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Gyrocardiography: A New Non-
invasive Monitoring Method 
for the Assessment of Cardiac 
Mechanics and the Estimation of 
Hemodynamic Variables
Mojtaba Jafari Tadi1,2, Eero Lehtonen2, Antti Saraste1,3, Jarno Tuominen2, Juho Koskinen2, 
Mika Teräs4,5, Juhani Airaksinen1,3, Mikko Pänkäälä2 & Tero Koivisto2

Gyrocardiography (GCG) is a new non-invasive technique for assessing heart motions by using a 
sensor of angular motion – gyroscope – attached to the skin of the chest. In this study, we conducted 
simultaneous recordings of electrocardiography (ECG), GCG, and echocardiography in a group of 
subjects consisting of nine healthy volunteer men. Annotation of underlying fiducial points in GCG 
is presented and compared to opening and closing points of heart valves measured by a pulse wave 
Doppler. Comparison between GCG and synchronized tissue Doppler imaging (TDI) data shows that the 
GCG signal is also capable of providing temporal information on the systolic and early diastolic peak 
velocities of the myocardium. Furthermore, time intervals from the ECG Q-wave to the maximum of 
the integrated GCG (angular displacement) signal and maximal myocardial strain curves obtained by 
3D speckle tracking are correlated. We see GCG as a promising mechanical cardiac monitoring tool that 
enables quantification of beat-by-beat dynamics of systolic time intervals (STI) related to hemodynamic 
variables and myocardial contractility.

The heart is an intricate object which undergoes repeating changes in different dimensions and orientations1. The 
contraction of helically oriented muscle fibres act as an integrated force causing a coordinated wringing motion 
to the myocardium within each cardiac cycle2. Accordingly, the longitudinal retraction of the myocardium causes 
left ventricular (LV) base to move towards apex. Linear contribution of the muscle fibres contraction in the long 
axis of the heart is known as an indicator of ventricular systolic and diastolic mechanical function3, 4.

Monitoring of the myocardial mechanical activity requires sophisticated techniques. Over the past years, car-
diac motion has been widely studied and quantitatively investigated using invasive and non-invasive techniques 
in both animals and humans. In 1975, Ingels et al.5 proposed an invasive method to evaluate LV performance 
in dogs based on multiple implanted radiopaque markers and biplane cine angiography analysis. Later, other 
non-invasive approaches based upon optical devices6, 7, tagged magnetic resonance imaging (tagged MRI)8, tissue 
Doppler imaging (TDI)9 and speckle tracking imaging10 were introduced in order to evaluate dynamics of cardiac 
motion and myocardial tissue function.

Ballistocardiography (BCG) — the recording of the reactionary forces of the body invented by Gordon in 
1877 – and seismocardiography — the recording of chest wall vibrations invented by Bozhenko in 1961 — are 
non-invasive methods which have been used for cardiac mechanical monitoring11–14. In principle, BCG measures 
the whole body recoil or ballistic forces in response to the blood ejection from aorta into the vascular tree, while 
the SCG measures the positional vibrations of the chest wall in reaction to the myocardial motions and respira-
tion15, 16. In a recent study, sophisticated in vivo experimental examinations and a complementary mathematical 
model revealed that BCG waves are formed due to blood pressure gradients in the ascending and descending 
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aorta17. SCG and BCG, which are typically based on using accelerometers and force sensors, can be used for 
unobtrusive long term monitoring of LV to estimate hemodynamic variables, cardiac abnormalities, and breath-
ing disorders via low-cost wearable or portable devices18–26. Recent studies have also briefly described the fea-
sibility of heart monitoring using built in accelerometer and gyroscope sensors in Google glasses, wrist worn 
devices, smart phones, and chest worn patches27–30. Additionally, the body kinetic energy analysis, also known 
as the multi-dimensional kineticardiography (MKCG), has been recently introduced in ref. 31. MKCG is based 
on placing a tri-axial accelerometer and a two-axial gyroscope on the center of mass of the body, and on thereby 
measuring the rotational and translation kinetic energies and powers of the body. This method has been shown 
to be useful in evaluating kinetic energy transferred from the heart in patients suffering valvulopathy and heart 
failure31. Marcelli et al.32, 33, Hyler et al.34, and Grymyr et al.35, on the other hand, reported invasive techniques 
based upon implantable gyroscope and accelerometer sensors in order to monitor left ventricular function and 
assess cardiac rotation in animals. These studies report promising results which may yield to a prospective strat-
egy suitable for implantable devices for the continuous monitoring of cardiac function. Other studies have also 
showed that by using gyroscope one can improve the automated interpretation of SCG signals in order to estimate 
heart rate variability, cardiac time intervals and annotation of waveforms36–38.

Complementary to the above methods, we introduce in this paper a novel non-invasive approach for the 
measurement of cardiac and respiration signals we call gyrocardiography (GCG). This technique is solely based 
on measuring the precordial microvibrations using a microelectromechanical (MEMS) gyroscope sensor attached 
to the skin anterior to the sternum. GCG can be used to estimate beat-to-beat hemodynamic variables such as 
heart rate and the pre-ejection period, and to investigate the mechanical activity of the heart. The gyroscope 
measures its own angular velocity, and in this paper we present how some of the maxima or minima of these 
velocities correspond to physiological events such as the moments of LV valvular openings and closings. A benefit 
of the proposed method is that a gyroscope is a relatively cheap sensor, and is available for example in most wear-
able devices (e.g. wrist worn devices, smart phones, etc). However, the engagement mechanism and the transfer 
function from the motion of the heart to the motion of the chest are still unclear, and should be investigated more 
thoroughly in the future.

This paper is based on our previous publication39 in which we presented primary investigations on the GCG 
signal and its correspondence to the mechanical activity of the heart. In40 we also briefly demonstrated the feasi-
bility of recovering respiration signals by using a gyroscope sensor for nuclear medicine imaging applications. In 
this work, we focus on exploring the correspondence between a reference echocardiography/cardiac ultrasound 
(US) and tri-axial GCG measurements in order to show that GCG is capable for estimating certain myocardial 
motions and hemodynamic variables. We present an annotation of major fiducial points in the GCG signal based 
on the timings of cardiophysiological events measured by a pulse wave Doppler. We also compare GCG signals to 
tissue velocity (TV) and strain curves obtained by TDI and speckle tracking analyses, and show that the timing of 
the maximal strain is correlated with certain waveform in the GCG signal. Furthermore, we present complemen-
tary information on automated heartbeat detection and annotation of the GCG signal that allows for estimating 
beat-to-beat cardiac time intervals (see Supplementary material). The accuracies of the annotations and other 
measurements are determined by statistical analysis.

Methods
Experimental Set-up and Protocols. In the following we describe our experimental set-up and measur-
ing protocol employed for data collection and analysis.

Study subjects. Experimental verification of the proposed approach was performed on the data acquired from 9 
healthy volunteer subjects with their informed consent. All experiments were supervised in a controlled research 
environment and were performed in accordance with the Helsinki Declaration. We considered healthy male 
subjects who had no prior history of cardiovascular disease. The study subjects were asked to lie in the supine 
position with the upper body slightly tilted in order to facilitate echocardiography. Data was acquired simultane-
ously from the electrocardiography (ECG), the inertial measurement unit, and from the echocardiography in a 
time frame of approximately 10–15 minutes. Figure 1 shows the general measurement set-up utilized in this study. 
An expert echocardiographer who is also a cardiologist performed all the ultrasound examinations. Afterwards, 
visual data inspection was performed by three independent observers including one cardiologist. The demo-
graphic information of the study subjects as well as echocardiography characteristics are provided in Table 1.

Data Acquisition. We used a custom-made miniaturized customized joint accelerometer-gyroscope system – 
inertial measurement unit (IMU) – in order to measure externally heart mechanical motions. Toward this end, a 
(3 mm × 3 mm × 1 mm) triple-axis, low-power, capacitive digital accelerometer (Freescale Semiconductor, 
MMA8451Q, Austin, TX, USA) and an (3 mm × 3 mm × 0.9 mm) ultra-accurate, low power, low noise, 3-axis 
angular rate sensor (Maxim Integrated, MAX21000, San Jose, CA, USA) were employed for recovering chest 
cardiac and respiratory signals. The MEMS sensors were attached to the skin of the chest anterior to the body of 
sternum using double-sided tape without hair removal in the chest area. The measured acceleration and angular 
velocity range of the accelerometer and gyroscope were set to ±2g and ±250 dps, respectively. The accelerometer 
has an RMS noise of 99 µg Hz/  and is tuned to have an output bandwidth of 400 Hz, while the gyro low noise 
density was 9 mdps Hz/  and the output bandwidth was 400 Hz. Additionally, a reference standard two lead 
front-end electrocardiogram (ADS1293 from Texas Instruments) was added to this prototype. All measurements 
were collected using FRDM-KL25Z (from Semiconductor) board, and stored on a memory card, and later were 
parsed and processed using a custom-made software. All GCG, SCG, and ECG data were recorded simultane-
ously with a sampling frequency (Fs) of 800 Hz. A 4th order Butterworth IIR filter with pass bands 1–20 Hz and 
4–45 Hz, respectively, were applied on the gyroscope and accelerometer derived signals, allowing the removal of 
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white noise and signals offset. ECG signals were also de-noised by a fast Fourier transform (FFT) filter and with 
the frequency bands of 0.5–45 Hz as described in ref. 41. In addition to the above sensors, in a pre-study exami-
nation we considered three other gyroscope sensors, namely Murata SCC1300d02, Bosch BMI 160, and the 
SONY Xperia Z3 compact smartphone with a built in IMU in order to evaluate the reproducibility of the GCG 
waveforms. The sampling rate for the Murata sensor was set to 2000 Hz, while the other two sensors had the sam-
pling rate of 200 Hz. Measurements with these sensors were performed for visual evaluation of inter- and 
intra-subject variability in the GCG waveform. Figure 1A shows the general measurement set up showing the 
location of tri-axial MEMS gyroscope and accelerometer for heart monitoring. Chest-attached (sternal) tri-axial 
MEMS accelerometer and gyroscope sensors (40 mm × 20 mm) and ECG body electrodes (white, green, black, 
and red) are wired to the data acquisition (DAQ) system. Red and black colour arrows show orientation of sensi-
tivity and the polarity of the tri-axial MEMS sensors.

Echocardiography. The echocardiography examination was conducted by a Vivid E95 scanner with a 1.4–4.6 MHz  
transducer (GE Healthcare, Finland). A complete echocardiographic study was performed using standard apical 
views for 3 to 6 cardiac cycles. EchoPAC post-processing software (Version 113, GE Healthcare, Finland) was 
employed for off-line echocardiographic analysis of TDI and 3D speckle tracking strain. Conventional echocar-
diography, electrocardiography, and 3-axis GCG and 3-axis SCG were performed concurrently. For measurement 
of cardiac time intervals, mitral valve and aortic valve flow velocities were recorded using pulsed-wave (PW) 
Doppler. For measurement of myocardial velocities, apical 4 chamber TDI images were obtained with an aver-
age rate of 106/sec fps. We performed speckle tracking which is an automated functional imaging technique for 
multidimensional deformation or strain analysis. 3D volume covering the whole left ventricle myocardium was 
obtained from an apical view averaging 6 cardiac cycles with an average frame rate of 40/sec for 3D speckle track-
ing strain analysis. The results of 18 myocardial segments were averaged to obtain global strain in longitudinal, 
circumferential, area, and radial directions. In addition to curves, numerical strain and timing data from each 
frame was obtained. Figure 1B demonstrates the diagram of the data acquisition set up for cardiac ultrasound 
examinations. The echocardiograph numerical data and the electro-mechanical signals were later manually syn-
chronized during post-processing steps. We stored the corresponding ECG and MEMS data for each captured 
ultrasound image for all the subjects.

Results
Gyrocardiography Waveform Morphology. Figure 2A represents reference ECG and corresponding 
three axis GCG angular velocity measurements caused by precordial vibrations. The GCG measures angular 
velocities with respect to three orthogonal axes of rotation, denoted by x, y, and z. Three dimensional GCG is 

Figure 1. Simultaneous data acquisition from echocardiography, ECG, and MEMS sensors. General schematics 
of MEMS motion processing system (A) and echocardiography set up including MEMS sensors and ECG (B).

Demographic 
information Min Max Mean ±SD

Echocardiography 
characteristics Min Max Mean ±SD

Age (years) 23 46 31 8.3 LVEDV (ml) 67 154 118 25

Height (cm) 172 186 179 4.7 LVESV (ml) 31 58 47 8

Weight (kg) 70 85 76 5.8 EF (%) 54 63 59 3

BMI (kg/m2) 21.6 26.12 23.8 1.5 SV (ml) 59 96 73 13

Blood Pressure (mmHg) 119/70 165/87 130/77 14/5 CO (l/min) 3.1 5.1 4 0.75

Table 1. Demographic information and descriptive analysis of the echocardiography characteristics. 
*LVEDV = left ventricular end diastolic volume; LVESV = left ventricular end systolic volume; EF = ejection 
fraction; SV = stroke volume; CO = cardiac output; BP = blood pressure.
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achievable by a tri-axial gyroscope sensor. The axes of rotations are defined in this paper as follows: the x-axis 
points laterally from left to right, the y-axis points from head to foot, and the z-axis points from back to front. 
These axes of rotation are illustrated in the Fig. 1A.

As shown in the Fig. 2A and B, each GCG rotation axis corresponds to its own signal pattern (the most 
dominant patterns are highlighted by red color traces) with a magnitude in the order of few degree per second 
(dps or °/s). During systole, the angular velocity signal corresponding to the x-axis undergoes a fast and strong 
down-up-down deflection around the ECG R-wave, while a smaller upward deflection is seen around the T-wave. 
The y-axis consists of a repeating major peak that indicates the heartbeat pulse during systole. This prominent 
and upward spike is followed by again a minor upward deflection that appears slightly after the reference ECG 
T-wave. Similarly, the z-axis yields repeating waveforms for the systole and diastole; however, in this paper we 
will mainly focus on the waveforms corresponding to the x- and y-axes of the GCG, as these signals are typically 
of better quality.

The x- and y-axes of the GCG yield monomorphic patterns meaning that these waveforms are similar in shape 
with different subjects and measurement devices. As an example of this, Fig. 2C shows GCG signals measured 
from the y-axis of different sensors, namely Murata SCC1300d02, Bosch BMI 160, Maxim Integrated MAX21000, 
and the SONY Xperia Z3 compact. Although these sensors have diverse technical specifications in terms of noise 
level, power consumption, and full scale range, it can be seen that the obtained GCG signals are similar in ampli-
tudes (in the scale of a few degree per seconds) and in the shapes of the waveforms; in particular the fiducial 
points described in the following section are visible in all of these signals.

Gyrocardiography Waveform Annotation and Estimation of Hemodynamic Variables. Pulse 
wave Doppler images were obtained to define opening and closure times of the aortic and mitral valves from the 
considered 9 healthy subjects. We followed guidelines in ref. 42 to detect intra-cardiac events and correspond-
ingly measure cardiac time intervals using mitral inflow and LV outflow velocity timings (See supplementary 
materials for more details).

Measurements of systolic and diastolic time intervals on the GCG signal requires robust delineation of cardiac 
fiducial points. Generally, the Q-peak and the R-peak in ECG serve as the reference points for measuring cardiac 
time intervals in echocardiography. Therefore, in this study we followed the same standard and measured time 
intervals from the ECG fiducial points to the considered GCG fiducial points. Our hypothesis for this research 
was that major stationary and repeating waveforms in GCG signal coincide with physiological events in heart. 
We performed visual inspections, through all study subjects and acquired data, in both PW Doppler images and 
GCG signals to identify specific GCG waveforms which coincide with particular mechanical cardiac events in 
each cardiac cycle (see Fig. 3A) and nominated each corresponding wave with a unique name as described below. 
Six major successive points, four of which coincide with valvular activity of the heart and two of which coincide 
with timings of maximal systolic and diastolic myocardial velocities, were identified as follows:

Around the ECG R-wave and during the systole, a fast downward notch in the y-axis wave pattern is visible. 
We denote this peak by gyroI (gI). Right after gI, we denote the major maximum peak in the GCG y-axis signal by 
gyroJ (gJ); this peak occurs slightly after the ECG R-wave. Further in the middle of the cardiac cycle and roughly 

Figure 2. Typical three dimensional GCG waveforms from x, y, and z axes of rotation. 3-axis GCG 
morphologies and reference ECG (A). 3-axis ensemble averaged GCG morphologies (B). GCG y-axis 
waveforms obtained using different sensors (C).
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after the ECG T-wave (around the second heart sound (S2)), a lower magnitude up-down wave (almost ∧ shape) 
is visible which consists of two reproducible and repeating notches just before and after the ∧ wave peak. This 
waveform is mostly visible in the signal obtained from the x-axis of the GCG, and we nominate the first notch by 
gyroK (gK), and the second notch one by gyroL (gL).

With distinguishing of GCG gI, gJ, gK, and gL points in every cardiac cycle, the isovolumetric contraction time 
(IVCT) and the isovolumetric relaxation time (IVRT) could be also estimated. Additionally, other significant 
systolic time intervals (STI) and indexes of cardiac contractility, including the total electromechanical systole 
(QS2), the left ventricular ejection time (LVET), and the pre-ejection period (PEP), could be estimated. In our 
considerations, the QS2 is measured from the ECG Q wave to the moment of gK (AVO), while the LVET is meas-
ured as the time interval between the moments of AVO and AVC in the cardiac cycle, which in GCG corresponds 
to the time interval from gJ to gK. The PEP index can be determined by calculating the time between the ECG 
Q-wave and the onset of the aortic opening, which corresponds to gJ in GCG. PEP and LVET are both important 
clinical parameters on myocardial contractility19, 43, 44. Figure 3B illustrates the annotated GCG waveforms and 
the corresponding cardiac time intervals.

We hypothesize that the fiducial points gI − gL correspond to the opening and closing times of the heart valves. 
More specifically, gI occurs approximately simultaneously with mitral valve closure (MVC), gJ with aortic open-
ing (AO), gK with aortic closure (AC), and gL with mitral valve opening (MVO). In order to assess the validity 
of the hypothesis we compared the obtained GCG intervals to the reference tissue velocity signals measured by 
echocardiographic pulse wave interrogations. In all the following statistical analyses, we used Pearson correlation 
and Bland-Altman evaluation45 with 95% limits of agreement (LoA), corresponding to difference mean ±1.96× 
standard deviation. A Pearson correlation coefficient (r2) was computed to assess the linear relationships. Positive 
correlation coefficients and root mean square error (RMSE) between the time intervals were obtained with all 
cardiac time intervals. Figure 4 shows linear association and agreement between the reference pulse wave- and 
measured GCG-based cardiac time intervals. The mean and SD of the measured GCG cardiac time intervals as 
well as their correlation and RMSE to the reference US measurements have been reported in Table 2.

Estimating timings of peak myocardial movements and deformations. Tissue velocity and Strain 
echocardiography. In echocardiography myocardial motions and deformations can be measured for example by 
tissue velocity and strain measurements. For this part of the work, we obtained echocardiographic images from 
9 healthy subjects, and measured myocardial longitudinal wall motion and deformation using tissue Doppler 
imaging (TDI) and three dimensional (3D) speckle tracking, respectively. In TDI images, multiple regions of 
interest (ROI) were placed in the left ventricle myocardium in apical 4-chamber view in order to measure aver-
age myocardial velocity and displacement. As the gyroscope signal is a velocity signal, it is natural to look at the 
correspondence between the GCG signal and the tissue velocity acquired by the echocardiograph. In this work 
we consider only correspondence in time, that is, how the timings of the peaks in GCG signal are correlated with 
the timings of the peak tissue velocities. However, an interesting future research topic is to investigate how the 
waveforms themselves are correlated and what information can be gained from the magnitude of the GCG signal. 
Currently, it is not known how the GCG signal attenuates due to the tissue between the heart and the sensor. 
Accurate estimation of the timing of the maximal tissue velocities, can, however be clinically important, as it 

Figure 3. Waveform annotation and cardiac time interval estimation in GCG signal. Aortic (left) and mitral 
(right) valve opening and closure moments as measured by PW Doppler and correspondingly in GCG signal 
(A). Waveform annotation in GCG and corresponding time intervals with respect to ECG peaks (B).
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enables for example the computation of the myocardial dispersion which is the standard deviation of time to max-
imum myocardial shortening. Myocardial dispersion reflects the heterogeneity of myocardial systolic contraction 
and can be used as an indicator for susceptibility to arrhythmias in different heart disease groups such as heart 
failure, ischemia, and infarction46.

Figure 4. Correlation and Bland-Altman plots. The red color dashed lines drawn in Bland-Altman plots 
represent the upper and lower LoA ranges for the measured cardiac time intervals. RPC is the reproducibility 
coefficient value which is the maximum difference that is likely to occur between different observations. The 
coefficient of variation (CV) percentage is the ratio of the standard deviation and the overall mean.

US Mean ± SD GCG Mean ± SD r2 RMSE

HR (bpm) 59 ± 12 HR 58 ± 11 0.99 0.95

R-MVC (ms) 20 ± 6 R-gI 18 ± 5 0.66 3.5

R-AVO (ms) 49 ± 10 R-gJ 47 ± 10 0.96 2.2

R-AVC (ms) 359 ± 32 R-gK 358 ± 36 0.95 7.5

R-MVO (ms) 427 ± 44 R-gL 432 ± 41 0.97 7.6

IVCT (ms) 29 ± 12 IVCT 30 ± 10 0.85 4.5

IVRT (ms) 68 ± 14 IVRT 74 ± 9 0.59 9.4

QS2 (ms) 393 ± 34 QS2 394 ± 38 0.78 19

LVET (ms) 310 ± 26 LVET 310 ± 32 0.93 7.7

PEP (ms) 82 ± 10 PEP 83 ± 8 0.84 4.5

Q-Sa (ms) 134 ± 20 Q-SPV 132 ± 26 0.89 7.6

Q-Ea (ms) 467 ± 44 Q-DPV 460 ± 49 0.87 16

Q-Max Strain (ms) 367 ± 32 Q-Max Ang Disp 371 ± 31 0.91 10

Table 2. US and GCG derived information for underlying cardiac time intervals.
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We noticed a relatively wide positive polarity waveform (as shown in Fig. 5A) which appears in the GCG 
y-axis signal after the R-peak in ECG and the fiducial point gJ. Another repeating waveform in the y-axis sig-
nal is a minor V-shaped dip-rise wave which appears soon after gL. As shown in Fig. 2C, also these waveforms 
are reproducible using different types of gyroscopes. We called these two repeating waveforms the systolic peak 
velocity (SPV) and the diastolic peak velocity (DPV), respectively. As is visible from Fig. 5A, the SPV point occurs 
approximately at the time of systolic myocardial velocity (Sa) point in TDI, while the timing of DPV coincides 
approximately with the early diastolic velocity (e′ or Ea) in TDI.

The time intervals from ECG-Q wave to GCG SPV/DPV waves and ECG-Q to Sa/Ea waves were measured 
for the considered 9 healthy subjects (see Table 2). Figure 5B shows statistical analysis for the these time intervals. 
Linear correlation of r2 = 0.88 and agreement of (upper and lower LoA22, 45: ms and [−17, −27] ms, respectively) 
were achieved. Clinically Sa and Ea are important, as Sa is a measure of longitudinal systolic function and is cor-
related with EF and peak dP/dt, while Ea is a marker of diastolic function.

In addition to the tissue velocity, we also assessed the myocardium deformation by measuring global speckle 
tracking 3D strain, which is the fractional change in length of the myocardium either in radial, longitudinal or 
circumferential dimension. Strain is a function of position, that is, the integral of velocity, and therefore we com-
pared the strain measurements to the integral of the GCG y-axis signal, which we call here angular displacement. 
Figure 6A shows tissue velocity, that is longitudinal rate of tissue changes (upper sub-part), and corresponding 
myocardial strain curve (leftmost bottom and right side sub-parts), obtained by speckle tracking. Figure 6B shows 
the electromechanical delay from ECG Q-wave to the maximum global longitudinal, circumferential, area, and 
radial strains (middle sub-part) and in GCG from Q to the maximal angular displacement (bottom sub-part). 
The double arrows in this figure show that the time from ECG onset Q to the maximal strain approximately coin-
cides with the time from ECG onset Q to maximal GCG angular displacement in y-axis. The average Q-maximal 
strain and Q-maximal angular displacement were 367 ± 32.2 ms and 371 ± 31.9, respectively. Moreover, Fig. 6C 
shows linear correlation and agreement between these timings obtained with 3D speckle tracking strain and GCG 
displacement curves, showing that maximal angular displacement points may be useful for estimating the myo-
cardial mechanical dispersion. This is a possible application for GCG, as beat-by-beat evaluation of the electro-
mechanical delay with GCG may bring new insights into the assessment of myocardial function. Measurements 
of mechanical dispersion can yield significant information about the risk of arrhythmia specifically with post 
myocardial infarction patients46.

Visual Comparison of GCG and SCG. Thoracic vibrations in three-dimensional space consists of trans-
lation and rotation in three orthogonal directions. Translational quantities such as linear velocity and acceler-
ation describe linear motions and are measured by for example an accelerometer sensor, while, as proposed 
in this study, rotational quantities such as angular displacement, angular velocity, and angular acceleration can 
be measured by a gyroscope sensor. Chest-accelerometry, also known as seismocardiography, is determined to 
generate a signal that is indicative of linear thoracic vibrations in response to heart’s contraction and the ejection 
of blood from the ventricles into the vascular tree15, whereas chest gyrocardiography that comprises a sensor of 
angular motion indicates rotational precordial movement or vibration on the chest in response to myocardium 
movements.

We mainly considered waveforms characterized by several peaks and valleys, reflecting certain cardiophys-
iological events of the beating heart, on SCG amplitude of the dorso “ventral component (z-axis) and GCG 
amplitude of head-to-foot component (y-axis) in order to evaluate linear acceleration and rotational velocity 
vector trajectories during the heart cycle. Nevertheless, it is likely that other physiological information could be 
extracted also from the analysis of other GCG-SCG components. Our experience with GCG39, 40, 47, 48, has shown 

Figure 5. Sa and Ea wave evaluations with TDI and GCG. Qualitative comparison between the TDI Sa and Ea 
waves and corresponding SPV and DPV in typical GCG y- and z-axis waves (A). Quantitative evaluation of time 
intervals between Q-Sa/Ea versus Q-SPV/DPV waves (B).
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that gyrocardiography is less sensitive than seismocardiography to intra-subject and inter-subject variability in 
the morphology in cardiac signals. Figure 7A represents an example of 6-axis motion sensing using a 3-axis accel-
erometer and a 3-axis gyroscope. As shown, accelerometer-based measurements in all axes contain more noise as 
compared to the corresponding filtered GCG signals. Further, visual evaluation of waveforms in Fig. 7B implies 
that GCG is notably tolerant to inter-subject variability as sorted SCG-GCG signals — in terms of signal quality 
(top-down: good, medium, low, and very low) in four different subjects — indicate that GCG stays stationary and 
uniform (see insets a–d) while it is hardly possible to distinguish underlying waveforms in the very low quality 
SCG (e.g. see the inset d in Fig. 7B). Robustness against intra- and interpersonal variation is an advantage of GCG 
which makes it potentially useful for wearable cardiac monitoring.

Discussion
Our major contributions in this work are the waveform annotation of a cardiac signal measured unobtrusively 
using a gyroscope, and the use of such signal for the estimation of the timing of maximal tissue velocity and strain 

Figure 6. Myocardium tissue velocity, displacement, and strain analysis using TDI and corresponding GCG 
based angular rates (y-axis). Tissue velocity and displacement using TDI and 3D speckle tracking strain in 
longitudinal, circumferential and radial directions (A). Electromechanical delays measured by TDI and GCG 
(B). Relationship between the GCG and TDI electromechanical delays (C).

Figure 7. Visual comparison of GCG and SCG signals. Evaluation of signal quality in typical tri-axial SCG and 
GCG waveforms (A). Intersubject variability comparison for GCG against SCG (B).
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of the myocardium measured with echocardiography. Our investigations show that the proposed method, GCG, 
can provide useful information related to the mechanical performance of the heart.

Automatic segmentation and delineation of the GCG signals depends on the reliable detection of heartbeats. 
We developed an automated heart beat detection based on Hilbert transform and provided a primary wave-
form annotation algorithm for beat-to-beat assessment of cardiac time intervals and estimation of STI related 
hemodynamic variables in GCG. For further details on the implementation and analysis of the segmentation 
and waveform annotation, readers can refer to the supplementary material. GCG allows continuous or frequent 
heart monitoring for the estimation of hemodynamic variables and can be used for heart arrhythmia detection. 
For example, in ref. 48 we have presented a method for automated detection of atrial fibrillation that is based on 
the estimation of the variation of the timings and amplitudes of GCG heartbeats. On the other hand, accurate 
and reliable PEP estimation is important since it allows to assess myocardial contractility affected by the cardiac 
preload and afterload. This index is relatively independent from the vagal drive and the heart rate. In patients with 
left ventricular failure, PEP increases because of the low contractility caused by the myocardial dysfunction19, 43, 44. 
LVET is also an important index of contractility, which unlike PEP, is influenced by the heart rate43.

Clinical value of SCG- and GCG-based tissue velocity measurement using multi-dimensional motion sensing 
has been previously addressed in refs 31, 48 and 49. For example, it has been shown that using machine learning 
and pattern recognition techniques irregular heartbeat (arrhythmia) as well as abnormality in mechanical perfor-
mance of the myocardium (as a result of ischemic diseases) can be recognized48, 49. Namely, 6-axis motion sensing 
using joint multi-axial accelerometer and gyroscope sensors, based on incorporated IMUs either in smart devices 
sensors or in customized biomedical monitoring devices, can yield significant mechanical information – in time 
and frequency domains – of the heart function not obtainable by ECG alone.

Due to the potential advantages of personalized health monitoring systems, a growing number of mobile/
wearable devices would benefit from reliable monitoring of the heart. A personal smart monitoring platform can 
assess the health risks by early detection of the cardiovascular disorders. Recent advances in the development of 
electromechanical sensors have resurged mechanocardiography techniques for clinical and non-clinical consider-
ations. For instance, MEMS gyroscope and accelerometer can be either embedded into a monitoring patch device 
for long term usage50–52, or be employed from smart devices. These sensors are not subjected to intervention 
from electrical monitoring or implantable stimulating signals generated by ECG, pacemakers, and cardioverter 
defibrillators and therefore may be used for wearable continuous cardiac function monitoring in the future53–55.

The main limitation of this study is that only nine healthy subjects were examined; this effects the statisti-
cal power of our outcomes. However, the results are promising, and warrant subsequent measurements and 
analysis. A smaller problem with the experimental setup was that the movements of the ultrasound probe 
generated artefacts in the GCG signal. Moreover, GCG and echocardiography signals were synchronized 
using an external clock, which yields some small random delay between the signals. The TDI and 3D speckle 
tracking measurements were performed with an average frame rate of 106 ± 21 fps (frames per second) and 
40 ± 10 fps, meaning that each frame contains information over 9.5 ms and 25 ms, respectively. It should be 
noted that in most of the cases considered in this work, the calculated RMSE values fall within the duration 
of a single frame.

A research direction for future is to develop advanced algorithms for automatic annotation of the wearable 
GCG signal using signal processing and machine learning approaches. Also, the potential of GCG for automated 
cardiac disease diagnostics will be considered. Sensor fusion algorithms using both SCG and GCG signals, and 
their clinical applications, will also be investigated in future studies. We should point out that although the meas-
urements were performed concurrently using a 3-axis accelerometer and a 3-axis gyroscope, in this paper we 
focus on the novel properties of the gyrocardiograph. Nevertheless, we briefly performed primary comparisons 
on differences and similarities between SCG and GCG.

In conclusion, in this paper we have presented a new cardiac monitoring technique called gyrocardiography 
which is based upon a tri-axial gyroscope sensor and measures angular velocities of the chest as a response to 
the rotation of the heart. As shown in this paper, a gyroscope can accurately detect very small angular displace-
ments with high temporal resolution, and thereby it is capable of revealing precordial micro-vibrations caused 
by myocardial motions. Our observations indicated that the morphology of the GCG signal is reproducible 
with different gyroscopes. Accordingly, we explored the feasibility of GCG waveform annotation on underly-
ing systolic and diastolic repeating patterns and indicated that tri-axial GCG provides reliable fiducial points 
for cardiac events. Complementary statistical evaluations then revealed that the GCG signal is able to give 
reliable information on cardiac time interval measurements such as systolic time intervals (STI) and diastolic 
time intervals (DTI). STIs including left ventricular ejection time and pre-ejection period can be measured by 
detecting particular indicative mechanical cardiac events, for example, instants of MC, AO, MO, and AC in 
GCG signal. Moreover, newly-identified GCG points, i.e. SPV and DPV, are indicative of systolic myocardial 
velocity and early diastolic velocity (as research showed good temporal correlations between GCG and US 
velocity measurements) and can potentially provide functional information related to systolic and diastolic 
activities. We also indicated that the time from ECG onset Q to the maximal TDI strain is correlated to the 
time interval from ECG onset Q to maximal point of GCG angular displacement. This electromechanical 
delay may bring new insights into the assessment of myocardial function as its variation, known as myocardial 
mechanical dispersion, can potentially help in detection of arrhythmias and myocardial infarction46. Therefore, 
wearable/mobile GCG as a promising mechanical cardiac monitoring tool can be used in quantification of 
beat-by-beat dynamics of cardiac time intervals and can potentially represent information related to the hemo-
dynamic variables and myocardial contractility.
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