with two heat
reservoirs at different temperatures. Using a collision model
approach, we consider different types of couplings between
the system and the baths, implementing dynamics with and
without memory effects.

The focus of our paper lies on the entanglement content
of nonequilibrium steady states of the open quantum system.
We show that entanglement can only persist for a certain
range of reservoir temperatures. Memory effects in the relax-
ation dynamics increase the temperature range allowing for
entanglement. Thus, steady-state entanglement can build up
for temperature pairs which would always lead to a separable
steady state in a memoryless scenario. Accordingly, the oc-
currence of entanglement for those temperatures serves as a
witness for memory effects in the relaxation dynamics.

The nonequilibrium steady state, its entanglement, and the
heat current strongly depend on the concrete choices for the
several coupling parameters in the model. For any pair of
temperatures one can find coupling parameters which lead to a
separable NESS. However, maximum entanglement and heat
current are closely related as we show in the second part of
this article. For given temperatures, a critical minimum heat
current can be obtained which is necessary to allow steady-
state entanglement at all. Interestingly, in general, there is also
an upper critical heat current beyond which the corresponding
steady state is always separable.

Memory effects again broaden the range between the lower
and the upper bounds. Additionally, a surprising effect be-
comes visible in this scenario. For heat current values close
to the upper critical limit, steady-state entanglement is not
only possible but even necessary. Thus, observing suitable
heat currents in such systems guarantees an entangled steady
state irrespective of any knowledge about the actual values of
the involved coupling parameters.

The dynamics which lead to maximal entanglement in the
NESS are always indivisible. Thus, for this special case we
can establish a connection between a steady-state property and
a dynamical characteristics. However, further investigation is
needed to gain more general insight.

Our paper shows that memory effects, which are often
studied rather in the context of dynamical phenomena, can
play an important role for the buildup of quantum correlations
in nonequilibrium steady states. Especially the heat current
interval which ensures entanglement can be interesting for
dissipative preparation of entangled states.

It remains an open question whether memories of higher
dimension can increase these effects. Numerically, the prob-
lem quickly becomes infeasible for larger memories, and
an analytical solution for a finite memory of arbitrary di-
mension seems out of reach. In future work, a model with
non-Markovian bosonic reservoirs could be a good candi-
date to check whether the effects presented here occur more
generally.
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Enhanced steady-state coherences via repeated system-bath in-
teractions, arXiv:2008.05200 [quant-ph] (2021).

[16] A. Tavakoli, G. Haack, N. Brunner, and J. B. Brask, Au-
tonomous multipartite entanglement engines, Phys. Rev. A 101,
012315 (2020).

[17] J. Gemmer, M. Michel, and G. Mahler, Quantum Thermody-
namics: Emergence of Thermodynamic Behavior Within Com-
posite Quantum Systems, Lecture Notes in Physics (Springer,
Berlin/Heidelberg, 2004).

[18] F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso,
Thermodynamics in the Quantum Regime: Fundamental Aspects
and New Directions, Fundamental Theories of Physics (Springer
International Publishing, Cham, Switzerland, 2018).

[19] G. E. Crooks, Quantum operation time reversal, Phys. Rev. A
77, 034101 (2008).

[20] A. E. Rastegin, Non-equilibrium equalities with unital quantum
channels, J. Stat. Mech. (2013) P06016.

[21] Á. M. Alhambra, L. Masanes, J. Oppenheim, and C. Perry,
Fluctuating Work: From Quantum Thermodynamical Identities
to a Second Law Equality, Phys. Rev. X 6, 041017 (2016).

[22] J. Åberg, Fully Quantum Fluctuation Theorems, Phys. Rev. X
8, 011019 (2018).

[23] T. Debarba, G. Manzano, Y. Guryanova, M. Huber, and N. Friis,
Work estimation and work fluctuations in the presence of non-
ideal measurements, New J. Phys. 21, 113002 (2019).

[24] P. H. Souto Ribeiro, T. Häffner, G. L. Zanin, N. Rubiano da
Silva, R. Medeiros de Araújo, W. C. Soares, R. J. de Assis, L.
C. Céleri, and A. Forbes, Experimental study of the generalized
Jarzynski fluctuation relation using entangled photons, Phys.
Rev. A 101, 052113 (2020).

[25] A. C. Barato and U. Seifert, Thermodynamic Uncertainty Rela-
tion for Biomolecular Processes, Phys. Rev. Lett. 114, 158101
(2015).

[26] G. Falasco, M. Esposito, and J.-C. Delvenne, Unifying thermo-
dynamic uncertainty relations, New J. Phys. 22, 053046 (2020).

[27] J. M. Horowitz and T. R. Gingrich, Thermodynamic uncertainty
relations constrain non-equilibrium fluctuations, Nat. Phys. 16,
15 (2020).

[28] Y. Hasegawa, Quantum Thermodynamic Uncertainty Relation
for Continuous Measurement, Phys. Rev. Lett. 125, 050601
(2020).

[29] P. Skrzypczyk, N. Brunner, N. Linden, and S. Popescu, The
smallest refrigerators can reach maximal efficiency, J. Phys. A:
Math. Theor. 44, 492002 (2011).

[30] R. Uzdin, A. Levy, and R. Kosloff, Equivalence of Quan-
tum Heat Machines, and Quantum-Thermodynamic Signatures,
Phys. Rev. X 5, 031044 (2015).

[31] A. Friedenberger and E. Lutz, When is a quantum heat engine
quantum? Europhys. Lett. 120, 10002 (2017).

[32] G. Thomas, N. Siddharth, S. Banerjee, and S. Ghosh, Thermo-
dynamics of non-Markovian reservoirs and heat engines, Phys.
Rev. E 97, 062108 (2018).

[33] A. Das and V. Mukherjee, Quantum-enhanced finite-time Otto
cycle, Phys. Rev. Research 2, 033083 (2020).

[34] P. A. Camati, J. F. G. Santos, and R. M. Serra, Employing non-
Markovian effects to improve the performance of a quantum
Otto refrigerator, Phys. Rev. A 102, 012217 (2020).

[35] K. V. Hovhannisyan and A. Imparato, Quantum current in dis-
sipative systems, New J. Phys. 21, 052001 (2019).

[36] J. Goold, M. Huber, A. Riera, L. del Rio, and P. Skrzypczyk,
The role of quantum information in thermodynamics—a topical
review, J. Phys. A: Math. Theor. 49, 143001 (2016).

[37] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito,
Quantum and Information Thermodynamics: A Unifying
Framework Based on Repeated Interactions, Phys. Rev. X 7,
021003 (2017).

[38] M. Perarnau-Llobet and R. Uzdin, Collective operations can
extremely reduce work fluctuations, New J. Phys. 21, 083023
(2019).

[39] K. Beyer, K. Luoma, and W. T. Strunz, Steering Heat En-
gines: A Truly Quantum Maxwell Demon, Phys. Rev. Lett. 123,
250606 (2019).

[40] L. Pedro García-Pintos, A. Hamma, and A. del Campo, Fluc-
tuations in Extractable Work Bound the Charging Power of
Quantum Batteries, Phys. Rev. Lett. 125, 040601 (2020).

052426-9

https://doi.org/10.1103/PhysRevLett.105.200402
https://doi.org/10.1103/PhysRevLett.111.030405
https://doi.org/10.1103/PhysRevA.59.2468
https://doi.org/10.1103/PhysRevLett.87.017901
https://doi.org/10.1103/PhysRevA.65.042107
https://doi.org/10.1103/PhysRevLett.106.090502
https://doi.org/10.1103/PhysRevA.78.042307
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nature12801
https://doi.org/10.1103/PhysRevA.88.032317
https://doi.org/10.1038/nature12802
https://doi.org/10.1103/PhysRevB.88.035441
https://doi.org/10.22331/q-2018-06-13-73
http://arxiv.org/abs/arXiv:2008.05200
https://doi.org/10.1103/PhysRevA.101.012315
https://doi.org/10.1103/PhysRevA.77.034101
https://doi.org/10.1088/1742-5468/2013/06/P06016
https://doi.org/10.1103/PhysRevX.6.041017
https://doi.org/10.1103/PhysRevX.8.011019
https://doi.org/10.1088/1367-2630/ab4d9d
https://doi.org/10.1103/PhysRevA.101.052113
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1088/1367-2630/ab8679
https://doi.org/10.1038/s41567-019-0702-6
https://doi.org/10.1103/PhysRevLett.125.050601
https://doi.org/10.1088/1751-8113/44/49/492002
https://doi.org/10.1103/PhysRevX.5.031044
https://doi.org/10.1209/0295-5075/120/10002
https://doi.org/10.1103/PhysRevE.97.062108
https://doi.org/10.1103/PhysRevResearch.2.033083
https://doi.org/10.1103/PhysRevA.102.012217
https://doi.org/10.1088/1367-2630/ab1731
https://doi.org/10.1088/1751-8113/49/14/143001
https://doi.org/10.1103/PhysRevX.7.021003
https://doi.org/10.1088/1367-2630/ab36a9
https://doi.org/10.1103/PhysRevLett.123.250606
https://doi.org/10.1103/PhysRevLett.125.040601


HEINEKEN, BEYER, LUOMA, AND STRUNZ PHYSICAL REVIEW A 104, 052426 (2021)

[41] R. Román-Ancheyta, B. Çakmak, and Ö. E. Müstecaplıoğlu,
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