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Supervised dimension reduction for time series is challenging as there may be temporal de-
pendence between the response y and the predictors x. Recently a time series version of sliced
inverse regression, TSIR, was suggested, which applies approximate joint diagonalization of
several supervised lagged covariance matrices to consider the temporal nature of the data.
In this paper we develop this concept further and propose a time series version of sliced
average variance estimation, TSAVE. As both TSIR and TSAVE have their own advantages
and disadvantages, we consider furthermore a hybrid version of TSIR and TSAVE. Based
on examples and simulations we demonstrate and evaluate the differences between the three
methods and show also that they are superior to apply their iid counterparts to when also
using lagged values of the explaining variables as predictors.
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1. Introduction

Linear supervised dimension reduction has a long tradition for independent and iden-
tically distributed (iid) observations with a rich literature reviewed for example in [1].
The idea is to find all linear combinations of a predictor vector x which are needed to
model a response y even when the true functional relationship between the response and
explaining variables is not known. In multivariate time series context with temporal de-
pendence, the goal is similarly to model a response time series value yt at t as a function
of the previous history of a stationary multivariate predictor time series (xt−j)j=1,2,....
Popular time series dimension reduction methods such as those based on (dynamic) fac-
tor models, reviewed for example in [2], are not supervised, and supervised dimension
reduction methods are still rare in the literature. Both Xia et al. [3] and Becker and Fried
[4] propose the use of standard supervised iid dimension reduction methods simply by
explaining a response series value yt with a vector of lagged predictor time series values
in xt−1, . . . ,xt−j . This may then increase the dimension of the problem dramatically and
at the same time reduces the sample size. Barbarino and Bura [5, 6] combine ideas from
factor models and standard iid supervised dimension reduction methods.
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Recently, Matilainen et al. [7] proposed a procedure that finds most relevant linear
combinations of the predictor series with their most relevant lags when modelling the
response series. The approach, called TSIR, is an extension of the sliced inverse regression
(SIR), introduced by Li [8], and is based on the approximate joint diagonalization of
the covariance matrices of conditional expected values E(xt|yt+j), j = 1, 2, . . . which
naturally consider the temporal nature of the data. Considering for example for a p-
variate explaining time series xt, k lags means to jointly approximately diagonalize k+ 1
p× p matrices while in approaches like [3] and [4] two p(k + 1)× p(k + 1) matrices need
to be simultaneously diagonalized.

In sliced average variance estimation (SAVE; Cook and Weisberg [9, 10]) for iid obser-
vations, one considers the variation of conditional covariance COV(x|y) rather than the
variation of the conditional expectation E(x|y) to detect better the cases of nonlinear
dependence. In this paper we suggest the similar use of COV(xt|yt+j), j = 1, 2, . . ., in a
time series context. This is a time series extension of SAVE, and is called here TSAVE.
As TSIR and TSAVE have their own specific drawbacks, a hybrid of TSIR and TSAVE,
denoted as TSSH, is also introduced. It can be seen as a weighted combination of TSIR
and TSAVE generalizing the hybrid in Zhu et al. [11] to the time series context.

One aim here is also to see whether in a time series context the number of slices and
the weight coefficient of the hybrid have similar preferred values as their iid counterparts.
This was also not investigated in [7] for TSIR and the number of slices was just assumed
to be the same as in the iid case. We will also investigate if these tuning parameters
depend much on the underlying stochastic processes.

The structure of the paper is as follows. We first recall SIR and SAVE for iid data. Then
we move to the time series context, where first TSIR is reviewed and then in Section
3.3 TSAVE and in Section 3.4 also the hybrid of TSIR and TSAVE are introduced.
Section 4 then includes examples and simulation studies. In Section 4.3 we conduct a
simulation study to find some guidelines to how many slices we need in practice to
estimate the matrices that we approximately jointly diagonalize. Then in Section 4.4
we have another simulation study to find the appropriate weights of TSIR and TSAVE
parts for method TSSH and show the hybrid can sometimes be more efficient than these
methods separately. Finally in 4.5 we show that also TSAVE is often better than TSIR
and that that both methods beat their iid counterparts applied to time series, such as
the method in [4].

2. Supervised dimension reduction for iid data

In this section we review iid supervised dimension reduction methods SIR, SAVE and
their hybrid version. We formulate the supervised dimension reduction problem as an
estimation problem in a blind source separation (BSS) model for the joint distribution
of the response variable y and the p-variate vector of observable explaining variables x.
The BSS model then assumes that

x = Ωz + µ, (1)

where the full rank p × p matrix Ω is called the mixing matrix and µ is the location

p-vector. The latent p-vector z can be partitioned as z =
(
z(1)>, z(2)>

)>
with the re-

spective dimensions k and p− k, and

(I1) E(z) = 0 and COV(z) = Ip and
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(I2) (y, z(1)>)>⊥⊥z(2).

Hence in this model z(1) carries all the information needed to model the response y and
z(2) can be considered as the noise part. Note that assumption (I2) made in this paper
for both SIR and SAVE is slightly stronger than those made in the original papers, i.e.

z(2)⊥⊥y|z(1),

E(z
(2)
t |z

(1)
t ) = 0 (a.s.) (for SIR) and

COV(z
(2)
t |z

(1)
t ) = Ip−k (a.s.) (for SAVE).

The assumption (I2) implies all these three assumptions and is needed in [12] to build
asymptotic and bootstrap tests for the true subspace dimension k in the SIR methodol-
ogy.

As there may be several partitions of z fulfilling (I1) and (I2), we choose the one with
the smallest k. The aim is to find a k × p unmixing matrix Γ such that Γx = z(1) up to
a pre-multiplication by a k × k orthogonal matrix. Note that the latent z(1) as stated in
our model has the same indeterminacy.

A direct consequence of assuming this model is the following.

Result 2.1 Let y denote the response and z have the properties as stated in (I1) and
(I2). Then

COV[E(z|y)] =

(
COV[E(z(1)|y)] 0

0 0

)
and

E[(Ip − COV(z|y))2] =

(
E[(Ik − COV(z(1)|y))2] 0

0 0

)
.

As in [13], x = Ωz + µ implies that there exists an orthogonal matrix U such that

z = U COV(x)−1/2(x− E(x)). (2)

Then it is shown in [7] that, based upon Result 2.1 (the first equation) and (2), one can
define an unmixing matrix in the sliced inverse regression (SIR) [8] using the following
steps.

Definition 2.2 The SIR functional ΓSIR(x; y) is defined as follows.

(1) Consider the standardized variable xst := COV(x)−1/2(x− E(x)).
(2) Find the k × p matrix WSIR = (w1, . . . ,wk)

> with orthonormal rows w1, . . . ,wk

which maximizes

k∑
i=1

[
w>i COV[E(xst|y)]wi

]2
.

(3) ΓSIR(x; y) := WSIRCOV(x)−1/2.

Assume now that V1Λ1V
>
1 is the eigenvector-eigenvalue decomposition of E[(Ik −
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COV(z(1)|y))2]. Let U1 be the p×k matrix consisting of the first k columns of U. Based
upon the second equation of Result 2.1 and (2)

E[(Ip − COV(xst|y))2] = E[(Ip −UCOV(z|y)U>)2]

= UE[(Ip − COV(z|y))2]U>

= U1E[(Ik − COV(z(1)|y))2]U>1
= U1V1Λ1V

>
1 U>1 .

Write now W SAV E = (U1V 1)>. Then WSAV EE[(Ip − COV(xst|y))2]W>
SAV E = Λ1 is

diagonal. The sliced average variance estimation (SAVE) [9, 10] then has the following
steps.

Definition 2.3 The SAVE functional ΓSAV E(x; y) is defined as follows.

(1) Consider the standardized variable xst := COV(x)−1/2(x− E(x)).
(2) Find the k × p matrix WSAV E = (w1, . . . ,wk)

> with orthonormal rows w1, . . . ,wk

that maximizes

k∑
i=1

[
w>i E[(Ip − COV(xst|y))2]wi

]2
.

(3) ΓSAV E(x; y) = WSAV ECOV(x)−1/2.

For a random sample (y1,x1), . . . , (yn,xn), the population values of the two functionals
can be consistently estimated if y is discrete with a finite number of values. In practice,
the continuous y is then often replaced by its discretized version utilizing H disjoint
slices S1, ..., SH , S1 + . . . + SH = R. One can for example define a discrete variable
ysl ∈ {1, ...,H} by the condition ysl = h⇔ y ∈ Sh, h = 1, ...,H. Note that the condition
(I2) and the model still holds true for (ysl,x), but the dimension k and the functionals
may change.

Remark 2.4 Both SIR and SAVE can be seen as an approach which jointly diago-
nalizes two matrices [14], the regular covariance matrix and the supervised matrices
COV[E(x|y)] or E[(Ip−COV(x)−1/2COV(x|y)COV(x)−1/2)2], respectively. Hence, both
methods can be solved using a generalized eigenvector-eigenvalue decomposition, where
under model (1) there are k̂ ≤ k non-zero eigenvalues, and the functional is given by the
corresponding generalized eigenvectors. Hence the functionals are unique if all non-zero
eigenvalues are distinct.

Remark 2.5 The estimation of the dimension of the subspace k has some issues. For
example the number of slices H can change the estimated value for the subspace, see e.g.
[15]. However, the block diagonal structures in Result 2.1 still exist for different values
of H, but the block sizes may be different. Also the method used may not find the whole
subspace. In case of SIR for example when y is a quadratic function of a component, SIR
fails to capture it (see e.g. [9]). In general SAVE is able to capture a larger portion of
the subspace than SIR, as Cook and Critchley have shown in [16]. Due to these issues,

it is possible that k̂ < k.

In the practical data analysis with unknown k, the estimated eigenvalues and the
variation of the eigenvectors have been used to estimate k, see for example especially
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in the context of SIR, see [12, 17, 18] and the references therein. The magnitude of the
eigenvalues indicates the relevance of the corresponding source to model the response.

As [16] show, SAVE is in general considered more comprehensive when estimating
the subspace of interest and SIR can be seen in certain situations as a special case. This
increased flexibility of SAVE is however considered costly and it is usually said that SAVE
needs more data than SIR [16]. This is also reflected when considering the numbers of
slices used.

For SIR the slices are often chosen so that P(y ∈ Sh) = 1/H, h = 1, . . . ,H, with
H = 10. In simulations in [8] it was shown that SIR is not very sensitive to the choice
of H. The rank of COV(E(x|ysl)) and the maximum number of non-zero eigenvalues is

H − 1, which however gives the restriction H > k̂ + 1.
SAVE, unlike SIR, is more sensitive to the choice of H as it uses higher moments and

therefore needs more observations per slice than SIR, see for example [10, 16, 19]. Zhu
et al. have conducted some simulations for SAVE [11]. With a data length of n = 480,
SAVE with H = 6 still produces proper results in all of their settings, but with H = 24
not anymore. However, we should note that these results are based only on some specific
simulation settings.

Asymptotic properties of SAVE estimator WSAV E have been investigated e.g. in [20]
in order to find a way an estimate of the subspace dimension k. Li and Zhu [19] have
examined the consistency of the SAVE estimator. SAVE can achieve consistency and in
the case where the response is discrete and takes finite values, SAVE can also achieve

√
n

consistency. However, generally SAVE cannot achieve this, unlike SIR. For asymptotic
properties of the SIR estimator, including

√
n consistency and asymptotic normality of

the estimator, see [21].
In [16] it is argued that SAVE with sufficient data is superior to SIR but in prac-

tice it would be better to use both and complement them to uncover the structures
of interest. A hybrid method based on SIR and SAVE, using a convex combination
(1−a)COV(E(xst|ysl)) +aE[(Ip−COV(xst|ysl))2], with a ∈ [0, 1], has been proposed. It
is discussed first briefly in [22] and then more closely with the discussion of the choice of
the coefficient a in [11]. In Section 3.4 we introduce a time series version of this hybrid
method.

Also [23] have combined the strengths of SIR and SAVE by suggesting the SAV E|SIR
method. As SIR is efficient in finding the linear relationships, it can be used to find a
partial dimension reduction subspace and SAVE is then used to find the rest.

Note also that SIRα, mentioned already in the rejoinder of Li’s SIR paper [8] and
developed further in [24] and [25], is the first kind of hybrid method of the first and
second moments in supervised dimension reduction. However, this is not a combination
of SIR and SAVE.

As recently [7] extended SIR to the time series framework it is therefore natural also
to extend SAVE, which will be done in the following sections.

3. Linear supervised dimension reduction for time series

3.1. The blind source separation model for linear supervised dimension
reduction for time series

Assume that y = (yt)t∈Z and x = (xt)t∈Z are (weakly and jointly) stationary univariate
and p-variate time series, respectively. In this paper the term time series is used for both
the observed realizations and the stochastic process producing them.
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In the time series prediction problem, it is usually assumed that the response series y
at time t is an unspecified function of xt,xt−1, ... and εt, εt−1, ... where ε = (εt)t∈Z is an
unspecified stationary noise process independent from x, i.e.,

yt = f(xt,xt−1, . . . ; εt, εt−1, . . .).

As in the iid case we assume the blind source separation (BSS) model which states
that only k � p linear combinations of x are needed in the prediction model. In the
following, if A is a k× p matrix and b a k-vector, Ax + b is a k-variate time series with
the value Axt + b at t. In the time series BSS model, we assume that

x = Ωz + µ,

where Ω is a full rank p × p mixing matrix and µ is a location vector. Furthermore,
just like in the iid case, the stationary p-variate source time series z can be partitioned

as z =
(
z(1)>, z(2)>

)>
with the dimensions k and p − k of the subseries, respectively.

Dimension k is the smallest one to fulfil the conditions

(T1) E(zt) = 0 and COV(zt) = Ip and

(T2) (y, z(1)>)>⊥⊥z(2).

As in Section 2, from (T2) it follows therefore that

z(2)⊥⊥y|z(1),

E(z
(2)
t+s|z

(1)
t ) = 0 (a.s.) for all s ∈ Z and

COV(z
(2)
t+s|z

(1)
t ) = Ip−k (a.s.) for all s ∈ Z.

All the information needed to model y is therefore contained in the process z(1) and
one can write

yt = f(xt,xt−1, . . . ; εt, εt−1, . . .) = f0(z
(1)
t , z

(1)
t−1, . . . ; εt, εt−1, . . .) (3)

with another unspecified function f0, possibly depending on Ω and µ.
Also in this time series case the model is ill-defined in the sense that both z(1) and z(2)

can be multiplied by respective orthogonal matrices and they still fulfil (T1) and (T2).
The goal is therefore the estimation of the unmixing matrix Γ such that Γx = z(1) up
to orthogonal transformations. The function f0 should then be parametrized to allow all

linear combinations of the elements of z
(1)
t , for example. One should also identify which

lagged values z
(1)
t , z

(1)
t−1, ... contribute in the model.

In this section, the TSIR method from [7] is first reviewed and then the methods
TSAVE and TSSH, a combination of TSIR and TSAVE are introduced. Finally we recall
the choosing of the number of important sources and lags mentioned in [7].

3.2. SIR for time series

In [7] the sliced inverse regression for time series uses the matrices

G0,j(z, y) = COV(E(zt|yt+j)), j ∈ Z+
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with the following important property.

Result 3.1 Under (T1) and (T2)

COV[E(zt|yt+j)] =

(
COV[E(z

(1)
t |yt+j)] 0

0 0

)
,

for all lags j ∈ Z+.

Based on Result 3.1, [7] then finds the time series sliced inverse regression (TSIR)
estimate of the unmixing matrix with the following three steps.

Definition 3.2 The TSIR functional ΓTSIR(x; y) is defined as follows.

1. Find xst := COV(x)−1/2(x− E(x)).
2. Find the k × p matrix WTSIR = (w1, . . . ,wk)

> with orthonormal rows w1, . . . ,wk

which maximizes

∑
j∈S

k∑
i=1

[
w>i G0,j(x

st, y)wi

]2
, (4)

for a chosen set of lags S = {S1, . . . , Ss} with Sj ≥ 1.

3. ΓTSIR(x; y) = WTSIRCOV(x)−1/2.

The matrix WTSIR is a k × p matrix. If the approach for time series used in [3] and
[4] were applied here, this matrix would be of size k × (|S| + 1)p. This would make the
method less stable when the number of time series and the number of lags used increases.

3.3. SAVE for time series

To make a time series version of SAVE a natural extension for the matrix of interest is

G1,j(z, y) = E((Ip − COV(zt|yt+j))2), j ∈ Z+

that depends a joint distribution of y and x. We then have the following.

Result 3.3 Under (T1) and (T2)

E((Ip − COV(zt|yt+j))2) =

(
E((Ip − COV(z

(1)
t |yt+j))2) 0

0 0

)
,

for all lags j ∈ Z+.

The following unmixing matrix estimate is then called the time series sliced average
variance estimator (TSAVE) functional:

Definition 3.4 The TSAVE functional ΓTSAV E(x; y) is defined as follows.

1. Find xst := COV(x)−1/2(x− E(x)).
2. Find the k×p matrix WTSAV E = (w1, . . . ,wk)

> with orthonormal rows w1, . . . ,wk
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that maximizes

∑
j∈S

k∑
i=1

[
w>i G1,j(x

st, y)wi

]2
, (5)

for a chosen set of lags S = {S1, . . . , Ss} with Sj ≥ 1.

3. ΓTSAV E(x; y) = WTSAV ECOV(x)−1/2.

TSIR and TSAVE can be seen as procedures which jointly diagonalize |S|+ 1 matrices
(in terms of the Frobenius norm), that is, the covariance matrix of xt and |S| matrices
depending on the joint distributions of x and y with lags in S. Under the blind source
separation model assumed in this paper all the matrices of interest can be jointly di-
agonalized. However, for finite data this can be done only approximately and it has to
be solved using algorithms using some objective criterion, as for example stated in the
algorithmic outline above. While many other criteria are possible and many algorithms
exist in the literature, for practical purposes we use the approach based on Jacobi rota-
tions [26] in search for the matrices WTSIR and WTSAV E that maximize (4) and (5),
respectively. This algorithm was recommended in [27], and for more details about joint
diagonalization in BSS see for example [13, 28–33] and the references therein. In the
following we will not distinguish between joint diagonalization and joint approximate
diagonalization.

Given a solution W = (w1, ...,wk)
′, the maximum value of the criterion function is∑

j∈S
∑k

i=1 λij , where

λij =
(
w>i E[(Ip − COV(xstt |yt+j))2]wi

)2
,

in a sense that it measures the contribution of the sth lag of the ith linear combination
to this maximum value, i = 1, . . . , k; j ∈ S. ΓTSAV E(x; y) is unique if λi· =

∑
j∈S λij ,

i = 1, . . . , k are distinct. The components ΓTSAV E(x; y)x are standardized and can
be naturally ordered so that λ1· ≥ . . . ≥ λk·. The large value λi· indicates a strong
dependence between the time series (Γ(x; y)x)i and y. The higher the value of λij , the
stronger is the dependence between (Γ(x; y)x)it and yt+j . Identifying the relevant sources
and lags is however difficult due to the possible serial correlations in x which means that
λij might vanish only slowly to zero with s for irrelevant lags.

As for SAVE, the unmixing matrix estimate is obtained for the sliced version
ΓTSAV E(x; ysl), where ysl is a discrete time series such that yslt = h ⇔ yt ∈ Sh,
h = 1, ...,H. As with SAVE it can be also here concluded that TSAVE will be more
sensitive to the number of slices H as also TSAVE, just like SAVE, estimates a higher
order moment and therefore needs more information (see Section 4.3).

Consider the following important property of TSAVE.

Result 3.5 Let x∗ = Ax + b, where A is a full rank p × p matrix and b a p-
vector. TSAVE is affine equivariant in the sense that, for all transformed time series
x∗, ΓTSAV E(x∗; y)x∗ = ΓTSAV E(x; y)x up to the signs and the location of the compo-
nent series.

Result 3.5 also means that ΓTSAV E(x∗; y) = JΓTSAV E(x; y)A−1, where J is a p×p di-
agonal matrix with diagonal elements ±1, up to the location. The proof is straightforward
and hence is omitted from here.
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To derive asymptotic properties of TSAVE the challenge consists of deriving the joint

limiting distributions of
√
T (ĈOV(x) − COV(x)) and

√
T (Ĝ1,j(x, y) − G1,j(x, y)) for

all lags j ∈ S for which probably stronger assumptions on the process xt need to be
made. Therefore this is beyond the scope of this paper and we just outline how the
asymptotics could be derived given the joint distribution of these matrices and that the
signal dimension k would be known.

Write Gj := G1,j(x, y), for all j = 1, . . . , S. The maximization (5) can also be written
as

∑
j∈S

k∑
i=1

[
w>i G∗jwi

]2
, (6)

where G∗j = COV(x)−1/2GjCOV(x)−1/2. Denote then Γ := ΓTSAV E and M =

M(W) = ((m(wi))
>
i=1,...,k, where m(wi) =

∑ŝ
j=1

[
w>i G∗jwi

]
G∗jwi, for i = 1, . . . , k.

Now we can use the Lagrange multiplier technique, which yields WM = MW> and
WW> = Ik. These equations lead to a fixed-point algorithm (see e.g. [26]) with a step
W← (MM>)−1/2M.

Using this we can search for the limiting distributions of Γ̂ and Ŵ, with known di-
mension k and lags in S. As the estimate is also affine equivariant, we can wlog consider
here the case, where COV(x) = Ip and W = (Ik,0).

Let T be the length of the time series. After deriving the joint limiting distribution of√
T (ĈOV(x)−Ip) and

√
T (Ĝj−Gj) and then noticing that the joint limiting distribution

of Ŵ and M̂ satisfies the conditions

√
T (Ŵ −W)M′ −M

√
T (Ŵ −W)′ =

√
T (M̂−M)W′ −W

√
T (M̂−M)′ + oP (1)

and

√
T (Ŵ −W)W′ = −W

√
T (Ŵ −W)′ + oP (1),

one can further derive
√
T (Ŵ−W) and

√
T (ĈOV(x)− Ip) and then finally get

√
T (Γ̂−

W) =
√
T (Ŵ−W)− 1

2W
√
T (ĈOV(x)−Ip)+oP (1). For similar derivations based on the

Langrangian multiplier technique, see for example [32]. The derivations for the regular
SAVE asymptotics in the iid case already appeared to be quite complicated [19]. Here
the derivations are much more demanding as numerous matrices are jointly diagonalized
with serially dependent observations.

3.4. A hybrid of TSIR and TSAVE

As both SIR and SAVE have their advantages and drawbacks, a hybrid of SIR and
SAVE using a convex combination of the two supervised matrices was proposed in [11].
As the time series versions of SIR and SAVE show similar behaviour to the original
SIR and TSAVE, respectively, we similarly propose here a convex combination of TSIR
and TSAVE methods. We call this time series SIR and SAVE hybrid method TSSH. In
TSSH we are searching for a k × p matrix WTSSH = (w1, . . . ,wk)

> with orthonormal
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rows w1, . . . ,wk that maximizes

∑
j∈S

k∑
i=1

(
w>i

(
(1− a) ∗G1,j(x

st, y) + a ∗G2,j(x
st, y)

)
wi

)2
,

where a ∈ [0, 1] and S a set of chosen lags as before. Then a = 0 gives TSIR and a = 1
gives TSAVE.

Note that the results similar to Results 3.1 and 3.3 and the Result 3.5 apply to TSSH
as well. Also the search for the number of latent sources and lags goes as for TSIR and
TSAVE.

In addition to the issues that TSIR and TSAVE have, a proper value for the coefficient
a needs to be found. This is discussed in Section 4.4.

Extending the SIR|SAV E method by [23] for time series is challenging, as we need to
search not only for sources but also lags corresponding to each of the sources.

3.5. Identification of k and the lags of interest

In practice the number of sources, i.e. the value of k, is not known and needs to be
estimated as well. Also the important lags regarding the sources need to be found. We
can choose these by using the quantities λij . However, at this stage of the development
of TSAVE, formal testing is not possible yet and we suggest to use the same strategies
as suggested for TSIR in [7].

For that purpose consider the matrix L = lij where

lij =
λij∑k

i=1

∑s
j=1 λij

, i = 1, . . . , k; j = 1, . . . , s,

contains the scaled pseudo eigenvalues and the scaling is chosen such that the elements
of L add up to 1. Note that we have assume here that we use the first s lags, as currently
we do not have information that would suggest to use some other set of lags. Row and
column sums of L will be again denoted as li· =

∑s
j=1 lij , as before, and l·j =

∑k
i=1 lij .

Assume then that ΓTSAV E(x; y) is defined such that the latent sources are ordered
according to their magnitudes of λ1· ≥ . . . ≥ λk· and k = p. Then [7] suggested different
strategies to find the appropriate amount of sources and the lags corresponding to those
sources, by trying to explain similar as in principal component analysis (PCA) 100 ·P%
of the dependence between the latent sources and the response series.

The suggested strategies can be summarized as:

ALL LAGS: keep all s lags and find the smallest value k̂ such that
∑k̂

i=1 li· ≥ P .

ALL SOURCES: keep all k sources and find the smallest ŝ in such way that
∑ŝ

j=1 l·j ≥
P .

RECTANGLE: find k̂ and ŝ with the smallest product k̂ŝ in such way that∑k̂
i=1

∑ŝ
j=1 lij ≥ P .

BIGGEST VALUES: find the smallest number r̂ of elements (i1, j1), . . . , (ir̂, jr̂) of L

in such way that
∑r̂

k=1 likjk ≥ P .

While the first two strategies assume some prior knowledge about the number of lags
or sources respectively, the last two methods seem suitable for general use. As in the iid
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case, the ‘real’ amount of sources k may not be found due to the slicing (value of H)

and/or the method used, and hence it is possible that k̂ < k.
Natural values for P are then for example 0.5 or 0.8. How the different strategies

perform will also be considered in the example and simulation section.

4. Examples and simulations

In this section the differences between TSIR and TSAVE are first visualized. Then the
simulation settings and the prediction models are presented. In Section 4.3 we search
for the best values for the number of slices H in TSIR and TSAVE and in Section 4.4
the appropriate values for the coefficient a for TSSH. In both cases we aim to give some
guidelines how to choose them in practice. Finally we compare TSAVE with TSIR, SIR
and SAVE (applied to time series case) in Section 4.5.

Note that TSIR, TSAVE and TSSH, together with the different selection strategies
described in the previous section, are implemented in the R package tsBSS [34] and are
used together with the R package JADE [33] in this section.

4.1. Visualization of the differences of TSIR and TSAVE

It is already well established that the regular SIR works efficiently with linear relation-
ships, but not when the relationship in y = g(z(1))+ε is specified by a symmetric function
g [8, 9]. On the other hand, the regular SAVE works with a symmetric function g.

To consider the differences between the time series versions of both methods, consider
the examples where the response y at time t be

M1: yt = xt−1 + xt−3 + εt
M2: yt = 1 + x2

t−1 + x2
t−3 + εt

where εt ∼ N(0, 0.2) and xt follows an AR(1) model with φ = 0.1. To illustrate how and
where TSIR and TSAVE work, we plot the values of yt against the values of xt−j , where
j = 1, 2, 3 or 10 for all the models (see Figures 1 and 2).

The larger black dots in the figures denote the sample values of E(xt|yt+j) in each slice.
Also the variance of these values is added to each figure as text. A non-zero variance value
indicates that TSIR is able to find a relationship between yt and xt−j .

The width of the dark gray bars added around the black dots corresponds to the sample
value of (1−Var(xt|yt+j))2 in each slice. When TSAVE cannot find a relationship between
yt and xt−j , all these values are so close to zero that the bars are hardly visible. Also the
means of these values are added to each figure as text. A non-zero mean indicates that
TSAVE is able to find a relationship between yt and xt−j .

From Figure 1 and 2 it can be seen that TSIR cannot find any relationship between
yt and xt−j , when j = 2 or 10, as yt did not depend on xt with those lags. However, the
results are different with j = 1 and 3. As seen on the left side panels of Figure 1, yt and
xt−j have a strong linear relationship. The variance of the slice means is clearly non-zero
and indicates that TSIR finds the relationship. Also a non-zero value for the mean of the
conditional variances indicates that also TSAVE works with linear relationships.

On the left side panels of Figure 2, yt and xt−j have a strong quadratic relationship. It
can easily be seen that TSAVE finds the quadratic relationship. However, as the mean
values for each slice are close to zero, TSIR fails to find the quadratic relationship, similar
to the regular SIR in iid regression.

Based on the figures and the values in them, it can be concluded that TSAVE finds
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Figure 1. Model M1: Scatterplot of yt and xt−j , j = 1, 2, 3, 10 with slices of yt as the shaded areas

both the linear and the quadratic relationship between yt and xt with lags 1 and 3 in
the models M1 and M2.

Next we illustrate how the appropriate lags and the amount of the latent sources are
chosen in TSAVE and TSIR using the strategies mentioned in Section 3.5.

Consider a 4-variate time series x = (x1, x2, x3, x4)>, where x1 and x2 are AR(1)
processes with φ = 0.2, x3 is ARMA(1,1) with φ = 0.3 and θ = −0.4, and x4 is MA(1)
model with θ = −0.4. As both methods are affine equivariant, we have chosen Ω = I4 as
the mixing matrix and therefore x = z for all t ∈ Z. The time series z are standardized
and the length of the time series is T = 10000.

In choosing the number of sources and the lags, we use P = 0.8 as the threshold value,
and H = 5 as the number of slices. Tables are constructed as the average values of
the elements lij over 100 repetitions, and we have used lags 1, . . . , 12 for both methods.
Assume now that the response y at a time t depends on the predictors as follows.

yt = z2
1,t−1 + 3z2,t−5 + εt,

where εt ∼ N(0, 1). Table 1 includes the L matrices for both TSAVE and TSIR based
on this model. It can be seen that TSAVE finds two latent sources and five lags. Also
already the values of the elements l12 and l51 are clearly bigger than others and together
they already explain more than 80 % of the dependence between the response y and the
predictors. On the other hand TSIR finds only one source (and five lags), which seems
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Figure 2. Model M2: Scatterplot of yt and xt−j , j = 1, 2, 3, 10 with slices of yt as the shaded areas. The y-axis
is in a logarithmic scale.

w′1x
st w′2x

st w′3x
st w′4x

st Sum
t− 1 0.002 0.317 0.002 0.002 0.323
t− 2 0.002 0.003 0.002 0.002 0.010
t− 3 0.002 0.002 0.003 0.002 0.009
t− 4 0.003 0.002 0.003 0.002 0.010
t− 5 0.576 0.002 0.002 0.002 0.582
t− 6 0.003 0.002 0.003 0.002 0.010
t− 7 0.002 0.002 0.003 0.002 0.009
t− 8 0.002 0.002 0.003 0.002 0.009
t− 9 0.002 0.002 0.002 0.002 0.009
t−10 0.002 0.002 0.003 0.002 0.009
t−11 0.002 0.002 0.003 0.002 0.009
t−12 0.002 0.002 0.002 0.002 0.009
Sum 0.603 0.342 0.029 0.025 1.000

w′1x
st w′2x

st w′3x
st w′4x

st Sum
t− 1 0.001 0.001 0.001 0.001 0.004
t− 2 0.001 0.001 0.001 0.001 0.004
t− 3 0.002 0.001 0.001 0.001 0.006
t− 4 0.035 0.001 0.001 0.001 0.038
t− 5 0.878 0.001 0.001 0.001 0.881
t− 6 0.036 0.001 0.001 0.001 0.039
t− 7 0.002 0.001 0.001 0.001 0.006
t− 8 0.001 0.001 0.001 0.001 0.004
t− 9 0.001 0.001 0.001 0.001 0.004
t−10 0.001 0.001 0.001 0.001 0.004
t−11 0.001 0.001 0.001 0.001 0.004
t−12 0.001 0.001 0.001 0.001 0.004
Sum 0.961 0.015 0.013 0.011 1.000

Table 1. The matrix L with row sums and column sums: TSAVE (left panel) and TSIR (right panel)

to explain by far the most of the dependence, but fails to find the other source with the
quadratic relationship.
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4.2. Models and prediction

The results presented here are based on the following ARMA models, where the four z
component series are as follows.

Components 1 and 2: AR(1) with φ = 0.2 (or 0.8).

Component 3: ARMA(1, 1) with φ = 0.3 and θ = 0.4.

Component 4: MA(1) with θ = −0.4, respectively.

Note that for the first two components two different φ values are used to compare how
the level of the autocorrelation affects the results. The response series y depends then on
the first two components z1 and z2, in the following different ways:

Model A: yt = 2z1,t−1 + 3z2,t−1 + εt

Model B: yt = z2
1,t−1 + 3z2,t−5 + εt

Model C: yt = (2z1,t−1 + 3z2,t−1)2 + εt

Model D: yt = z2
1,t−1 + 3z2

2,t−5 + εt

Model E: yt = 2z3
1,t−1 + 3z2

2,t−5 + εt

All the models have iid N(0, 1)-distributed innovations εt. As before Ω = I4 is used as
the mixing matrix.

Note that we have also performed additional simulations which evaluated what hap-
pens if there are almost non-stationary components, stochastic volatility components or
components with heavy-tailed innovations. The exact settings are detailed in the supple-
mentary material together with the corresponding results. While there are maybe minor
differences, we believe that the guidelines derived on the settings specified above suffice
in practice.

For prediction we use the prediction model (3). As an approximation of the function
f we use both simple linear regression and also regression with quadratic B-splines (for
model E cubic B-splines, as it includes a factor of the form z3). The size of the testing set
is 100, i.e. we predict the last 100 values of the data. To predict the value for T −100+ i,
i = 1, 2, . . . , 100, we use the observations i, . . . , T −100+(i−1) as a training set (‘rolling
window approach’).

We estimate the accuracy of the prediction by calculating the root mean square error
(RMSE) based on the one-step-ahead prediction errors ε̂t of the last 100 observations
(testing set). The lags used to create the matrix L are 1, . . . , 12 and the number of
repetitions is 500.

4.3. On the number of slices for TSIR and TSAVE

In [7] simulations for TSIR are conducted only with value H = 10, which is a common
value used with SIR. Here we aim to go a bit deeper and provide some guidelines for
choosing the value H for TSAVE as well as for TSIR.

To find the optimal number of slices H, we conduct an experiment with different
strategies and with two different threshold values P = 0.5 and 0.8 to find the important
lags and the number of sources. We use time series lengths T = 500, 1000, 2000 and 3000.

First we predict the values using all the strategies with linear and spline predictions.
With H = 2, 5, 10, 20 and 40 and models A – D, we calculate the RMSE values compared
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to value H = 10, which is commonly used in e.g. SIR and has been used in TSIR in [7].
The results are for the components with low and high autocorrelation as well as for time
series lengths T = 500, 1000, 2000 and 3000.

The choices H = 20 and H = 40 do not work that well in any of the settings in TSAVE.
We conclude from this that there are then simply too few observations per slice. Thus
we show here results only concerning values H = 2, 5 and 10. The choices H = 2 and
H = 5 are compared to H = 10. If the choice is better than H = 10, then the relative
RMSE values will generally be lower than one.

In model A the linear predictions are the most efficient and spline predictions may add
a little bit of additional noise. In models B – D, however, the linear predictions are not
very good at determining the best value of H. Only with T = 500 the choice H = 2 seems
to be a bit better than others, while in longer time series any possible difference is barely
visible. This is expected, since the relationship between the predictors and the response
is not linear. Thus the spline predictions is preferred for determining the optimal value
for H.

In both low and high dependence settings the threshold value P = 0.5 seems to be
working well for models A and C, where only one source is expected to be found, and
choosing P = 0.8 has only a very small effect on results. For models B and D it seems
that P = 0.5 might be enough in short time series (T = 500), but in longer time series,
especially when we have sources with high autocorrelation, using P = 0.8 is crucial for
the second source to be found. Thus P = 0.8 is seems to be a safe choice in general.

When comparing the different strategies to select the number of sources and lags,
the biggest values strategy seems to produce almost always the best results, and in the
remaining few cases it is very close to the best. Figures 3–6 show then based on that
strategy the relative RMSE for models A – D and the different sample sizes. And these
figures clearly indicate that using only 2 or 5 slices for TSAVE is clearly better than 10
slices. Only with increasing sample size the differences vanish which means that then all
slices contain enough observations. The same can also be observed using other strategies
for the selection (not shown here) although then in rare cases can be 5 slices better than
2 slices.
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Figure 3. TSAVE. Model A with the biggest values strategy. Relative RMSE values compared to H = 10 with
φ = 0.2 (left panel) and φ = 0.8 (right panel).
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Figure 4. TSAVE. Model B with the biggest values strategy. Relative RMSE values compared to H = 10 with
φ = 0.2 (left panel) and φ = 0.8 (right panel).
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Figure 5. TSAVE. Model C with the biggest values strategy. Relative RMSE values compared to H = 10 with

φ = 0.2 (left panel) and φ = 0.8 (right panel).

For TSIR the choice H = 10 seems to be the safest when linear predictions are used.
However, when using spline predictions, H = 2 and H = 5 may be better choices with
shortest time series, i.e. with T = 500. Figure 7 includes results from spline predictions
using the biggest values strategy. Note that with the models B – D, TSIR does not work
well and thus the evaluation of the value of H for TSIR is not considered in those
models.

We could also look for the best H with the L matrix. For the models A and C we can
check, if only one source with at least lag 1 is found, as only one is expected. For the
models B and D we can first check that if one source with lag 1 and one source with lag
5 are found. If that is true, then we can check that if only the two sources are found.
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Figure 6. TSAVE. Model D with the biggest values strategy. Relative RMSE values compared to H = 10 with
φ = 0.2 (left panel) and φ = 0.8 (right panel).
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(left panel) and high (right panel) dependency of the sources.

With the biggest values strategy with T = 3000 for model A, generally H = 2, 5 and
10 are good choices when P = 0.8, and H = 2 is the best when P = 0.5. In all the other
models also H = 2 seems to be the most efficient choice when P = 0.8. For model C the
choices H = 2 and 5 are generally safe, while with P = 0.8 also H = 10 and 20 seem to
be good enough. As an example, Figure 8 has the results for model C with T = 3000.
In model D the threshold value P = 0.5 seems to be generally too low for efficiently
finding the right amount of sources, while with P = 0.8 choices H = 2 and H = 5 seem
to produce the expected results. For TSIR any value H ≤ 10 seems to be safe for model
A. For a short time series (T = 500), H = 2 seems mostly the safest choice for TSAVE
and H = 2, 5 and 10 for TSIR.
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Figure 8. TSAVE. Model C with T = 3000 using the biggest values strategy. Percentage of cases that finds the
correct lags and correct amount of sources. Black line: P = 0.5, gray line: P = 0.8.

To conclude this section, we can say that for TSIR H = 10 is generally a reliable
choice, however, with short time series a lower H might be beneficial, depending on
the prediction method used. For TSAVE the number of observations per slice is more
important and depends also on the data generation process. Based on our simulations
we recommend to have at least 100 observations per slice and for the time series lengths
considered here our preferred choice is H = 2, but also H = 5 seems good. For a shorter
time series H = 2 might be the only choice, but the longer the time series the smaller
differences there are between the values of H and then also a larger H would be reliable.

Furthermore, the simulations suggest that the value of P has a big influence on the
number of selected components and P = 0.5 is more restrictive than P = 0.8, which is
however also very intuitive. The biggest values strategy to choose the amount of sources
and the lags corresponding to them is also recommended.

4.4. On the TSSH method and the choice of coefficient a

In model A, the relationship between the response and the predictors is linear. Already
[7] show that TSIR works in such models efficiently. On the other hand, the models B-E
have symmetric parts. As seen in Section 4.1, TSIR in unable to find the relationship in
such case (see Figure 2). This is also seen later in the simulation results of Section 4.5.
Also from Figure 2 it can be seen that TSAVE still works with the linear relationships,
but not as efficiently as TSIR.

This preference for different structures of the different methods was the main moti-
vation for the introduction of the hybrid in Section 4.3. Now we consider the optimal
value of a for model E. This model is similar to the model 4 in [11], for which the hybrid
of iid SIR and SAVE shows clearly better performance than SIR or SAVE separately.
Therefore we could expect here that the TSIR part uncovers the asymmetric part of
the dependence 2z3

1,t−1 efficiently and TSAVE the symmetric part 3z2
2,t−5, and hopefully

both together work even better. The question how much weight should be given to which
method, i.e. the proper value for a. For the iid hybrid method [11] recommend as general
rule of thumb to use a = 0.5.
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Following our general guidelines from the previous section, in the following presentation
the results are based on using H = 10 slices for TSIR part and H = 2 slices for TSAVE
part. To select the components, P is set to 0.8 and cubic B-splines are used for the
prediction. The RMSE values are then computed for the values a = 0, 0.1, 0.2, . . . , 1,
where a = 0 refers to the pure TSIR method and a = 1 to the pure TSAVE method.
We show here the RMSE for the time series lengths T = 500 and 3000 in Figure 9 and
Figure 10. It seems that there are not so big differences as long as not all or almost all
of the weight is given to TSIR or all the weight given to TSAVE. The central values of
a seem to be a little bit better.
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Figure 9. TSSH. Model E with the biggest values strategy: T = 500 and H = 2 for TSAVE part and H = 10 for

TSIR part. RMSE values with φ = 0.2 (left panel) and φ = 0.8 (right panel).
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Figure 10. TSSH. Model E with the biggest values strategy: T = 3000 and H = 2 for TSAVE part and H = 10

for TSIR part. RMSE values with φ = 0.2 (left panel) and φ = 0.8 (right panel).
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To investigate this a bit further, we also compare the choices of P = 0.5 and P = 0.8
using the L matrix. Figure 11 gives then for T = 3000 the percentages of right number
of sources and appropriate lags chosen, based on the biggest value strategy, for a =
0, 0.01, 0.02, . . . , 1

From Figure 11 we can conclude that values for a around 0.5 and 0.6 are reasonable
choices. Considering results using other selection strategies not shown here we can in
general recommend the value a = 0.5, which coincides with the recommendation of the
regular SIR and SAVE hybrid.

The main feature we observed for the hybrid is that with values closer to a = 0.5, the
value of P is less crucial and one often comes to the same conclusion. Quite different
from what we have seen when using only TSIR or only TSAVE.
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Figure 11. TSSH. Model E with the biggest values strategy: T = 3000 and H = 2 for TSAVE part and H = 10

for TSIR part. Percentage of cases that finds the correct lags and correct amount of sources. Black line: P = 0.5,

gray line: P = 0.8.

4.5. Comparison to other approaches

To compare different methods, we simulate with time series length T = 3000 using
H = 2 for TSAVE and H = 10 for TSIR, P = 0.8 and the biggest values strategy, as
recommended in Section 4.3. For models A – D the relative RMSE values are compared
to Oracle estimator, where the functional form of the relationship between the response
and the predictors is known, but the coefficients are estimated.

Figures 12 – 15 have the relative RMSE values based on different methods compared
to the Oracle estimator. The methods here are TSAVE and TSIR as well as the original
SAVE and SIR (Becker & Fried SIR [4]) with the lagged values of x as predictors, i.e.
with x∗t = (xt−1, . . . ,xt−s). Here we have used s = 12.

For original SIR we have used H = 10 [8] and for original SAVE H = 5, as H = 2
may be too low for SAVE (see for example [19]). To choose the number of sources, we
use the ordered empirical eigenvalues λi, i = 1, . . . , s · p, of the supervised matrices
COV[E(x∗,st|ysl)] in the original SIR and E[(Ip−COV(x∗,st|ysl))2] in the original SAVE.

The chosen number of sources is the minimal k̂ for which
∑k̂

i=1 λi/
∑s·p

i=1 λi ≥ P = 0.8.
From Figure 12 we can see that TSIR and TSAVE both work very well. From Figures
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Figure 12. Model A with biggest values strategy. Relative RMSE values compared to Oracle estimator with
φ = 0.2 (left panel) and φ = 0.8 (right panel).
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Figure 13. Model B with biggest values strategy. Relative RMSE values compared to Oracle estimator with

φ = 0.2 (left panel) and φ = 0.8 (right panel).

13 – 15 we see that TSAVE clearly works the best in the models B, C and D, while also
the original SAVE with lagged variables as predictors works better than TSIR and the
original SIR. The iid versions using the lagged variables as predictors do not work that
well except in the linear case (Model A). If we used H = 5 instead of H = 2, the results
would be very similar.

To evaluate the effect of the dimension we included as a final setting also a setup,
where we have p = 10 components and the ‘true’ number of series that the response
depends on is k = 3. The simulations were conducted using several different time series
lengths (T = 500, 1000, 2000, 3000 and 5000), but here we show only the results based
on T = 3000 and other results can be found in the supplementary material.
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Figure 14. Model C with biggest values strategy. Relative RMSE values compared to Oracle estimator with
φ = 0.2 (left panel) and φ = 0.8 (right panel).
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Figure 15. Model D with biggest values strategy. Relative RMSE values compared to Oracle estimator with

φ = 0.2 (left panel) and φ = 0.8 (right panel).

The innovations are standard normal unless otherwise stated. Components included
here are

z1: AR(1) with φ = −0.2
z2: AR(1) with φ = 0.8 with heavy-tailed t4 innovations
z3: GARCH(1,1) with α = 0.05 and β = 0.93
z4: AR(1) with φ = 0.6 with light-tailed U(−1, 1) innovations
z5: AR(1) with φ = 0.98
z6: ARCH(2) with α1 = 0.3 and α2 = 0.4
z7: GARCH(1,1) with α = 0.1 and β = 0.8

22



z8: ARMA(1,1) with φ = 0.3 and θ = −0.6
z9: iid N(0, 1)
z10: iid t4

All are standardized to meet the requirements for z. The response is created as

yt = z1,t−1 + z2,t−2 + 0.5z3,t−4 + εt,

where εt ∼ N(0, 1). In order to examine what happens if yt is not well approximated in
the respective spline class, we have used predictions based both on cubic (‘optimal’) and
quadratic (‘non-optimal’) splines for all the methods used. The RMSE values with T =
3000 in Figure 16 reveal that TSAVE with optimal prediction models produces clearly the
best results. Also TSAVE with non-optimal prediction model gives very slightly better
results than TSIR with optimal prediction model and much better than TSIR with non-
optimal predictions. All the time series versions behave better than the vectorized iid
versions.
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Figure 16. Big setting with biggest values strategy. Relative RMSE values compared to Oracle estimator.

For T = 2000 and T = 5000 the above is also clearly true. For T = 1000 both choices
are about equally good. With T = 500 it seems that the ‘non-optimal’ prediction is
better. It might be safer not to use ‘too accurate’ prediction models when time series
lengths are short and the number of dimensions large. Also in shorter time series the
vectorized SIR starts to produce better and better results compared to vectorized SAVE.
Figures are included in the supplementary material.

We have also compared the computation times of SIR, SAVE, TSIR and TSAVE meth-
ods considering different lags numbers, dimensions and time series lengths. According to
the conducted simulations, the time series versions seem to outperform the iid versions
especially when p is small, time series length T increases and the number of lags increase.
Detailed results of the simulations are available in the supplementary material.
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5. Final comments

SAVE and hybrids that include SIR and SAVE parts are well established for the iid case.
After [7] introduced TSIR as a time series extension for SIR, we suggested in this paper
TSAVE and TSSH as time series extensions of SAVE and the hybrid of SIR and SAVE,
respectively. We demonstrated that these methods are superior for supervised dimension
reduction in a time series context than applying their iid counterparts to the explaining
variables and their lagged values. We furthermore explored further the strategies for
components and lag selection in the time series case suggested in [7] and could now
give some general recommendations how to apply TSIR, TSAVE and TSSH in practice.
Not so surprisingly many of the recommendations of iid methods apply also in the time
series context. Also, while in [7] only H = 10 was used as the number of slices, here
we conducted a simulation study to give some guidelines for choosing H for TSIR and
TSAVE.

The popularity of the iid versions of SIR, SAVE and hybrids of them also led to
the introduction of modified versions of SAVE, like CSAVE [19] and ESAVE [11] and
hybrids between these and SIR, or other versions of hybrids with SIR like SIRIIa (see
the rejoinder of [8]). Future work will be to investigate how these modified versions can
be moved to a time series framework and if they are improvements compared to TSIR,
TSAVE and TSSH.
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