
Analysing and Modelling the On-chip Traffic of
Parallel Applications

Thomas Canhao Xu, Jonne Pohjankukka and Ville Leppänen
Department of Information Technology, University of Turku, Turku, Finland

canxu@utu.fi

Abstract—In this paper, we investigate the traffic character-
istics of parallel and high performance computing applications.
Parallel applications that utilize multiple processing cores are
widespread nowadays due to the trend of multicore processors.
However the design paradigm of traditional sequential execution
and concurrent execution can vary significantly. Therefore the
estimation and prediction approaches used in conventional soft-
ware can be limited for parallel applications. The communication
among different nodes in a multicore system should be analysed
and categorized in order to improve the accuracy of system
simulation. We study several parallel applications running on
a full system simulation environment. The communication traces
among different nodes are collected and analysed. We discuss the
detailed characteristics of these applications. The applications
are grouped into different categories depending on several
parallel programming paradigms. We apply power-law model
with maximum likelihood estimation, Gaussian mixture model,
as well as the polynomial model for fitting the trace data. A
generic synthetic traffic model is proposed based on the results.
Experiments show the proposed model can be used to evaluate
the performance of parallel systems more accurately than by
other synthetic traffic models.

I. INTRODUCTION AND RELATED WORK

Parallel applications are more and more common nowadays
due to the widely utilization of multicore processors. In fact
the number of cores integrated on a multicore chip is increas-
ing rapidly. It is hard to integrate multicore processors into
smartphones a decade ago, however today smart devices such
as phones and tablets are equipped with 8-core or even 10-core
processors [14]. To utilize the processing power of multiple
cores, it is critical to design an efficient parallel software
system. According to Amdahl’s law [21], theoretically the
speedup of executing a parallel program in a multiprocessor
environment depends on the portion of code that can be
parallelized. In real world, there are still several problems to be
addressed: first, the percentage of parallel codes in a program
differs depending on the problem to be solved; second, there
are other overheads and bottlenecks from the system such as
core-core communication. A parallel program can generate
huge amount of traffic to exchange and synchronize data,
causing performance bottlenecks. Therefore high bandwidth
scalable on-chip interconnection networks, such as fat tree,
mesh and torus are proposed for massive scalable multicore
processors with tens or even hundreds of cores [8] [28].

In a mesh-based multicore processor, the computational
resources are connected by a general communication infras-
tructure [29]. Figure 1 illustrates a typical processor with

4×4 mesh network, where 16 Processing Elements (PEs) are
connected by Routers (R) and related links. The processor
cores, related L1 and L2 caches, and Network Interfaces (NIs)
are integrated in the PE. Communication among different PEs
are performed by transmitting data packets. The scalability
and throughput of the interconnect are improved compared
with conventional bus-based systems, since the interconnect
can process multiple transactions simultaneously. Furthermore
the modular design provides better expandability. Commercial
multicore processors consisting up to 72 cores on a single chip
are available with 8×9 mesh network [24].

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

n12 n13 n14 n15

n8 n9 n10 n11

n4 n5 n6 n7

n0 n1 n2 n3

NICore/L1$

L2$

Fig. 1: A multicore processor with 4×4 mesh.

To estimate and predict the performance of parallel appli-
cations and on-chip networks, a simulation environment is
usually used with different traffic configurations. The traffic
pattern can be synthetic which represents an abstract model
of transmitted data packets among nodes, or realistic which
follows actual applications running on the system. Obviously
realistic traffic patterns from parallel applications are more
meaningful, however the traffic pattern for different applica-
tions can vary significantly [26] [27], making the evaluation
process more challenging. Several traffic suites and models
are proposed by various research groups [17] [11] [3] [3].
Specific traffic models are extracted from multimedia and
signal processing tasks, where tasks are represented by a set
of task graphs including nodes, edges and weights [17] [11].
However it can be difficult to reflect the performance of the
multicore processor since applications are usually executed

with processes and threads, and thus have different communi-
cation pattern compared with task graph. Rent’s rule is used
to characterise the traffic behaviour of parallel applications. A
model based on Rent’s rule was proposed to predict NoC traf-
fic locality and the distribution of communication probability
[3].

Several papers analysed the traffic model based on empirical
application data [30] [23] [2] [6] [3] [1]. For example full
system simulation is used to gather traces in [23]. The model
considers both spatial and temporal characteristic of the traffic.
The paper also proposed a process of generating synthetic
traces based on the application traffic. The authors conducted
experiments based on several system configurations: 4-core
TRIPS processor, 16-core traditional processor and 16-core
cache coherent processor (4×4 mesh). The previous research
is extended with 7×7 mesh network [2]. However both pro-
cessors in the two researches were based on the MSI cache
coherent protocol which is rarely used currently. In [1], the
authors extended the previous research with more advanced
MOESI protocol, however only a 16-core processor is simu-
lated. Studies in [30] investigated 6 parallel applications with a
64-core processor, the traffic was categorized into 2 groups and
a power-law model was proposed with different parameters.
Another paper proposed a statistical model based on quantum-
leap [6], the method can account for non-stationarity observed
in packet arrival processes. The approach is claimed to have
advantages in estimating the probability of missing deadlines
in packets. In this paper, we first investigate several parallel
applications which are widely used. The traffic patterns of
these applications are analysed and discussed. We discover
similarities among the application traffic traces. We propose
mathematical models based on the analysis of traces.

II. MOTIVATION

Synthetic traffic models include uniform random, transpose,
bit-complement, bit-reverse and hotspot etc. [8]. Here we
discuss a widely used pattern: the uniform random traffic,
in which each node generates packets in equally random
possibility with random destinations. Therefore the source
and destination nodes in a packet are random and uniform.
Figure 2 illustrates the results of uniform random traffic with
1M packets for an 8×8 mesh. It is obvious that the number of
packets injected to the network for all 64 nodes are basically
the same, which is around 1.5625% (1/64). Similarly the
cumulative sum of node injection percentage is linear. On the
other hand, the distribution of Manhattan Distances (MDs)
makes the traffic model far from the real application as well.
We calculate the average Manhattan Distance (MD) of all
source-destination pairs is 5.2470.

Two aspects must be considered for a traffic pattern: spatial,
which represents the location of the source and destination
nodes; and temporal, which represents the interval of packets.
Theoretically, both spatial and temporal properties can be mod-
elled by using synthetic patterns. However the variations of the
two properties must be captured to fit the actual applications.
Previous researches have focused on average injection rate of

nodes, Gaussian-like distribution for injection rates of nodes,
the average hop count of packets, or the burstiness of the traffic
[23] [2] [6] [1]. While our research tries to give a generic
model based on the average value and distribution of spatial
and temporal attributes.

 0

 1

 2

 3

 4

 5

 10 20 30 40 50 60
 0

 20

 40

 60

 80

 100
Node injection percentage

Cumulative

(a) UR Injection Rate

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14
 0

 20

 40

 60

 80

 100

Average MD = 5.2470

Percentage of MD
Cumulative

(b) UR MDs

Fig. 2: (a), Traffic injection percentage (left Y-axis) and cumu-
lative percentage (right Y-Axis) for 64 nodes (X-axis) with the
uniform random (UR) traffic. (b), Percentage (left Y-axis) and
cumulative percentage (right Y-axis) of MDs between sources
and destinations of packets (X-axis) with the UR traffic.

III. DATA ANALYSIS AND PARALLEL PROGRAMMING
PARADIGMS

A. Data Analysis

The traffic patterns are collected based on trace data of
parallel programs running on a full system simulator [12] [13].
We configure a multicore processor with 64 UltraSPARC III+
cores running at 2GHz (8×8 mesh). Each node in the mesh
consists of a processor core and shared caches. The private
L1 cache is split into instruction and data cache, each 16KB
with 3-cycle access delay. The unified shared L2 cache is
split into 64 banks (1 bank per node), each 256KB with 6-
cycle access delay. The simulated memory/cache architecture
mimics static non-uniform cache architecture, where MOESI
cache coherence protocol is implemented. We execute widely-
used parallel applications from SPLASH-2 [25] and PARSEC
[4] with 64 threads on Solaris 9 with 4GB memory.

Figure 3 illustrates the detailed traffic profiles in terms of
transmitted packets from different nodes over the execution
time of applications. Obviously the traffic of real-world paral-
lel applications are different from the uniform random traffic.
For example, it can be seen that a small portion of nodes gen-
erated significant amount of traffic. Besides, regular patterns,
as well as traffic spikes can be observed from the traffic result
of Radix Sort (as well as Barnes − Hut, Raytrace and
Water, not illustrated due to page limitations). On the other
hand, applications such as FFT , FMM , LU and Swaptions
did not show significant regular nor hot-spot traffic. The
executed cycles and transmitted packets of applications and
other experimental results are shown in Table I. In terms of
PPC, it can be seen that the applications with significant
hot-spot and regular traffic have lower packet injection rates
(0.1024 for Radix Sort to 0.1561 for Raytrace, average
0.1309) than the other 4 applications (0.2197 for FFT to
0.5850 for Swaptions, average 0.3754).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Time

 0
 10

 20
 30

 40
 50

 60

Node ID

 0

 20000
 40000
 60000
 80000

 100000
 120000
 140000

Packets

(a) Radix Sort

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Time

 0
 10

 20
 30

 40
 50

 60

Node ID

 0

 5000

 10000

 15000

 20000

 25000

 30000

Packets

(b) LU Matrix Decomposition (LU)

Fig. 3: Injected packets (Z-axis) for 64 nodes (X-axis) of two applications. The percentage of executed cycles/times is shown
in Y-axis. The traffic figures of other six applications are not illustrated due to page limitations.

TABLE I: Profiles of different applications. TI%/4 and TI%/60 mean total injection percentage of top 4 and other 60 nodes
respectively. PPC stands for Packet Per Cycle.

Application Cycles Packets PPC Category Injection % of Top 4 nodes TI%/4, TI%/60
Barnes-Hut 1146.7M 160.5M 0.1399 1 14.1%, 12.1%, 5.3%, 2.8% 34.3%, 65.7%
Radix Sort 1064.9M 109.1M 0.1024 1 23.5%, 13.0%, 5.0%, 2.2% 43.7%, 56.3%
Raytrace 399.5M 62.4M 0.1561 1 16.4%, 10.6%, 3.4%, 2.9% 33.3%, 66.7%

Water NSquared 687.9M 86.3M 0.1254 1 19.9%, 12.0%, 3.0%, 2.4% 37.3%, 62.7%
Fast Fourier Transform (FFT) 26.2M 5.7M 0.2197 2 9.8%, 8.2%, 3.6%, 3.4% 25.0%, 75.0%

Fast Multipole Method (FMM) 168.7M 57.4M 0.3402 2 7.6%, 4.2%, 2.7%, 2.7% 17.2%, 82.8%
LU Matrix Decomposition (LU) 98.1M 35.0M 0.3569 2 6.3%, 3.7%, 3.7%, 3.6% 17.3%, 82.7%

Swaptions 184.6M 108.0M 0.5850 2 5.8%, 4.4%, 2.8%, 2.6% 15.6%, 84.4%

 0

 2

 4

 6

 8

 10

 12

 14

 10 20 30 40 50 60
 0

 20

 40

 60

 80

 100
Node injection percentage

Cumulative

(a) Barnes-Hut

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60
 0

 20

 40

 60

 80

 100
Node injection percentage

Cumulative

(b) Radix Sort

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 10 20 30 40 50 60
 0

 20

 40

 60

 80

 100
Node injection percentage

Cumulative

(c) Raytrace

 0

 5

 10

 15

 20

 10 20 30 40 50 60
 0

 20

 40

 60

 80

 100
Node injection percentage

Cumulative

(d) Water

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60
 0

 20

 40

 60

 80

 100
Node injection percentage

Cumulative

(e) Fast Fourier Transform

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60
 0

 20

 40

 60

 80

 100
Node injection percentage

Cumulative

(f) Fast Multipole Method

 0

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50 60
 0

 20

 40

 60

 80

 100
Node injection percentage

Cumulative

(g) LU Matrix Decomposition

 0

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50 60
 0

 20

 40

 60

 80

 100
Node injection percentage

Cumulative

(h) Swaptions

Fig. 4: Sorted packet injection percentage (left Y-axis) and accumulated percentage (right Y-axis) for 64 nodes (X-axis) of
several applications.

The percentages of injected packets by different nodes are
demonstrated in Figure 4 and Table I. For example in Radix
Sort, one node generated 23.5% of all traffic, where the
top 4 nodes out of 64 generated 43.7% of all packets. The
phenomenon is similar for other three applications as well
(Barnes−Hut, Raytrace and Water): 33.3% to 43.7% of

traffic are concentrated in 4 nodes, while the remaining 60
nodes injected relatively small amount of traffic on average.
The percentage of traffic for top 4 nodes is lower in other
4 applications: the total traffic from top 4 nodes contributed
15.6% to 25% of all traffic, in which the node with top injec-
tion rate generated 9.8% to 5.8% packets. The detailed node

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14
 0

 20

 40

 60

 80

 100

Average MD = 5.5505

Percentage of MD
Cumulative

(a) Barnes-Hut

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14
 0

 20

 40

 60

 80

 100

Average MD = 5.8074

Percentage of MD
Cumulative

(b) Radix Sort

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14
 0

 20

 40

 60

 80

 100

Average MD = 5.5923

Percentage of MD
Cumulative

(c) Raytrace

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14
 0

 20

 40

 60

 80

 100

Average MD = 5.8256

Percentage of MD
Cumulative

(d) Water

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14
 0

 20

 40

 60

 80

 100

Average MD = 5.2658

Percentage of MD
Cumulative

(e) Fast Fourier Transform

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14
 0

 20

 40

 60

 80

 100

Average MD = 5.4908

Percentage of MD
Cumulative

(f) Fast Multipole Method

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14
 0

 20

 40

 60

 80

 100

Average MD = 5.3991

Percentage of MD
Cumulative

(g) LU Matrix Decomposition

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14
 0

 20

 40

 60

 80

 100

Average MD = 5.3799

Percentage of MD
Cumulative

(h) Swaptions

Fig. 5: Percentage (left Y-axis) and accumulated percentage (right Y-axis) of MDs between source nodes and destination nodes
of packets (X-axis).

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 0 50 100 150 200

(a) Barnes-Hut

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 0 50 100 150 200

(b) Radix Sort

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 0 50 100 150 200

(c) Raytrace

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 0 50 100 150 200

(d) Water

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 0 50 100 150 200

(e) Fast Fourier Transform

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 0 50 100 150 200

(f) Fast Multipole Method

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 0 50 100 150 200

(g) LU Matrix Decomposition

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 0 50 100 150 200

(h) Swaptions

Fig. 6: Interval (cycles) between packets (X-axis), and frequency of the interval (Y-axis).

injection rates and accumulated percentages are illustrated in
Figure 4. It is noteworthy that the data/curve in the figure is
similar to the power laws [16], where most of the effects come
from a small portion of the causes. It can also be noticed that
some of the curves are steeper than others.

The distributions of MDs between source and destination
nodes in all packets are illustrated in Figure 5. The curve
of accumulated values and average MD of all node pairs in
all packets are also shown in the figure. Overall, compared
with UR traffic, there are more packets with low (e.g. 0 to 1
hop) and high (e.g. 7 to 14 hops) MDs, while the packets

with medium MDs are less than that in UR. Notice that
in terms of MD distribution of packets, UR traffic is the
closest to the actual applications, among other synthetic traffic
patterns such as transpose, bit-complement, bit-reverse and
nearest neighbour [3]. Furthermore, in terms of average MD,
all applications have higher values than UR traffic. We notice
that the aforementioned four applications with significant hot-
spot traffic also have higher average packet MD (5.55 to 5.82),
while the metric is lower for other applications (5.26 to 5.49).

Figure 6 shows the distribution of interval of packets. Most
packets are injected to the system with a small interval, e.g.

less than 10 cycles between two packets, while long intervals
are very rare in practise. We also notice the distribution of
packet interval is similar to the power law. The aforementioned
characteristics of applications can be explained by different
programming models.

B. Parallel Programming Paradigms

The difference of on-chip traffic pattern can be affected by
hardware such as cache coherence protocol, cache size and
cache/memory architecture. On the other hand the software
aspect can play a more important role. For instance, a parallel
application usually applies a certain kind of programming
paradigm, i.e. a class of methods/algorithms that have similar
control structures [20]. Different programming paradigms can
produce different traffic profiles. There are several common
parallel programming paradigms including: Single Program
Multiple Data (SPMD), Master-Slave (Process Farm), Divide
and Conquer, Phase Parallel, Data Pipelining and Hybrids.

The choice of paradigm is usually determined by the given
problem, as well as the limitations of hardware resources.
Multiple paradigms can be used together in an application.
For instance, the Master−Slave model consists of a master
process and several slave processes [15]. The master process is
responsible for splitting the problem into smaller pieces, and
allocating these to slave processes. Result or part of the result
are collected by the master process. The traffic can exhibit in
several phases if the results are collected in an interval [18].
Divide and Conquer is similar as Master − Slave, where
the problem is decomposed dynamically. Parallel applications
such as image, signal processing and graphic rendering utilize
Master−Slave, Divide and Conquer and Phase Parallel
models. On the other hand, SPMD paradigm achieves data
parallelism by using the same code of each process on dif-
ferent data [10]. Certain physical and mathematical problems
have regular data structure that can be distributed to the
processors uniformly. Obviously in most cases, the problem
distributes to the system more evenly in SPMD compared
with other paradigms such as Master − Slave. We classify
the applications into two categories based on the program-
ming paradigms: (1) Master-Slave, Divide and Conquer, Phase
Parallel paradigms; relatively significant hot-spot and/or phase
(bursty) traffic; relatively low packet per cycle; higher average
MD than UR traffic and category 2; distance between packets
is generally shorter than category 2; (2) SPMD paradigm;
relatively insignificant hot-spot and/or phase (bursty) traffic;
relatively high packet per cycle; higher average MD than UR
traffic, but lower than category 1; distance between packets is
longer than category 1. Notice that the classification is general
and non-specific since the border between two categories
can be fuzzy. Moreover the categorization cannot cover all
applications.

IV. GENERIC SYNTHETIC TRAFFIC MODEL

In this section, we analyse the traffic data of applications by
using several mathematical models. A generic traffic genera-
tion algorithm based on the models is proposed and evaluated.

A. Power-law Fitting Using Maximum Likelihood Estimation
and Gaussian Mixture Model

Many natural phenomena exhibit power-law distributed be-
havior. In this section our goal is to find the most likely
power-law and Gaussian Mixture Model (GMM, [5]) distribu-
tions that could give rise to the packet injection percentages
(Figure 4) and interval/frequency distribution (Figure 6) of
category 1 and 2 applications. In [30] the Least-Squares (LS)
fitting is used for finding the power-law model of the data. LS
is a common method for analysing data which seems to follow
power-law distribution but it is not always the optimal choice.
The LS method can produce substantially inaccurate estimates
of parameters for power-law distributions. Even though the LS
can have a seemingly good fit to the data in many cases the
solutions are not normalizable and hence they can not occur
in nature [7]. In this paper we will use the methods described
in [7] for finding the most likely power-law distribution. In
addition, we will also calculate the goodness-of-fit of our
power-law and GMM models using the Kolmogorov-Smirnov
(KS, [7]) statistic.

A discrete random variable X obeys a power-law if it is
drawn from a probability distribution:

p(x) = Pr(X = x) ∝ x−α, (1)

where α is a constant called the scaling parameter of
the power law distribution. The process of fitting empirical
distributions into power-law distribution involves solving the
scaling parameter α and some normalization constant. We will
use the maximum-likelihood estimation (MLE, [5]) for esti-
mating the scaling parameter α of the most likely power-law
distribution that generated the data. For a set of n independent
and identically distributed data points X = {x1, x2, ..., xn} the
MLE is defined as:

p(X | θ) =
n∏
i=1

p(xi | θ) ≡ L(θ), (2)

where L(θ) is the likelihood function and θ is the param-
eter(s) we want to solve by maximizing L(θ). Usually it is
practically more convenient to work with the negative of the
logarithm of L(θ):

E(θ) = − lnL(θ) = −
n∑
i=1

ln p(xi | θ) (3)

and then minimize this function.
For a discrete random variable X the power-law distribution

is defined as:

p(x) = Pr(X = x) =
x−α

ζ(α, xmin)
, (4)

where

ζ(α, xmin) =

∞∑
m=0

(m+ xmin)
−α (5)

is the Hurwitz zeta function. The variable xmin > 0 denotes
the lower bound on the power-law behavior of the random
variable X . In our calculations we assumed that xmin = 1. The
cumulative distribution function CDF of power-law distributed
discrete random variable X , denoted by P (x) is defined as:

P (x) = Pr(X ≥ x) = ζ(α, x)

ζ(α, xmin)
. (6)

The MLE estimate α̂ for the scaling parameter α in Equation
4 is given by the solution to the transcendental equation

ζ ′(α̂, xmin)

ζ(α̂, xmin)
= − 1

n

n∑
i=1

lnxi, (7)

where the prime denotes differentiation with respect to the first
argument and n denotes the number of data points. In practice
the solution to Equation 7 is solved using numerical methods.
In our calculations we used the bisection method also known
as interval halving method. An estimate of the standard error
for the scaling parameter α given by solution α̂ to Equation
7 is given by:

σ =
1√

n

[
ζ′′(α̂,xmin)
ζ(α̂,xmin)

−
(
ζ′(α̂,xmin)
ζ(α̂,xmin)

)2] . (8)

The GMM for a random variable X is defined as the
weighted average of Gaussian probability density functions.
Explicitly, we define the GMM model by:

p(x) =

k∑
i=1

P (θi)p(x | θi), (9)

where p(x) is the density value of the observed value x,
P (θi) is the prior probability of ith Gaussian component and
p(x | θi) is the density value of ith component for value
x. For the prior probabilities of the mixture components we
have

∑N
i=1 P (θi) = 1 and 0 ≤ P (θi) ≤ 1. When X is a

one-dimensional variable the Gaussian density functions in
Equation 9 have the form:

p(x | θi) = p(x | µi, σ2
i) =

1√
2πσ2

e−
(x−µi)

2

2σ2 (10)

The MLE estimate for the parameters of the GMM
model is usually solved by using iterative method called
the expectation-maximization (EM) algorithm [9]. The EM
iterates by alternating between performing an expectation
(E) step, which creates a function for the expectation of
the log-likelihood evaluated using the current estimate
θ̂ = {θ̂1, ..., θ̂N} for the parameters θ = {θ1, ..., θN},
and a maximization (M) step, which computes parameters
maximizing the expected log-likelihood found on the E step.

Figure 7 illustrates the MLE power-law and GMM fits
for the packet injection percentages (Figure 4) and inter-
val/frequency distribution (Figure 6) of category 1 and 2
applications. The number of mixture components k in the

GMM models were selected by using the Bayesian information
criterion (BIC, [22]). From the results one can notice that
Figures 7a and 7d data sets tends follow more power-law
distribution than Figure 7b and Figure 7c data sets. Figure 7d
data set shows the best fit to the power-law distribution from
the four data sets.

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Node ID

Pr
(N

od
e

ID
 =

 x
)

Observed
MLE Power−law distribution fit, = 1.3761
Gaussian mixture model, k = 62

(a)

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Node ID

Pr
(N

od
e

ID
 =

 x
)

Observed
MLE Power−law distribution fit, = 1.3149
Gaussian mixture model, k = 29

(b)

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Distance

Pr
(D

is
ta

nc
e

=
x

)

Observed
MLE Power−law distribution fit, = 1.5082
Gaussian mixture model, k = 15

(c)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance

Pr
(D

is
ta

nc
e

=
x

)

Observed
MLE Power−law distribution fit, = 1.7898
Gaussian mixture model, k = 12

(d)

Fig. 7: (a) The MLE power-law distribution and GMM fits for
the packet injection percentages of the category 1 applications.
(b) The corresponding fits for category 2 applications. (c) in-
terval/frequency distribution fits of the category 1 applications.
(d) The corresponding fits for category 2 applications. For (c)
and (d) we only model intervals no more than 100 since larger
intervals are very rare and thus negligible. The standard error
for the MLE estimates of α was σ ≈ 10−4 for all data sets.

We conducted goodness-of-fit tests for the MLE power-law
and GMM models by using the KS statistic. The KS statistic
is defined as the maximum distance between CDFs of the
empirical data and the fitted model:

D = max
x≥xmin

|S(x)− P (x)| . (11)

This was implemented by the following steps as given in
[7]:

1) Calculate the MLE estimate α̂ and KS statistic for the
empirical data.

2) Sample ε−2/4 synthetic data sets, where ε is the maxi-
mum deviation from the real scaling parameter α.

3) Fit a power-law distribution and calculate the KS statistic
for each of the synthetic data sets.

4) Calculate the p-value which is defined as the fraction of
the time the KS statistic is larger than for the empirical
data.

The power-law hypothesis is rejected if p ≤ 0.1 [7]. For
the data sets we used ε = 0.01, which results in 2500

synthetic data sets. For data in Figures 7a, 7b and 7c the p-
value was less than 0.1 which means the rejection of power-
law distribution under the condition xmin = 1. For data in
Figure 7d the p-value turned to be very close to the approval
of the power-law hypothesis. The GMM models were also
evaluated using two-sample Kolmogorov-Smirnov tests which
also rejected the hypotheses that the data sets are generated
by GMM distributions. One can notice in the results that
the empirical data has the largest differences with power-law
model in the smallest xmin value ranges. This can be one of the
main reasons why the hypothesis tests rejected the power-law
models. This suggests that the data sets might have power-law
behavior with xmin > 1. In future work we will continue on
trying xmin > 1 values for the lower bound parameter.

B. Polynomial Fitting for the Distribution of MD

Polynomial fitting is a form of linear regression in which
the relationship between independent variable and dependent
variable is modelled as an M th degree polynomial. Our task
is to fit an M th-order polynomial to a set of N data points
by the technique of minimizing an error function. A single
variable M th-order polynomial is defined by:

y(x) = w0 + w1x+ ...+ wMx
M =

M∑
j=0

wjx
j , (12)

where x is the independent variable and the values w =
(w0, w1, ..., wM) are the weights of the polynomial we want
to solve.

In practical applications we usually have a
data set consisting from N data points, that is
D = {(x1, t1), (x2, t2), ..., (xN , tN)} where the ti-values are
the target values. Our goal is to find the set of weights w
such that the error function:

E =
1

2

N∑
i=1

(y(xi;w)− ti)2 , (13)

is minimized. In Equation 13 the term y(xi;w) denotes the
value of the polynomial in Equation 12 with a value xi and
weights w. It is easy to show by differentiation that the
Equation 13 is minimized by a solution to a set of linear
simultaneous equations [5].

TABLE II: Parameters of fitting results for 3 sets of data.

UR Category 1 Category 2
w0 1.5705e+00 3.0158e+00 1.9009e+00
w1 3.7587e+00 1.8555e+00 2.9341e+00
w2 4.4176e-01 6.4167e-01 6.0736e-01
w3 -2.3091e-01 -1.8430e-01 -2.2837e-01
w4 2.0786e-02 1.3166e-02 1.8824e-02
w5 -5.6823e-04 -2.8613e-04 -4.7985e-04

The results are shown in Table II. The real applications
demonstrate different fitting output compared with UR traffic.
We also notice the quality of the fitting result did not change
significantly beyond 5th-order polynomial.

C. Traffic Generation Algorithm and Evaluation

Here we propose a traffic generation algorithm for parallel
applications based on the aforementioned models of traces.
The algorithm identifies different application categories, and
the number of generated packets are determined beforehand.
For each packet P<Src,Dst,Cycle>, the source node Src and
destination node Dst are generated according to the GMM
(Figures 7a and 7b) and polynomial fitting (Table II). The
distance between two packets, i.e. Cycle, is calculated depend-
ing on the application category: GMM is applied for category
1 applications (Figure 7c), while MLE power-law model is
used for category 2 applications (Figures 7d). The process is
repeated until the desired number of packets are fulfilled.

We use the same simulation environment as in Section III-A.
Two metrics are evaluated in the experimentation. The average
link utilization ALU represents the number of packets trans-
ferred between system nodes per cycle. The average network
latency ANL is defined as the average number of cycles
required for transmitting all packets. We measure the two
metrics by using real applications (Baseline in the figure)
and synthetic traffic, including the traffic generated by the
proposed method (Proposed), UR, Hotspot, Rent [3] and
NED [19]. For Hotspot, two random nodes are selected with
each 10% (category 2) and 20% (category 1) of total traffic.
The Rent’s model is configured with p = 0.75. For NED the
parameter m is set to 1/8. The number of packets generated
for all the synthetic traffic is 50M, where the injection rates
of UR, Hotspot, Rent and NED are 13% for category 1
applications and 37% for category 2 applications (the average
value from Table I, notice the rates are for all the nodes). The
results are illustrated in Figure 8.

Fig. 8: Normalized ALU and ANL for different traffic models.

The experiments revealed that the proposed algorithm pro-
vided the most accurate results in terms of ANL and ALU for
both categories of applications (around 1% and 3% differences
for ANL and ALU respectively compared with Baseline).
The differences between Baseline for other algorithms are
much larger. The ALUs and ANLs for the four compared
algorithms are lower than that in Baseline. The main reason
is the lower average MD of traffic packets, the average packet
MDs of UR and Hotspot are about 10% lower compared
with Baseline. Even worse, for example in Rent, the traffic

is simulated according to the communication probability dis-
tribution of the Rent’s rule, where the 1-hop communication
accounted for over 60%, meaning that over 60% of Src-Dst
pairs are adjacent. The 2-hop communication is around 20% in
Rent. Similar exponential distribution is used in NED, where
adjacent and 2-hop communication still has a significant por-
tion. This is hardly the case for real applications. Application
traces shown the distribution of distances follows the Gaussian
distribution. Higher number of adjacent communication means
that the average hop count for the traffic would be lower, in
which two consequences can be observed: on the one hand the
ANL is reduced due to the shorter communication distance,
on the other hand the ALU is reduced due to the fewer active
links. Furthermore the metric of packet injection percentage
of nodes and packet intervals are mostly missing for the four
compared models, where the packets are injected with the
same average interval.

V. CONCLUSION

We analysed the traffic patterns of several parallel appli-
cations in this paper. An accurate traffic model for parallel
applications was proposed based on the detailed analysis of
trace data. The applications were categorized into two groups
based on the programming models. Mathematical analysis re-
vealed that the traffic profiles show power-law- and Gaussian-
like distributions. We applied power-law model with maximum
likelihood estimation, Gaussian mixture model, as well as the
polynomial model for fitting the trace data. Experiments were
conducted by using a simulator. Results shown that, compared
with four other traffic models, the proposed model generates
the most accurate network metrics.

REFERENCES

[1] Badr, M., Jerger, N.: Synfull: Synthetic traffic models capturing
cache coherent behaviour. In: Computer Architecture (ISCA), 2014
ACM/IEEE 41st International Symposium on. pp. 109–120 (June 2014)

[2] Bahn, J.H., Bagherzadeh, N.: A generic traffic model for on-chip
interconnection networks. Network on Chip Architectures p. 22 (2008)

[3] Bezerra, G.B., Forrest, S., Forrest, M., Davis, A., Zarkesh-Ha, P.: Mod-
eling noc traffic locality and energy consumption with rent’s communi-
cation probability distribution. In: Proceedings of the 12th ACM/IEEE
International Workshop on System Level Interconnect Prediction. pp.
3–8. SLIP ’10, ACM, New York, NY, USA (2010)

[4] Bienia, C., Kumar, S., Singh, J.P., Li, K.: The parsec benchmark suite:
characterization and architectural implications. In: Proceedings of the
17th international conference on Parallel architectures and compilation
techniques. pp. 72–81. PACT ’08, ACM, New York, NY, USA (2008)

[5] Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford Uni-
versity Press, Inc., New York, NY, USA (1995)

[6] Bogdan, P., Kas, M., Marculescu, R., Mutlu, O.: Quale: A quantum-leap
inspired model for non-stationary analysis of noc traffic in chip multi-
processors. In: Networks-on-Chip (NOCS), 2010 Fourth ACM/IEEE
International Symposium on. pp. 241–248 (May 2010)

[7] Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in
empirical data. SIAM Rev. 51(4), 661–703 (Nov 2009)

[8] Dally, W.J., Towles, B.: Principles and Practices of Interconnection
Networks. Morgan Kaufmann (2003)

[9] Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical
Society. Series B (Methodological) 39(1), 1–38 (1977)

[10] Lee, Y., Grover, V., Krashinsky, R., Stephenson, M., Keckler, S.,
Asanovic, K.: Exploring the design space of spmd divergence man-
agement on data-parallel architectures. In: Microarchitecture (MICRO),
2014 47th Annual IEEE/ACM International Symposium on. pp. 101–113
(Dec 2014)

[11] Liu, W., Xu, J., Wu, X., Ye, Y., Wang, X., Zhang, W., Nikdast, M., Wang,
Z.: A noc traffic suite based on real applications. In: VLSI (ISVLSI),
2011 IEEE Computer Society Annual Symposium on. pp. 66–71 (July
2011)

[12] Magnusson, P., Christensson, M., Eskilson, J., Forsgren, D., Hallberg,
G., Hogberg, J., Larsson, F., Moestedt, A., Werner, B.: Simics: A full
system simulation platform. Computer 35(2), 50–58 (February 2002)

[13] Martin, M.M., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M.,
Alameldeen, A.R., Moore, K.E., Hill, M.D., Wood, D.A.: Multifacet’s
general execution-driven multiprocessor simulator (gems) toolset. Com-
puter Architecture News (September 2005)

[14] Mediatek: Mediatek - true octa-core (January 2015),
http://event.mediatek.com/ en octacore/

[15] Mostaghim, S., Branke, J., Lewis, A., Schmeck, H.: Parallel multi-
objective optimization using master-slave model on heterogeneous re-
sources. In: Evolutionary Computation, 2008. CEC 2008. (IEEE World
Congress on Computational Intelligence). IEEE Congress on. pp. 1981–
1987 (June 2008)

[16] Newman, M.: Power laws, pareto distributions and zipf’s law. Contem-
porary Physics 46(5), 323–351 (2005)

[17] Pekkarinen, E., Lehtonen, L., Salminen, E., Hamalainen, T.: A set of
traffic models for network-on-chip benchmarking. In: System on Chip
(SoC), 2011 International Symposium on. pp. 78–81 (Oct 2011)

[18] Perelman, E., Polito, M., Bouguet, J.Y., Sampson, J., Calder, B., Du-
long, C.: Detecting phases in parallel applications on shared memory
architectures. In: Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International. pp. 10 pp.– (April 2006)

[19] Rahmani, A.M., Kamali, I., Lotfi-Kamran, P., Afzali-Kusha, A.,
Safari, S.: Negative exponential distribution traffic pattern for
power/performance analysis of network on chips. In: Proceedings of
the 2009 22Nd International Conference on VLSI Design. pp. 157–162.
VLSID ’09, IEEE Computer Society, Washington, DC, USA (2009)

[20] Rauber, T., Rnger, G.: Parallel Programming - for Multicore and Cluster
Systems. Springer (2010)

[21] Rodgers, D.P.: Improvements in multiprocessor system design.
SIGARCH Comput. Archit. News 13(3), 225–231 (Jun 1985)

[22] Schwarz, G.: Estimating the dimension of a model. Ann. Statist. 6(2),
461–464 (03 1978)

[23] Soteriou, V., Wang, H., Peh, L.S.: A statistical traffic model for on-
chip interconnection networks. In: Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, 2006. MASCOTS 2006.
14th IEEE International Symposium on. pp. 104–116 (Sept 2006)

[24] Tilera: Tile-gx processor family (January 2015),
http://www.tilera.com/products/processors/TILE-Gx Family

[25] Woo, S., Ohara, M., Torrie, E., Singh, J., Gupta, A.: The splash-
2 programs: characterization and methodological considerations. In:
Computer Architecture, 1995. Proceedings., 22nd Annual International
Symposium on. pp. 24–36 (1995)

[26] Xu, T., Liljeberg, P., Plosila, J., Tenhunen, H.: Evaluate and optimize
parallel barnes-hut algorithm for emerging many-core architectures. In:
High Performance Computing and Simulation (HPCS), 2013 Interna-
tional Conference on. pp. 421–428 (July 2013)

[27] Xu, T., Pahikkala, T., Airola, A., Liljeberg, P., Plosila, J., Salakoski, T.,
Tenhunen, H.: Implementation and analysis of block dense matrix de-
composition on network-on-chips. In: High Performance Computing and
Communication 2012 IEEE 9th International Conference on Embedded
Software and Systems (HPCC-ICESS), 2012 IEEE 14th International
Conference on. pp. 516–523 (June 2012)

[28] Xu, T.C., Liljeberg, P., Plosila, J., Tenhunen, H.: A high-efficiency low-
cost heterogeneous 3d network-on-chip design. In: Proceedings of the
Fifth International Workshop on Network on Chip Architectures. pp.
37–42. NoCArc ’12, ACM, New York, NY, USA (2012), http://doi.acm.
org/10.1145/2401716.2401725

[29] Xu, T.C., Liljeberg, P., Tenhunen, H.: An optimized network-on-chip
design for data parallel fft. Procedia Engineering 30(0), 311 – 318
(2012), international Conference on Communication Technology and
System Design 2011

[30] Xu, T.C., Pohjankukka, J., Nevalainen, P., Leppnen, V., Pahikkala,
T.: Parallel applications and on-chip traffic distributions: Observation,
implication and modelling. In: Proceedings of the 10th International
Conference on Software Engineering and Applications. pp. 443–449
(2015)

