
processes

Article

Investigating the Molecular Basis of N-Substituted
1-Hydroxy-4-Sulfamoyl-2-Naphthoate Compounds
Binding to Mcl1

Kalaimathy Singaravelu 1, Pavithra K. Balasubramanian 2 and Parthiban Marimuthu 3,*
1 Turku Computer Science and Informatics, Department of Future Technologies, University of Turku,

FI-20520 Turku, Finland; kalsin@utu.fi
2 Department of Bioscience and Biotechnology, Institute of KU Biotechnology, Konkuk University, Seoul 05029,

South Korea; dr.pavithrakb@gmail.com
3 Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering,

Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland
* Correspondence: parthiban.marimuthu@abo.fi; Tel.: +358-2215-4600

Received: 2 April 2019; Accepted: 17 April 2019; Published: 19 April 2019
����������
�������

Abstract: Myeloid cell leukemia-1 (Mcl1) is an anti–apoptotic protein that has gained considerable
attention due to its overexpression activity prevents cell death. Therefore, a potential inhibitor that
specifically targets Mcl1 with higher binding affinity is necessary. Recently, a series of N-substituted
1-hydroxy-4-sulfamoyl-2-naphthoate compounds was reported that targets Mcl1, but its binding
mechanism remains unexplored. Here, we attempted to explore the molecular mechanism of binding
to Mcl1 using advanced computational approaches: pharmacophore-based 3D-QSAR, docking, and
MD simulation. The selected pharmacophore—NNRRR—yielded a statistically significant 3D-QSAR
model containing high confidence scores (R2 = 0.9209, Q2 = 0.8459, and RMSE = 0.3473). The contour
maps—comprising hydrogen bond donor, hydrophobic, negative ionic and electron withdrawal
effects—from our 3D-QSAR model identified the favorable regions crucial for maximum activity.
Furthermore, the external validation of the selected model using enrichment and decoys analysis
reveals a high predictive power. Also, the screening capacity of the selected model had scores
of 0.94, 0.90, and 8.26 from ROC, AUC, and RIE analysis, respectively. The molecular docking
of the highly active compound—C40; 4-(N-benzyl-N-(4-(4-chloro-3,5-dimethylphenoxy) phenyl)
sulfamoyl)-1-hydroxy-2-naphthoate—predicted the low-energy conformational pose, and the MD
simulation revealed crucial details responsible for the molecular mechanism of binding with Mcl1.

Keywords: Myeloid cell leukemia 1 inhibitors; N-substituted 1-hydroxy-4-sulfamoyl-2-naphthoate
compounds; molecular dynamics simulations; pharmacophore-based 3D-QSAR model;
protein–protein interactions

1. Introduction

The Bcl-2 family members play a central role in apoptosis regulation [1]. The members of this
protein family comprises (i) anti-apoptotic proteins (AAP: Bcl-2, Bcl-xL, Bfl-1/A1, Bcl-w, and Mcl1)
containing four BH (Bcl-2 homologue) domains, (ii) pro–apoptotic proteins (PAP: Bax, Bak, and Bok)
containing three BH domains, and (iii) BH3-only proteins (Bad, Bid, Bik, Bim, Bmf, Hrk, Noxa, and
Puma) only have a BH domain, which ultimately determines the cellular lifetime [2]. These family
members predominantly function via homo– or heterodimerization formation of BH domains and
regulate apoptosis [3].

Among the Bcl-2 family members, Mcl1 (myeloid cell leukemia 1) is the most frequently amplified
gene, and thus it is an attractive therapeutic target [4]. This favorable physiological activity of Mcl1
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helps the cancerous cell to evade normal cell death. Furthermore, this eventually causes the spread of
infectious cells to several parts of the body [5] including the lungs, breasts, prostate, pancreas, ovaries,
and cervix [6,7]. Due to cancerous cells widely spread all over the human system, the infection gains
strong resistance to several chemotherapeutic agents [8,9].

The experimental details show that the three-dimensional structure of Mcl1 is tightly packed
with a series of amphipathic α-helical bundles [10–12]. These α-helical bundles are arranged in such a
manner that they form a distinct binding groove on the surface of Mcl1 [12–16]. This binding groove
covers a large surface area, and is occupied by an ensemble of hydrophobic residues providing an
excellent spot to accommodate its partners from other family members (PAP or BH3-only peptides) or
the non-peptide substances [10]. These hydrophobic residues inside the pocket are (i) highly conserved,
(ii) remain crucial for binding partner selectivity, and (iii) are also the main reason for showing a wide
range of binding affinity values when interacting with its binding partner for apoptotic regulation. For
example, cytochrome c release is highly affected due to the sequestration of Bak by Mcl1 activity; the
Bim protein can bind with all the members of AAPs, while Noxa proteins show high selectivity with
Mcl1 [15,17]. These notable characters of Mcl1 make it a highly challenging therapeutic target, and
also remind us of the need for novel cancer drug development [18].

Several studies have been reported on novel peptides [19–21] and non-peptide leads [22–27]
with activity values in the subnanomolar range, but none have reached the market. In recent years,
researchers have identified few selective Mcl1 inhibitors that showed significant downregulating effects.
For instance, AMG176 synergistically exhibits remarkable activity when provided in combination with
venetoclax [28,29], which was recently approved by the FDA [30,31]. Also, the discovery of AZD5991
demonstrates selective targeting to Mcl1 [32]. Likewise, a recent study revealed a series of Mcl1 inhibitors
that exhibited the potential to inhibit its overexpression activity [33]. Taking advantage of this, the
current study is an attempt to understand the mechanistic behavior of the current compound series with
Mcl1. To achieve this, a combination of in silico approaches—pharmacophore-based 3D-Quantitative
Structure Activity Relationship, docking, and Molecular Dynamics (MD) simulation—is widely
used [34–40]. Correspondingly, a pharmacophore-based 3D–QSAR model was constructed based
on known inhibitors obtained from the literature [33], with the aim of gaining knowledge on the
critical chemical features responsible for its maximum activity. Subsequently, the docking approach
was used to predict the low-energy conformational pose for the highly active compound. The MD
simulation is a useful tool for investigating crucial interactions at the ligand binding interface, large
conformational changes in biomolecules, ion exchange across the membranes, and protein folding
and unfolding pathways. Additionally, this approach is used in various stages of drug discovery
research [41,42]. In light of that, an MD simulation was performed on our docked complex to observe
the molecular mechanism of binding with Mcl1. Taken together, the details from the current study could
provide critical insights required for the next-generation inhibitor development that may potentially
downregulate Mcl1 activity.

2. Materials and Methods

2.1. Obtaining Mcl1 Inhibitors

The inhibitor dataset used in the present work was retrieved based on the literature [33] from
ChEMBL database (assay id:3779852) (https://www.ebi.ac.uk/chembl) (Figure 1). An extensive
investigation of the dataset revealed that the selected chemical dataset satisfies the necessary
features—the same experimental type; covers a range of chemical structures and its inhibitory potency
profiles (0.031 to 106 Ki (µM))—required for the study. Consequently, the selected chemical dataset
is subjected to LigPrep module (Schrödinger 2016-3, New York, NY, USA) to generate low-energy
conformers at pH = 7.4 and OPLS_2005 force field [43].

https://www.ebi.ac.uk/chembl
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Figure 1. The chemical dataset used for the pharmacophore-based 3D-QSAR studies (ChEMBL—
3779852) [33]. 
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The phase module [44] available in the Schrödinger 2016-3 suite provided an excellent tool for 
the construction of pharmacophore-based 3D-QSAR models in our previous studies [37,38,40], and 
thus the same method is adopted in the current investigation. Initially, all the low-energy conformers 
were imported to the “Develop Common Pharmacophore Hypotheses” panel, together with its 
activity values (3.975 to 7.509—pKi (µM)). Next, the “Activity Threshold” was set to 5 and 6 for the 
minimum and maximum threshold, which eventually separates the low-energy conformers into 
active (pKi > 6.247–7.509 µM), moderately active (pKi range 5.071–5.939 µM), and inactive (pKi > 
3.975–4.951 µM) groups, respectively. Then, the rapid sampling approach was used to enhance the 
ligand conformers with the default parameters [40]. The enhanced conformers thus obtained were 
subsequently treated with pre- and post-processing procedures using the OPLS_2005 force field for 

Figure 1. The chemical dataset used for the pharmacophore-based 3D-QSAR studies
(ChEMBL—3779852) [33].

2.2. Pharmacophore Hypothesis Generation and Validation

The phase module [44] available in the Schrödinger 2016-3 suite provided an excellent tool for
the construction of pharmacophore-based 3D-QSAR models in our previous studies [37,38,40], and
thus the same method is adopted in the current investigation. Initially, all the low-energy conformers
were imported to the “Develop Common Pharmacophore Hypotheses” panel, together with its
activity values (3.975 to 7.509—pKi (µM)). Next, the “Activity Threshold” was set to 5 and 6 for the
minimum and maximum threshold, which eventually separates the low-energy conformers into
active (pKi > 6.247–7.509 µM), moderately active (pKi range 5.071–5.939 µM), and inactive
(pKi > 3.975–4.951 µM) groups, respectively. Then, the rapid sampling approach was used to
enhance the ligand conformers with the default parameters [40]. The enhanced conformers thus
obtained were subsequently treated with pre- and post-processing procedures using the OPLS_2005
force field for 100 steps, while the RMSD tolerance was maintained at 1 Å. Furthermore, “Automated
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Random Selection” was used to divide the ensemble into training (29) and test sets (11)—based on
a 70% and 30% data separation procedure [45]—that comprises 40 compounds. A minimum and
maximum cutoff were set to 4 and 5 for the “Define Variant List.” Likewise, the “must match active
groups” was set to 10 to produce a list of 28 variants, which was used to generate pharmacophoric
maps. Finally, the generated hypotheses were ranked with the default cutoff.

2.3. 3D-QSAR Model Building

All 40 compounds in the selected chemical dataset were used to develop an atom-based 3D-QSAR
model based on previously developed pharmacophore maps as the backbone with a default grid space
of 1 Å. Generally, the regression statistical approach was used to validate the quality of the 3D-QSAR
model in several studies. In particular, the Partial Least Square (PLS) regression statistical approach
provides the advantage to carry out an extended search for the given the dataset to several folds.
Therefore, the PLS approach available in the Schrödinger 2016-3 suite was used to evaluate the quality
of the predicted 3D-QSAR model in the current study. Simultaneously, a 3D contour map was also
generated to assess the compounds’ reactivity. To gain comparative insights, the high and low active
molecules were superposed on to the 3D contour map and graphically visualized.

2.4. Model Validation

The ability of the 3D-QSAR model to predict the activity values for the chemical dataset is crucial,
and therefore it is further validated using the correlation coefficient approach. Generally, analysis
based on the correlation coefficient approach is highly effective, as it clearly demonstrates the close
correspondence between the dataset provided in terms of numerical values between 0 to 1. Thus,
the quality of the model developed can be validated based on a higher correlation coefficient value
closer to 1. Here, the correlation coefficient value was calculated using predicted values versus the
experimental/actual values of the training (r2) and test (q2) datasets, respectively.

2.5. External Validation Using a Database of Useful Decoys

The enrichment analysis is widely used to validate the reliability of the generated model. For
this, a separate database of decoy molecules was used. Typically, the decoy dataset is prepared based
on the similarity of the reference compounds that are predicted as active by the 3D-QSAR model.
Therefore, the selected decoy compounds comprises the physicochemical properties of the reference
compounds, but differ in their 2D structures. Consequently, a set of 13 active molecules predicted by
the 3D-QSAR model was selected and submitted to the DUD-E web server (http://dude.docking.org),
which produced a list of decoys. The decoys thus obtained were further processed using the LigPrep
module with the same parameters previously mentioned. Afterwards, the Enrichment Factor (EF) and
the goodness of hit (GH) score were calculated using the following equations. The EF was computed
based on the following equation:

EF =

 Ha
Ht(
A
D

)  (1)

GH =

{[
Ha ∗ (3a + Ht)

4HtA

]}
∗

[
1−

(Ht−Ha)
(D−A)

]
(2)

where Ha represents the total number of active compounds retrieved from the hit list, Ht represents the
number of compounds retrieved by the screening, A represents the total number of active compounds
in the database, and D represents the total number of compounds in the decoy database. The GH
value is bound between 0 and 1, which assures the quality of the generated model as null or an ideal
status, respectively. Furthermore, the % of the ratio actives (%RA) can also be estimated using the
following equation:

%RA =
[(Ha

A

)
∗ 100

]
(3)

http://dude.docking.org
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Likewise, the screening performance of the 3D-QSAR model was estimated by the Receiver
Operating Characteristic (ROC) curve. The Robust Initial Enhancement (RIE), and the area under
the curve (AUC) values were also obtained during this analysis. The RIE was obtained using the
following formula:

RIE =
1
n
∑n

i=1 e−axi

1
n

[
1−e−a

e(
a
n )−1

] (4)

where xi = (ri/N) represents the relative rank of the ith active compound and α represents the tuning
parameter. Normally, the RIE was obtained based on the decrease in exponential value exhibited by
the active molecules, while AUC represents the probability value acquired when the randomly chosen
known active compound ranked higher than a randomly chosen decoy molecule. The ideal screen
performance of the model is validated based on ROC and AUC values closer to 1, and large positive
RIE values. The ROC is calculated using the following formula:

ROC = RIE X
n
N sinh

(
α
2

)
cosh

(
α
2

)
− cosh

[
α
2 − a

(
n
N

)] + 1

1− e1−( n
N )

(5)

2.6. Screening Potential Compounds

To identify new inhibitors with a novel scaffold that matches the 3D-QSAR properties, the
generated five-site pharmacophore hypothesis—NNRRR—was used to screen the database of chemical
compounds. For this, the ZINC (zinc.docking.org) [46] and Maybridge (maybridge.com) databases
were obtained, and treated with the LigPrep module (Schrödinger 2016-3), as previously mentioned.
Consequently, the resulting hits were filtered using ADME (absorption, distribution, metabolism
and excretion) [47–49] and Lipinski’s rule of 5 (RO5) [50] properties using the QikProp (Schrödinger,
2016-3) program, simultaneously. QikProp readily predicts the applicability of the drug candidates by
eliminating the problematic compounds and generating a wide range of physicochemical properties
that are considered to have high significance in pharmaceutical research. The resulting compounds
may have the ability to downregulate the Mcl1 activity.

2.7. Structure Preparation

The experimentally determined three-dimensional structure of Mcl1 complexed with
3-[3-(4-chloro-3,5-dimethylphenoxy)propyl]-1-benzothiophene-2-carboxylic acid (henceforth—X)
(PDB:4HW3, chain A and resolution 2.4 Å) [7] was obtained from a protein data bank [51]. The
co-crystallized ligand is obtained from members of two different fragments merged together, and
the lead compound potentially inhibits Mcl1 with a high binding affinity value (Ki = 0.055 µM).
Additionally, the selection of this PDB coordinate is appropriate due to the fact that the co-complexed
ligand X shows close structural similarity with the chemical dataset [33].

2.8. Molecular Docking

The Glide (Grid-Based Ligand Docking with Energetics) program available in Schrödinger
2016-3 was used to carryout molecular docking studies. Initially, the pre-processed Mcl1 and the
highly active compound—C40 (4-(N-benzyl-N-(4-(4-chloro-3,5-dimethylphenoxy)phenyl)sulfamoyl)-
1-hydroxy-2-naphthoate; ChEMBL ID: 3781822; Ki = 0.031 µM; Figure 2a) from the chemical
dataset [33]—was selected for the study. Next, the co-crystallized ligand X was assigned as the
centroid of energy-based grid box, which entirely covers the hydrophobic pocket residues—A227, F228,
M231, L235, L246, V249, M250, V253, F254, R263, T266, L267, F270 and G271—of Mcl1. Subsequently,
the setup was subjected to Glide XP docking run in the hydrophobic binding pocket of Mcl1 with
default parameters. The post-docking minimization cutoff was set to 100. The docking runs produced

zinc.docking.org
maybridge.com
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low-energy conformers and docking scores, simultaneously. The 2D “Ligand Interaction diagram” and
graphical visualization of poses were used to analyze all the docking results.Processes 2018, 6, x FOR PEER REVIEW  7 of 22 
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2.9. Molecular Dynamics

The stability of the predicted binding pose—C40—inside the hydrophobic pocket Mcl1 was
analyzed by MD simulations using Desmond [52] program using OPLS_2005 force field [43] as
provided by Schrödinger suite. The Mcl1–C40 complex was placed inside the orthorhombic box and
was solvated using the TIP3P water model. The buffer was placed at 10 Å distance between the protein
surface and the edge of the box. Fifteen Na+ and 17 Cl− counter ions were added to neutralize the
system. Overall, the system contained a total of 19,219 atoms prior to the simulation. Initially, this
setup was subjected to LBFGS minimization for 2000 steps, while the gradient descent cutoff was set
to 25 kcal/mol/Å. The smooth partial mesh Ewald (PME) method was used to calculate long-range
electrostatic interactions [53]. The short-range electrostatic interactions were calculated with the default
cutoff radius of 9 Å. Next, the system was subjected to a gradual increase in temperature from 0 to
300 K with a time step of 2 fs. Finally, the entire setup was subjected to a 100 ns production run in the
NPT ensemble, while the temperature was maintained at 300 K, the Nose–Hoover thermostat [54] and
the Martyna–Tobias–Klein [55] borostat relaxation time was set to 200 ps.

2.10. Analysis of MD Trajectory

The interactions between Mcl1 and C40 over the period of time were inspected using the Maestro
graphical interface. Additionally, the trajectory analysis such as root mean squared deviation (RMSD),
radius of gyration (Rg), and root mean squared fluctuation (RMSF) was performed using Schrodinger
2016-3 in-built programs.
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3. Results and Discussion

3.1. Pharmacophore Model Generation

The alignment of the active chemical compounds plays a central role in generating a pharmacophore
model using the phase protocol [44] in Schrödinger. This pharmacophore model essentially links
the details of the pivotal functional group with its activity values. Additionally, this hypothesis was
used as a backbone to build an atom-based 3D-QSAR model, which in turn was used to predict the
activity and study the relationship of the given dataset. Consequently, the model exhibited important
pharmacophoric features in three-dimensional space.

Initially, a five-site pharmacophore model—hydrogen bond acceptor (A), hydrogen bond donor
(D), hydrophobic (H), negative ionization (N), and aromatic ring (R)—was obtained from the inhibitor
dataset, which is common to all 13 compounds from the active group. Subsequently, the generated
hypothesis was scored and ranked by the phase program based on survival, survival-inactive, site,
vector, volume and activity (Table 1). A five-featured pharmacophore model—NNRRR—was selected
based on the high survival score (6.176), and comprises two negative (N) and three aromatic (R) features.
To gain further insights, the most active (Figure 2a,d) and least active (Figure 2b,e) compounds from
the inhibitor dataset were superposed over the generated pharmacophore.

Table 1. Different score values obtained from the generated hypothesis.

S.No ID Survival Survival-Inactive Site Vector Volume Selectivity Energy Activity Inactive

1 NNRRR 6.176 4.425 1 1 0.978 1.587 0 6.762 1.751
2 ADHRR 6.173 4.322 0.64 0.979 0.593 1.814 0.096 6.943 1.851
3 DHRRR 6.172 4.886 0.48 0.837 0.607 2.108 5.953 7.481 1.286
4 AAADR 6.171 4.135 0.82 0.882 0.682 1.433 0 7.102 2.036
5 AHRRR 6.171 4.155 0.34 0.888 0.345 1.745 2.995 7.102 2.016

The Figure 2d shows that all active compounds from the dataset entirely occupied the selected
hypothesis that comprises two negative and three aromatic ring features. This explains why the
chemical features present in the selected pharmacophore model have the potential to interact with
the Mcl1 binding pocket, which may induce its inhibitory activity. Furthermore, the intersite
distances and the angle measurement between the site points (Figure 3; Tables 2 and 3) of the
hypothesis—NNRRR—determine the quality of the developed pharmacophore model. These
measurements highlight the robustness of the selected pharmacophore model. Overall, the result
provides confidence that the selected hypothesis—NNRRR—was reliable and could be used for further
3D-QSAR model development.
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Table 2. The intersite distances between the selected pharmacophore hypotheses.

Entry Site 1 Site 2 Distance

431 N7 N8 6.269
431 N7 R10 5.777
431 N7 R11 8.246
431 N7 R12 13.032
431 N8 R10 4.890
431 N8 R11 2.935
431 N8 R12 7.862
431 R10 R11 5.098
431 R10 R12 8.451
431 R11 R12 5.104

Table 3. The intersite angles between the selected pharmacophore hypotheses.

Entry Site 1 Site 2 Site 3 Angle

431 N8 N7 R10 47.7
431 N7 N8 R10 60.9
431 N7 N8 R11 123.1
431 R10 N8 R11 76.9
431 N7 R10 N8 71.4
431 N7 R10 R11 98.4
431 N8 R10 R11 34.1
431 R11 R10 R12 34.1
431 N8 R11 R10 69.1
431 R10 R11 R12 111.9
431 N8 R12 R11 9.1
431 R10 R12 R11 34.1

3.2. 3D-QSAR Model

The previously developed pharmacophore hypothesis—NNRRR—was used to build a 3D-QSAR
model, with the phase [44] program. For this, the entire dataset was subdivided into 29 training
and 11 test set compounds (Table S1) that subsequently produced 3D-QSAR. Simultaneously, the
activity values for the chemical dataset were also obtained during the 3D-QSAR model development
(Table 4). The PLS prediction approach exhibited—r2 = 0.9209, q2 = 0.8459, and Pearson’s R = 0.9356—a
greater degree of confidence to the developed 3D-QSAR model. Here, r2 and q2 represent 92% and
86% of variance in the observed activity values obtained for the training and test data, respectively.
Also, the scoring based on Pearson’s R is obtained by the correlation between the predicted and
the observed activity for the test dataset. As can be seen from Table 4, the Pearson’s R produced
higher value—0.9356—which in turn explains why the developed 3D-QSAR model is more statistically
significant. Also, the robustness of the developed 3D-QSAR model is further validated by the difference
between the r2 and q2 being 0.075 (0.9209 − 0.8459 = 0.075). Additionally, a smaller standard deviation
(SD = 0.3036) was obtained for the regression analysis and RMS error (RMSE = 0.3473) values for the
test set predictions. These values indicate that the developed QSAR model is highly reliable to predict
the activity of novel compounds.

Table 4. Partial least square (PLS) analysis for statistically significant hypothesis.

ID Factors SD R2 F p Stability RMSE Q2 Pearson’s R

NNRRR 1 0.5045 0.7543 82.9 1.02 × 10−9 0.9564 0.4978 0.6836 0.8808
2 0.4616 0.8020 52.6 7.20 × 10−10 0.9481 0.4987 0.6824 0.8754
3 0.3780 0.8723 56.9 2.60 × 10−11 0.8157 0.4669 0.7216 0.8850
4 0.3036 0.9209 69.9 7.20 × 10−13 0.7727 0.3473 0.8459 0.9356
5 0.2536 0.9471 82.4 6.63 × 10−14 0.7241 0.4336 0.7599 0.8952
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3.3. Scatter Plot

Subsequently, the scatter plots were obtained for the training and the test dataset, individually
(Figure 4). The plots were constructed based on the experimental and predicted values to find the
best line of fit for the training and test datasets. The scatter plots are used to gain clarity on (i) the
correlation between the chemical dataset, (ii) which in turn helps us to understand the predictability of
the developed 3D–QSAR model. Here, the scatter plot shows the training and test molecules that are
proximal to the best-fit line, which explains the robustness of the developed model.
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Figure 4. Scatter plots: The predicted activity values plotted against experimental values for (a) training
set (y = 0.92x + 0.46 (R2 = 0.92)) and (b) test set (y = 0.73x + 1.43 (R2 = 0.87)) compounds.

3.4. Model Evaluation by Decoy Analysis

Typically, the predictive power of the developed 3D-QSAR hypothesis can be estimated by the
enrichment factor (EF) analysis using the dataset of decoy molecules that was not used for the model
building. In particular, this analysis was carried out with the aim to reveal the ability of the 3D-QSAR
model to discriminate the actives from the decoy compounds. The current model predicted a set of
13 active compounds (Table S1) that was treated as the reference dataset and submitted to the DUD-E
database, which retrieved 537 decoy compounds. These decoy compounds obtained from the DUD-E
database contain all the physiochemical properties of the reference compounds, with the exception of
different 2D structures. Subsequently, a decoy database (550 compounds-D) was prepared that includes
all the actives (41 compounds-A) and the DUD-E outputs (537 compounds). Now, the prepared decoy
database was used to screen against the developed 3D-QSAR model. The result revealed that in 1% of
the total database the generated model screened 28 decoys and five active compounds overall. This
results in 12%, 13%, and 0.78 for RA, EF, and GH, respectively (Tables S2–S4).

Furthermore, the screening performance of the 3D-QSAR model was estimated using the ROC
curve (Figure S1), which clearly reveals the balance between the sensitivity (capacity to identify true
positive) and the specificity (the capacity to exclude false positives) of the dataset used. Additionally,
the ROC value is predominantly used to assess the overall performance of the generated model. In the
current study, a total of 550 compounds were used. These compounds were ranked based on the
activity values predicted by the 3D-QSAR model, which subsequently estimates the ROC. Here, the
ROC was 0.94, which suggests that the selected model exhibited an ideal screening performance by
distinguishing the active molecules from the inactive ones. This further demonstrates that the model
is reliable, and can be readily used to screen different sets of compounds. Consequently, the AUC
and RIE values were 0.90 and 8.26 from the screening performance evaluation for the selected model,
respectively. The resulting AUC value closer to 1 and the large positive RIE value signify additional
support to the screening performance evaluation exhibited by the selected model.
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Overall, the enrichment validation results attained using the decoy molecules confirm that the
developed 3D-QSAR model is robust and contains rational properties that are required for the virtual
screening of different sets of compounds.

3.5. Contour Map Analysis

During QSAR model building, the phase program in the Schrödinger suite produces a 3D contour
map. This contour map highlights the favorable (highlighted in blue) and unfavorable (highlighted
in red) regions exhibited by an individual molecular property in correlation with the 3D–QSAR
model (Figure 5). These individual molecular properties are associated with the positive and negative
regression coefficient scores generated by the phase program using the chemical dataset alignment.
Subsequently, these scores can predict the contribution of a specific region of the model to the positive
or negative effect towards activity.Processes 2018, 6, x FOR PEER REVIEW  11 of 22 
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Figure 5. The highly active (C40–cyan), and inactive (C1–gray) molecules superposed over the 3D-QSAR
model, represented in semi-transparent cubes (blue—positive regression coefficient; red—negative
regression coefficient) in the context of (a,b) H-bond donor, (c,d) hydrophobic, (e,f) negative-ionic, and
(g,h) electron-withdrawal effects, respectively. R1, R2, and R3 on the highly active compound represent
the regions substituted to improve the activity of the compounds.
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In the current study, the contour maps developed using the training dataset revealed four
different components—i: hydrogen bond donor, ii: hydrophobic iii: negative ionic, and iv: electron
withdrawal—that are crucial for the activity. These contour maps comprise blue and red spots that are
graphically inspected (Figure 5). In order to gain comprehensive insights into the reactive effect of a
specific atomic position, the highly active—C40—and least active—C1—compounds from the dataset
was superposed over the different contours that comprise individual molecular properties.

(i) The contour map corresponding to the hydrogen bond donor (Figure 5a,b) component is
superposed with C40 (Figure 5a), displayed as blue cubes distributed proximal to the aromatic rings
of the naphthalene, and the sulfonamide NH group that bridges the R1, R2, and R3 substitutions.
This suggests that the presence of a donor substitution (e.g., N, O, P, or S) at this position may favor
the formation of an electrostatic interaction. Contrastingly, the red contours situated proximal to the
sulfonamide oxygen and the hydroxyl group of the naphthalene ring of C40 show that the hydrogen
bond donor substitutions are not favored.

(ii) The contour map for hydrophobic characteristics (Figure 5c,d) displays blue cubes highly
distributed proximal to the R1, R2, and R3 regions of C40 (Figure 5c). This result reveals that the multiple
phenyl substitutions—R1, R2, and R3 regions—of the C40 may enhance the hydrophobicity, and might
play a major role in its higher activity. Additionally, this result is supported by our docking analysis
(see below), which also predicts that the phenyl groups at the R1 and R3 positions form π–π interactions
with the side-chain aromatic ring of F254 and F270, respectively, whereas, the relatively weak red
spots distributed around the sulfonamide and the naphthalene ring position of the C40 denote that
these regions are unfavorable to the hydrophobicity. In comparison with C40, the C1 compound lacks
substitutions at this position, which is the major reason behind the weak hydrophobicity (Figure 5d).

(iii) Furthermore, the contour of the negative ionic feature was superposed on C40 and C1
(Figure 5e,f). It is observed from the contour maps that the blue cubes are distributed proximal to the
carboxylic and hydroxy region of naphthalene ring. This indicates that negative ionic substitutions are
favored at this position. The presence of negatively charged oxygen atoms at this position is crucial to
establish ionic contact with the R263 of Mcl1, and to stabilize the complexity, whereas the dense red
cubes distributed over the oxygen atom that connects the R2 and R3 phenyl rings, and the sulfonamide
group that connects the R1, R2, and R3 substitutions to the naphthalene ring, show unfavorable effects.

(iv) Additionally, the electron withdrawal map depicted over C40 and C1 (Figure 5g,h) shows
the blue cubes distributed around the carboxylic group of the naphthalene ring, and the sulfonamide
group that connects multiple phenyl groups. This predicts that electron-accepting substitutions (such
as N or O) at this position may be favorable to the activity.

Thus, the contour map visualization gives us the ability to assess the (i) individual molecular
properties and (ii) the volume occupied by the compounds in three-dimensional space.

Additionally, to visualize the contributions of the individual molecular properties towards
protein binding, the hydrophobic contour map (which exhibits the maximal regression coefficient)
was superposed at the binding pocket of Mcl1 (Figure 6). Figure 6a clearly highlights the specific
region of the contour map’s contribution to the activity inside the hydrophobic pocket of Mcl1. For
more clarity, the predicted binding pose of the highly active compound—C40—were superposed
over the crystal ligand X (Figure 6b), which indicates that the head naphthyl moiety and the tail
4-chloro-3,5-dimethylphenyl regions are aligned well, while the benzyl group is buried well inside the
P2 pocket of Mcl1. Conclusively, the selected pharmacophore—NNRRR—based 3D-QSAR model can
be used as a position constraint to screen a new chemical compound database that may contain novel
scaffold with high binding affinity to inhibit Mcl1 activity.
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3.6. Identifying Novel Inhibitors

The generated five-site pharmacophore hypothesis—NNRRR—was used to identify new inhibitors
with a novel scaffold that matches the molecular properties predicted by the 3D-QSAR model. To obtain
new inhibitors that could potentially target the hydrophobic binding groove of Mcl1, lead-like
compounds from ZINC (6,053,287) and Maybridge (51,775) was used. All default parameters were
applied to screen the database of chemical compounds to match the predicted 3D features to each of the
five inter-feature distances. There was a total of 6078 hit compounds, comprising 5935 and 143 identified
by the pharmacophore model from ZINC and Maybridge databases, respectively. Subsequently, all
the hit compounds were filtered for ADME and Lipinski’s rule-of-five properties using the QikProp
program. The hit compounds were filtered based on 44 different physicochemical descriptors generated
by QikProp. Finally, 17 compounds survived the filtering procedure. Consequently, the top five
compounds were selected as the representatives and presented (Table 5). These compounds may have
properties that could inhibit Mcl1 activity. These hit compounds require further experimental validation.
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Table 5. Top 5 hit compounds obtained from ZINC and Maybridge databases filtered using QikProp program.

Molecule ID 2D Representation mol_MW logPoct logPw logPo/w logS logBB Human Oral Absorption (%)

ZINC00755398
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3.7. Molecular Docking Analysis

The docking analysis aims to predict the low-energy conformational pose of a given ligand
on the binding pocket of a protein. Here, the compound with high inhibitory activity—C40 with
Ki = 0.031 µM—was selected from the dataset and subjected to docking at the hydrophobic binding
pocket of Mcl1 (Figure 7) using the glide program available in the Schrödinger suite. Subsequently,
the docking runs generated 79 low-energy conformational poses. Furthermore, the ensemble of
ligand poses was investigated, and the best conformation was selected based on the docking score
(−24.30 kcal/mol—Table 6) and a graphical inspection of bonded and non-bonded contacts. Here, the
preliminary docking analysis reveals that (a) good alignment was observed between the crystal ligand
X and the low-energy conformational pose of the highly active compound—C40—from the dataset,
and (b) the docked ligand—C40—was surrounded by A227, F228, M231, L235, I237, L246, V249, M250,
V253, F254, R263, T266, L267, F270, G271, V274, L290, I294, V297, and L298 residues at the Mcl1 binding
pocket by covering a larger area of interaction.
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Figure 7. (a) Molecular surface representation to show the region where the highly active
inhibitor—C40—interacts with Mcl1. (b) The salt bridge (yellow dotted lines) (c) and π–π interactions
(black dotted lines with distances in Å) between the highly active compound—C40—and binding
site residues of Mcl1. (d) A magnified view of the binding groove of Mcl1 (represented in surface)
highlighting the principal interactions between the C40 and surrounding contacts.
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Further analysis shows that the electrostatic interaction stabilizes the predicted low-energy
conformational pose of C40 inside the binding pocket of Mcl1. This electrostatic interaction takes place
between the negatively charged carboxylic acid group of C40 and the positively charged side-chain
atom of R263, i.e., between the O5 atom of C40 and the NH atom from the guanidium side-chain of
R263. Apart from the strong electrostatic interaction, the predicted low-energy conformational pose of
C40 was further stabilized by a series of π–π interactions. These π–π interactions occurred between the
(i) naphthyl moiety and (ii) the chlorobenzene of C40 with the side-chain benzene ring of F270; and
the (iii) benzene ring that inserts deep into the P2 pocket with these side-chain benzene ring of F254
of Mcl1. From the figure, it is observed that these π–π interactions help to anchor the C40 in place,
enhancing the complex’s stability. The distances between residues involved in the π–π interactions
are depicted in Figure 7c. Furthermore, the rest of the surrounding hydrophobic residues provide
additional strength for complex stability via non-bonded interactions.

Table 6. Docking score obtained for the top five low-energy conformational poses.

Docking Pose Binding Energy (kcal/mol)

1 −24.30
2 −24.92
3 −25.13
4 −25.32
5 −26.07

3.8. MD Simulations of Docked Complex

In our previous investigation, MD simulation was widely applied to Bcl-2 family proteins to gain
an understanding on the mechanism of action [37,39,40,56]. Likewise, the current study is an attempt to
extend our understanding of the molecular mechanism of Mcl1 with the highly active compound from
the dataset—C40—used to construct the 3D-QSAR model. Consequently, the molecular mechanism of
interaction and its stability during the MD simulation were analyzed.

3.8.1. Stability Analysis of Mcl1–C40 Complex by RMSD

Initially, the structural deviations of the Cα atoms during the MD simulation for Mcl1 and
C40 were calculated individually for each time point throughout the simulation by RMSD analysis
(Figure 8a). The RMSD analysis provides insight into the change in structural conformation of Mcl1
over time. Here, the figure shows that the Mcl1 attained the equilibrium phase from the starting time
until the end of the simulation, indicating that the MD simulation has equilibrated quite well. The
RMSD value for Mcl1 is ~1.6 Å.

Simultaneously, ligand RMSD analysis was performed to gain insights about the stability of
ligand interactions with the binding pocket of Mcl1. The RMSD values of the ligand were obtained by
comparing ligand coordinates during the MD simulation against the initial conformation. Further
observation in Figure 8a revealed that the compound C40 experienced more deviation during the early
part of the simulation, i.e., until 20 ns; and then reached the equilibrium phase and maintained until
the end of the simulation with an RMSD value of ~1.75 Å.
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fluctuation (RMSF), (d) distances between the polar atoms, (e) interacting frequency, and (f) interaction
types monitored for the Mcl1–C40 complex during MD simulation.

3.8.2. Stability Analysis of Mcl1–C40 Complex by Radius of Gyration (Rg)

The stability of the system can be examined through the Rg approach by comparing all Cα

coordinates to the initial frame during the MD simulation. Typically, Rg measures the overall
differences in the protein structure due to ligand binding, which can be defined as the root mean
squared distance of the collection of atoms from its common center-of-mass. Here, the Rg analysis
was carried out for the Mcl1–C40 complex over time (Figure 8b). Figure 8b shows that the Rg values
was maintained at ~1.48 to 1.5 Å for the studied complex, which in turn clearly demonstrates that
Mcl1 experienced only a negligible amount of conformational change (between 1.48 to 1.5 Å) due to
C40 binding.

3.8.3. Stability Analysis of Mcl1–C40 Complex by RMSF

Next, a structural flexibility analysis was performed on all the Cα atoms in Mcl1 for each time point
throughout the simulation by RMSF analysis (Figure 8c). Here, the RMSF analysis was performed to
gain insight into local changes in the Mcl1 structure. The peaks in the RMSF graph highlight the region
of Mcl1 that experienced fluctuations during the MD simulation. A deeper investigation in Figure 8c
reveals that the (i) N– and C– portions and (ii) the loop regions of the Mcl1 experienced expected
fluctuations. Furthermore, (iii) the binding site region where C40 interacts with Mcl1 experienced



Processes 2019, 7, 224 17 of 21

minor fluctuations (green lines). These contact residues permit C40 to explore the Mcl1 binding pocket
to find an energetically favorable position and establish a tight interaction with its surroundings.

3.8.4. Interface Analysis during MD Simulation

To gain insights into the molecular mechanism of protein–ligand binding during MD simulation,
the Mcl1–C40 complex interface was investigated using the MD trajectory. The preliminary observation
on the trajectory displays that C40 did not experience any dissociation from the Mcl1 binding cavity
during the MD simulation. Instead, C40 involved direct interaction with the surrounding residues.
The C40 fits well deep inside the Mcl1 binding cavity with a low-energy conformational state and
remained stable during the MD simulation. Furthermore, the bonded and non-bonded interactions
were also examined at the Mcl1 binding pocket region using a representative snapshot collected from
the equilibrium phase of the MD trajectory.

The interface analysis reveals that electrostatic and hydrophobic interactions play a major role
in ligand binding (Figure 8d–f). In particular, a salt bridge interaction between R263 and the oxygen
atom of C40 plays a significant role by exhibiting a strong influence on the complex stability. It is
important to know the evolution of the salt bridge interaction between Mcl1 and C40 over a period of
time. Therefore, the distances between the side-chain NH1 and NH atoms in the guanidium group of
R263 and the side-chain carboxylic acid of C40 were measured (Figure 8d).

The graph clearly points out that the distances between the donor and acceptor atoms of C40
and Mcl1 remained consistent throughout the simulation. The distances are approximately 3.0 and
3.2 Å, respectively. Additionally, the interacting frequencies for binding site residues with C40 were
monitored (Figure 8e). The figure displays that R263 interacts with C40 at a higher frequency than the
other residues. This clarifies that the salt bridge contact plays a major role in maintaining C40 inside
the binding pocket of Mcl1.

Apart from the hydrogen bond interactions, the hydrophobic contacts present at the Mcl1–C40
interface provide further strength to the complex stability (Figure 8f). The figure reveals that C40 is
constantly surrounded by hydrophobic residues, such as A227, F228, M231, L232, L235, I237, L246,
M250, V253, F254, V258, G262, L267, F270, V274, L290, I294, and V297, during the simulation. Among
these ensembles, the F228, M250, L267, and F270 residues established strong contact with C40 for more
than 70% of the simulation time. This explains that these residues are involved in a constant interaction
with C40 for a longer time period and play a major role in complex stability.

4. Conclusions

In summary, we attempted to explore crucial molecular properties and the mechanism of binding
using a known series of N-substituted 1-hydroxy-4-sulfamoyl-2-naphthoate inhibitor targeting Mcl1.
Multiple computational tools provided a great advantage. In the current investigation, we extended our
understanding of the crucial molecular properties of the known inhibitor series responsible for its activity.
For this, a five-site pharmacophore-based 3D-QSAR model—NNRRR—was developed that exhibited
high confidence scores. External validation performed on the 3D-QSAR model revealed that the
selected model has high predictive power. Subsequently, the highly active compound—C40—docked
at the Mcl1 binding pocket revealed a low-energy conformational pose, together with a conserved
charged interaction with R263 of Mcl1. Furthermore, the MD simulation on the docked complex
demonstrated the molecular mechanism of binding over a period of time. The extensive MD analysis
predicted the crucial residues—F228, M250, R263, L267, and F270—that have more impact on the
complex stability for an N-substituted 1-hydroxy-4-sulfamoyl-2-naphthoate compound series. Utilizing
the information available in this intense area of research is inevitable, as the results obtained from the
current investigation may act as initial guidelines for the discovery of a novel Mcl1 inhibitor.
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