
NeuroCGRA: A CGRAs with support for neural
networks

Abstract—Coarse Grained Reconfigurable Architectures
(CGRAs) are emerging as enabling platforms to meet the high
performance demanded by modern embedded applications. In
many application domains (e.g. robotics and cognitive embedded
systems), the CGRAs are required to simultaneously host
processing (e.g. Audio/video acquisition) and estimation(e.g.
audio/video/image recognition) tasks. Recent works have revealed
that the efficiency and scalability of the estimation algorithms
can be significantly improved by using neural networks.
However, existing CGRAs commonly employ homogeneous
processing resources for both the tasks. To realize the bestof
both the worlds (conventional processing and neural networks),
we present NeuroCGRA. NeuroCGRA allows the processing
elements and the network to dynamically morph into either
conventional CGRA or a neural network, depending on the
hosted application. We have chosen the DRRA as a vehicle to
study the feasibility and overheads of our approach. Simulation
using edge detection reveal that the neural networks can
successfully process real-time video for up to 1M pixels.
Synthesis results reveal that the proposed enhancements incur
negligible overheads (4.4% area and 9.1% power) compared to
the original DRRA cell.

I. I NTRODUCTION AND MOTIVATION

Recently, the increasing speed and performance require-
ments of embedded applications, coupled with the demands
for flexibility and low non-recurring engineering costs, have
made reconfigurable hardware a very popular implementation
platform. The reconfigurable architectures can be classified on
the basis of granularity i.e. number of bits that can be ex-
plicitly manipulated. Coarse Grained Reconfigurable Architec-
tures (CGRAs), provide operator level configurable functional
blocks, word level datapaths, and very area-efficient routing
switches. Therefore, compared to the fine-grained architectures
(like FPGAs), CGRAs require lesser configuration memory
and configuration time (two or more orders of magnitude
[1]). As a result, CGRAs achieve a significant reduction in
area (from 66 % to 99.06 % [2]) and energy consumed per
computation (from 88 % to 98 % [2]), at the cost of a loss in
flexibility compared to bit-level operations. Therefore, CGRAs
have been a subject of intensive research since the last decade
[2], [3].

Today, CGRAs host multiple applications simultaneously
on a single platform. Each application can potentially have
different requirements (e.g. MPEG4 decoder requires exact
calculation while edge detection can tolerate approximations).
For the estimation problems,neural networkpromise higher
efficiency and scalability compared to conventional process-
ing algorithms [4]. However, the existing CGRAs lack the
support to simultaneously provide conventional and the neural

networks based processing [4]. As a solution to this problem,
we present NeuroCGRA. The proposed architecture allows to
efficiently interleave the conventional processing with estima-
tion (using neural networks). For the applications that require
exact calculations, the device behaves like a normal CGRA,
with MACs/ALUs connected via circuit switched interconnect.
When an application, that can tolerate approximate results,
enters the platform the device dynamically morphs into a
neural network.

Neuro
MAC

(c) Neuro CGRA

WLAN

Edge
detection

WLAN Edge Detection

(b) Neural network for
estimation applications

Input
layer

Hidden
layer

Output
layer

Edge detection

(a) Conventional CGRA
for DSP applications

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

Input

Output

WLAN

Fig. 1. Motivation for NeuroCGRA

To visualize our technique, consider Fig. 1. Fig. 1 (a)
shows simple WLAN transmitter mapped to a conventional
CGRA [5], [6]. The figure shows a typical scenario, where
multipliers/accumulators are connected in a pipelined fashion
to produce outputs. Fig. 1 (b) depicts edge detection realization
on a neural network. A neural network typically consists
of three elements: (i) neurons (the processing elements), (ii)
synapse (the interconnect network), and (iii) weights (data
for processing). Usually a neural network consists of three
layers of neurons (input layer, hidden layer, and output layer).
Each neuron layer performs calculation on the weights based
on the neuron model. The results calculated in one layer

are communicated to the neurons in the next layer (to the
right). Based on the joint calculation of the neurons, the
edges in an image are detected. Fig. 1 (c) shows functionality
of the proposed CGRA. Each processing element can act
as either as conventional MAC or a Neuron. When WLAN
and edge detection request platform resources the platform
dynamically creates a different partition for each application.
For WLAN and edge detection the platform resources morph
into conventional and neural network, respectively.

This paper is organized as follows. In Section II, a brief
survey of existing platforms used to realize neural networks is
presented. In Section III, an overview of the CGRA platform,
used in this paper is described. In Section IV, details of the
proposed method are presented. In Section V, we explain how
the edge detection is mapped to DRRA. In Section VI, we
evaluate the benefits and redundancies imposed by our method
on an actual CGRA. Finally, in Section VII, we summarize our
contributions and suggest directions for future research.

II. RELATED WORK AND CONTRIBUTIONS

Hardware implementations of neural networks has been a
subject of intensive research since the last two decades [7].
In this section we will review only the most prominent work
dealing with neural network implementation on reconfigurable
architectures.

Much of the work implementing neural networks on re-
configurable architectures deals with FPGAs. In particular
it focuses on how various algorithms can be realized using
neural networks. Krips et al. [8] presented an FPGA based
implementation neural networks to track of video images.
Yang and Paindavoine [9] proposed a an implementation
of neural networks for face tracking. Maeda and Tada [10]
developed a neural network model to support online learning.
Himavathi et al. [11] used layer multiplexing technique to
implement multi-layer feed-forward networks into FPGA.

Recent works have revealed that for estimation or approxi-
mate problems, the neural networks in particular offer higher
energy efficiency and speedup compared to conventional al-
gorithms. They have shown that neural networks can also
be used as accelerators. Chen et al. [12] provide a detailed
discussion of hardware and software based accelerators (using
neural networks) with special emphasis on memory efficiency.
Esmaeilzadeh et al. [13] presented an ASIC based accelerator
to efficiently speed up approximate programs. Chakradhar et
al. [14] proposed an FPGA based configurable coprocessor
that dynamically configures the hardware to provide the best
achievable throughput (on the available resources). The main
idea of this paper, i.e to interleave conventional processing
with neural networks on a unique platform, is inspired from
this work. The major difference is that our work focuses
on CGRAs, that have significantly different architectures and
lesser flexibility, compared to FPGAs. Zhengrong [15] showed
that the spiking neural networks (when compared to Sobel and
Canny filter) are more efficient in detecting edges (in terms of
accuracy), can be easily customized to detect specific partsof
an image and can tolerate high levels of noise. Zhengrong’s

work has motivated access the feasibility to implement edge
detection using spiking neural networks.

The related work reveals that most of the work on neural
networks deals with their realization on FPGAs. The works
that do use neural networks to enhance efficiency, typically
employ FPGAs or ASICs. None of the existing works accesses
the feasibility of implementing neural networks on CGRAs.
Compared to the related work, this paper has three major
contributions:

1) We present NeuroCGRA that allows to interleave the
conventional calculations with neural networks;

2) We propose a neural network translator that provides a
framework to map neural network on CGRAs; and

3) We evaluate benefits and overheads of implementing the
proposed technique on an actual CGRA.

III. SYSTEM OVERVIEW

We have chosen the Dynamically Reconfigurable Resource
Array (DRRA) [16] as a vehicle to evaluate feasibility of
implementing neural networks on an actual CGRA. Neverthe-
less, it seems that the results should applicable to most grid
based CGRAs as well. The motivation for choosing DRRA is
that it is well documented, its bandwidth has been tested on
demanding industrial applications (with Huawei) [17], andwe
have available all its architectural details from RTL codesto
physical design.

A. DRRA configuration flow

As shown in Figure 2, DRRA is programmed in two
phases (off-line and on-line) [18]. The configware (binary)for
commonly used DSP functions (FFT, FIR filter etc.) is written
in VESYLA (HLS tool for DRRA) and stored in an off-line
library. For each function, multiple versions, with different
degree of parallelism, are stored. The library, thus created, is
profiled with frequencies and worst case time of each version.
To map an application, its (simulink type) representation is
fed to the compiler. The compiler, based on the available
functions (present in library) constructs the binary for the
complete application (e.g. WLAN). Since the actual execution
times are unknown at compile-time, the compiler sends all
the versions (of each function), meeting deadlines, to the run-
time configware memory. To reduce memory requirements
for storing multiple versions, the compiler generates a com-
pact representation of these versions. Details of compression
algorithm and how it is unraveled are given in [18]. The
compact representation is unraveled (parallelized/serialized)
dynamically by the run-time resource manager (running on
LEON3 processor).

B. DRRA Computation Layer

DRRA computational layer is shown in Fig. 3. It is com-
posed of four elements: (i) Register Files (reg-files), (ii)mor-
phable Data Path Units (DPUs), (iii) circuit-Switched Boxes
(SBs), and (iv) sequencers. The reg-files store data for DPUs.
The DPUs are functional units responsible for performing
computations. SBs provide interconnectivity between different

Application
deadlines

Vesyla
(HLS tool) Library Compiler

Simulink
model

Configware

Parallelize/
serialize

Versions

DRRA

Compile time

Runtime

Leon3

Compression

Map

Fig. 2. Configuration Model

components of DRRA. The sequencers hold the configware
which corresponds to the configuration of the reg-files, DPUs,
and SBs. Each sequencer can store up to 64 36-bit instructions
and can reconfigure the elements only in its own cell. As
shown in Fig. 3, acell consists of a Reg-file, a DPU, SBs, and
a sequencer, all having the same row and column number as a
given cell. The configware loaded in the sequencers containsa
sequence of instructions (reg-file, DPU, and SB instructions)
that implements the DRRA program.

Column 0

Row0

Row1

Column 1

Sequencer Sequencer

DPU DPU

DPUDPU

Reg-file Reg-file
SB

SB

SB

SB

SB

SB

SB

SB

Reg-file Reg-file

Cell0

Cell1

Cell2

Cell3

Sequencer Sequencer

Fig. 3. DRRA computation layer

C. DRRA Storage Layer (DiMArch)

DiMArch is a distributed scratch pad (data/configware)
memory that complements DRRA with a scalable memory
architecture. Its distributed nature allows a high speed data
and configware access to the DRRA computational layer (com-
pared to the global configuration memory). Further discussion
of DiMArch is beyond the scope of this paper and for details
we refer to [19].

IV. N EURAL NETWORKS/DRRA INTEGRATION

In this section, we will present the neural network model
chosen for this paper followed by its implementation on
DRRA.

A. Neural network model

For this work we have chosen Spiking Neural Networks
(SNN). The motivation for choosing SNNs is that they are the
latest generation of neural networks models that closely emu-
late the biological neurons. For further details about the SNNs

an interested reader can refer to [20]. For understanding, Fig.
4 depicts a simple neuron model. The neurons are connected
in one-to-many fashion. In the figure, the neuron 3 receives
input spikes from neurons 1, 2, and 3. Each connection is
characterized by a weight (Wt1, Wt2, and Wt3). When a spike
is generated, depending on the neuron model and weight of
the connection, the neuron performs calculations.

4

1

2

3

Wt1

Wt2

Wt3

Fig. 4. A simplified neuron model

We have chosen a simple and the widely used model called
leaky Integrate and Fire (I & F), to model a neuron. The model
is given by the Equation 1:

dv/dt = (Wt ∗ I) + a− (b ∗ V). (1)

Where the potentialV integrates input spikesI and leaks over
time with−bV component.Wt is the weight of the connection
Coefficienta determines equilibrium point and coefficientb
the speed of leakage. When the threshold potential is reached,
a neuron outputs a spike and its potential is reset.

B. Neural network realization on DRRA

To realize neural networks on DRRA, we have embedded
a dedicated hardware, called neuroDPU, with each DPU of
DRRA. As a result of our enhancements, the DPU can be
configured to either normal or neuron mode. The details of the
normal mode can be found in [2], here we only concentrate
on the neuron mode. Fig. 5 shows how the DPU functions in
neuron mode. The figure in particular illustrates how simple
neural network shown in Fig. 4 is implemented on DRRA.
To mimic parallelism in neural networks, we have employed
time multiplexing. Where a time slot is reserved for each trans-
mitting neuron (connected to the receiving neuron). In Fig.5
(a) the transmitting DRRA cell implements three neurons. A
register form the reg-file is reserved for each neuron. In every
cycle, the neuroDPU receives an input from one of the three
registers (representing the neurons) in round robin fashion.
The neuroDPU applies the Equation 1 to the input and stores
the result in the dedicated register for accumulation. If the
result is greater than pre-defined threshold,1 is stored in the
spike register (otherwise0 is stored). Since the transmitting
cell implements three neurons, the value of the spike register is
sent to the receiving cell after every three cycle. The receiving
cell stores the value of the spike register a reserved location
(at first address), of the reg-file. Fig. 5 (b) shows processing
done by the receiving neuron. In each cycle, the neuroDPU of
the receiving cell extracts a bit from spike register (stored in
its reg-file) and the weight of the corresponding connection. It
applies theI&F model to the inputs and generates the outputs.

1 2 3 Weights

I&F

Output
spikes

Input spikes

Regfile

NeuroDPU

Wt1
Wt2
Wt3Input

spikes
Cntr

(a) Neuron interconnections (b) Neuron implementation

Regfile

NeuroDPU

Transmitting cell Receiving cell

Spike
register

Spike
register

1 2 3

Cntr

Fig. 5. Neuron realization on DRRA

C. Clustering for scalability

In Section IV-B we showed how a simple neural network
(containing three neurons) can be realized on DRRA. In this
section, we will explain how a large scale neural network
can be implemented in a scalable manner considering the
architectural details of DRRA. Neural networks may require
one to many communication between large number of neurons.
To implement these connections on DRRA, we had to consider
two architectural properties: (i) every DRRA component has
only two read/write ports and (ii) a DRRA component can be
directly connected to a component at most three hops away.
Since these architectural characteristics were designed after
a careful evaluation of area/power trade-off, we decided not
modify them. The one to many connectivity was realized by
using time division multiplexing. In the proposed approacha
specific time slot is assigned to each pair of neurons. To allow
a scalable solution, we have chosen a hierarchical clustered
approach shown in Fig. 6.

1 2 3

64 5

Intermediate
node

Input nodes

(a) Cluster of DRRA
cells

(b) Inter-cluster
connections

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Fig. 6. Inter neural communication realization

Fig. 6 (a) shows a cluster of 6 DRRA cells. In the cluster one
of the cells is chosen as an intermediate node. The intermediate
node receives data from the 6 cells in the cluster (including
itself). To allow connections with 6 cells on a 2-port com-
ponent, we exploit time division multiplexing combined with
partial and dynamic reconfiguration. In the overall processthe
intermediate cell receives data from 2 cells at a time and then
shifts to the other cells. The process continues till the data
from all the cells is received. Once every cluster has received
inputs, the intermediate nodes communicate with each other
serially to ensure one to many connectivity. Fig. 7 shows the
instructions in DRRA sequencers (needed to implement the

time division multiplexing). The figure shows that 5 cycles are
needed to collect information from all the DRRA cells in the
cluster. It should be noted that 2 additional cycles are required
to reconfigure the circuit switched network. The inter cluster
communication takes two cycles for reconfiguration and an
additional cycle to transmit data. Each cell in the cluster can
represent an arbitrary neurons, depending on the application
requirements.

Connect port A to cell 1

Connect port B to cell 2

Read data cell1

Read data cell 2

Combine cell1 and cell2

Connect port A to cell 3

Connect port B to cell 4

Read data cell3

Read data cell 4

Combine cell3 and cell4

Sequencer
instructions

1 cycle

1 cycle

1 cycle 2 cycles

1 cycle

1 cycle

1 cycle 2 cycles

Fig. 7. Sequencer instructions to implement time division multiplexing

D. Architectural integration

To realize NeuroCGRA we have modified the configuration
flow shown in the Fig. 2. We have added another block to
generate the configware for the estimation algorithms (shown
by the dotted box). The key component of the new block is a
translator. The translator take three inputs: (i) application, (ii)
weights, and (iii) application to generate the reg-file, SB,and
DPU instructions for DRRA (see Section III-B).

Application
deadlines

Vesyla
(HLS tool) Library Compiler

Simulink
model

Configware

Parallelize/
serialize

Versions

DRRA

Compile time

Runtime

Leon3

Compression

Map

Translator

Neural
network
model

Offline
generated

weights

Network
specs

Estimation
applications

Fig. 8. Modified programming flow

Fig. 9 depicts how each input (to the translator) is repre-
sented, considering a neural network composed of 8 neurons.
The the neural network application is represented by adirected

acyclic graph, similar to [21]. Where each node represents a
neuron and the edges represent the interconnection between
the two nodes. The motivation for choosing the directed
acyclic graph is that it easily represents most of the neural
network applications and can be easily converted to linked list
for automated application generation. The weights are stores as
a look-up table. For each neuron, the weights of all connected
neurons are stored. If there is no connection between a pair
of neurons (e.g. neuron 4 and 5 in the figure),0 is stored.
Finally, the network specifications in form the cluster size
and the in each cluster is provided to the translator. In the
simplest case i.e.clustersize = 1, only one DRRA cell for
each neuron layer (input, hidden and output layer) is sufficient.
If clustersize > 1, the required the cells,DRRAc, are
given byDRRAc = clustersp− clustersi. Whereclustersp
and clustersi denote respectively the processing and the
intermediate clusters.

Network
specs

Cluster Size
Slots

1

2

3

4

5

6

7

8

Application Weights

Bs
4
5
6
7
8

Nu1 Nu2 Nu3
-

-
-
- - -

- - -

W1 W2
W3 W4
W5 W6

Translator

DPU

RegfileSeqTDM

Weights
DiMArch

Neuron DPU

RegfileSeq

Fig. 9. Translator functionality overview

The translator functionality is shown in Algorithm 1. The
translator works in three steps: (i) DPU instruction generation,
(ii) Reg-file instruction generation, and (iii) SB instruction
generation. The algorithm shows the translator functionality
when clustersize = 1. If an application requires more clus-
ters, the same algorithm can be applied to generate instructions
for each cluster. In the first step, a separate DPU instructions
is generated. In the second step, the reg-file for each cell is
initialized. One of the register in each reg-file is reservedto
store spikes. Since each register of the reg-file is 16-bit wide,
the spike register can contain up to 16 spikes. The weights
for each neuron connection is loaded to the register files. Ifa
neuron is connected to greater than 63 neurons, the weights are
stored in DiMArch memory. The details of the data transfer
from DiMArch to reg-files is beyond the scope of this paper
and for details an interested reader can refer to [19]. The total
number of neurons per reg-file is dependent on the cluster size.
In the third step, the switch-box instructions are generated. If
the clustersize = 1 only three interconnect instructions (one
for each layer) are needed. Otherwise, additional interconnect

instructions to interconnect the clusters are also generated
(similar to Fig. 7).

Input: application, weights, network specifications ;
Output: DPU, reg-file, and SB instructions ;
/* Generate DPU instructions */
if Neural application existsthen

DPU=neural mode ;
else

DPU=normal mode ;
end
/* Generate Reg-file instructions */
for j ← 0 to N do

/* N is the number neurons in
application */

Spike register delay=conj ;
/* conj is the connections per DRRA

cell */
for k ← 0 to conj do

i=62 ;
Reg − filei= Wtk ;
i–;
if i¡0 then

store Wt in DiMArch
end
;
Delay=0 ;
Reg-file = Delay ;
Delay ++ ;

end
end
/* Generate SB instructions */
if Cluster size< 2 then

Generate SB instructions to connect three layers ;
else

Generate SB instructions for clusters;
Generate SB instruction for inter-cluster
communications;

end
Algorithm 1: Translator functionality

To mimic the neuron functionality, we have enhanced the
functionality of the Data Path Unit (DPU). With each DPU we
have added a special unit to perform I & F model. The weights
are stored in reg-files and the DiMArch. The reg-file are also
used to store spikes from other interconnected neurons. Since
the spiked neural networks require timing information, we
have added a global counter counter. To realize the complex
neural network the sequencers are programmed to implement
TDM.

V. EDGE DETECTION ONDRRA

Edge detection is an image processing technique to identify
edges in an image. The edge detection algorithms commonly
identify the points in image at which the intensity level

changes dramatically. When the change in intensity is beyond
threshold, an edge is identified. Edge detection is mainly
used to reduce the image size for many applications e.g. face
detection. Conventional edge detection, techniques such as
Roberts filter, Sobel filter, or Canny filter employ a mask to
the image. In this paper we will evaluate analyze the edge
detection using the Sobel filter network and neural networks
on DRRA.

A. Edge detection using Spiking Neural Networks

To evaluate the efficacy of implementing neural networks,
we have chosen the neural network based edge detection
algorithm presented in [22]. The motivation for choosing
spiking neural network based edge detection is that it is more
flexible (e.g. can be easily customized to detect white lines
in an image) resilient to noise compared to Sobel and Canny
filters [15]. The overall technique is shown in Fig. 10. The
techniques relies on three layers of neurons. The first layer
consists of input neurons. The input neurons receive the image
and apply the I & F processing to the received pixel values.
The result is sent to the middle or intermediate layer of
neurons. The intermediate layer has four parallel arrays of
neurons. It should be noted that for clarity, the figure only
shows one neuron in each array. Each of these layers perform
the processing for up, down, left and right edges respectively
and is connected to the input layer by differing weights.
The processed information is transmitted to the neuron in the
output layer. This neuron integrates the outputs from the four
neurons of the middle layer to detect an edge. For more details
about the theory behind neural network based edge detection,
an interested reader can refer to [22], [15].

Pixels Middle
layer

Results
layer

Fig. 10. Edge detection using neural networks

B. Implementation of Edge detection on DRRA

Fig. 11 illustrates how edge detection is mapped to DRRA.
For clarity, the figure only shows the mapping for an image
with only 2*2 pixels. Four neurons in receptor layer are
statically stored in registers 1, 2, 3, and 4 of the cell 1. The
pixel values are sequentially transferred to the DPU of cell1.
The DPU applies I & F model to the received pixel value and
generates two outputs: (i) spike and (ii) accumulation value.
The technique to generate these spikes was already shown in
Section IV. The 4 neurons of the middle layer are mapped to
the cell 2 of DRRA. In each cycle, the weight of the connection
and the spike from the spike register is sent to the DPU. The
DPU behaves the same way, as the DPU of cell 1, and sends
the spike register value to the output layer. The output layer

consists of a single neuron connected by the four neurons of
the middle layer. Therefore, four registers are reserved for the
four connections. The DPU of the output layer performs the I
& F model and generates the final output.

Pixel1
Pixel2
Pixel3
Pixel4

Neuro
DPU

Reg-file1

Input
spikes

Wt5
Wt6
Wt7
Wt8

Wt13
Wt14
Wt15
Wt16

Wt1
Wt2
Wt3
Wt4

Wt9
Wt10
Wt11
Wt12

Reg-file2

Neuro
DPU

Input
spikes

Wt1
Wt2
Wt3
Wt4

Reg-file2

Neuro
DPU

Cell 1 Cell 2 Cell 3

Fig. 11. Edge detection on DRRA

VI. RESULTS

A. Cycle requirement

The main goal of implementing edge detection using spiking
neural networks was that it can be easily customized (e.g. to
detect white objects in an image) and offers higher tolerance to
noise [15]. However, its real-time behavior is also important
for its use in robotics and cognitive embedded systems. To
analyze the real-time properties of the proposed approach,we
simulated the edge detection using neural networks and the
Sobel filter using images of different sizes (cf. Table I and
Fig. 12). The figure and the table compares the time needed
to detect edges using Sobel filter and neural networks. NN1
(column 1 of Table I) indicates a neural network implementa-
tion with no offline learning similar to [12]. The table and the
figure indicate that with offline learning the neural network
requires lesser cycles than the Sobel filter and hence can also
be used as an accelerator. Another key thing to notice is
that the neural network based edge detection algorithm can
determine the edges of an image containing up to in1M
pixels in 16000000 cycles. Since DRRA can operate at 500
MHz the edges can be calculated 0.04 secs per image (which
is sufficient for high quality TV requiring approximately 24
frames/sec). To evaluate the effect of online learning, we
simulated edge detection with different allowed iterations. As
shown in Table I and Fig. 12, the obtained results suggest that
for up to 4 iterations, neural networks provide better timing.
When 7 iterations are allowed, the Sobel filter outperforms
the neural network based implementation (in terms of timing).
Since complete online edge detection requires thousands of
cycle, we conclude that only the edge detection with offline
learning can be used as an accelerator.

To study the effect of complexity on the Sobel filter and
neural network based edge detection (with online learning),
we simulated edge detection with images of different sizes (cf.
Fig. 13). The figure shows the additional cycles needed by the

TABLE I
CYCLE REQUIREMENTSOBEL FILTER VS NEURAL NETWORKS

Images Sobel NN1 NN4 NN7
cycles cycles cycles cycles

5*5 747 400 1600 2800
10*10 5312 1600 6400 11200
15*15 14027 3600 14400 25200
20*20 26892 6400 25600 44800
50*50 191232 40000 160000 280000

100*100 797132 160000 640000 1120000
150*150 1818032 360000 1440000 2520000
200*200 3253932 640000 2560000 4480000
400*400 13147532 2560000 10240000 17920000

1000*1000 82668332 16000000 64000000 112000000

Fig. 12. Cycles required Sobel vs spiking neural network

neural networks compared to the Sobel filter. It can be seen
that as the size of the image increases, the average overheadof
the neural network based implementation decreases. This trend
reveals that very large images, the neural networks with online
learning can also be used as accelerators. However, further
investigation is needed to quantify the use neural networks
with online learning.

Fig. 13. Overheads with increasing complexity

B. Overhead analysis

To check the overhead imposed by the additional I & F unit,
we synthesized it using 65nm technology with frequency
of 500 MHz. Table II shows the obtained results. It can be
seen that the proposed enhancement incurs 9.1% area and
4.2% power overheads. Further evaluation revealed that the
most of overhead (95% area) results from the fixed-point
multipliers used to implement Equation 1. This overhead can
be significantly reduced either by using a look up table or
reusing the existing multiplier in the DPU (which will be
considered in future).

TABLE II
AREA AND POWER CONSUMPTION OFI & F UNIT

I & F DRRA cell Overhead (%)

PowermW 6.44 70.40 9.1
Areaµm2 50920 1199506 4.2

VII. C ONCLUSION

In this paper, we have presented NeuroCGRA, to efficiently
host estimation algorithms (using neural networks) along side
normal calculations algorithms on a CGRA. The overall ar-
chitecture relies on dedicated hardware blocks (to mimic the
neuron) and a modified control flow (to translate the neural
network application model to DRRA bitstream). To imple-
ment the neural networks, we embedded additional hardware
to mimic the neuron functionality. The synthesis/simulation
results using edge detection reveal that proposed architecture
incurs acceptable overheads (4.4% area and 9.1% power) and
process a video stream of up to 1M pixels in real-time. Future
research on NeuroCGRA will involve development of other
algorithms. Additionally, we also plan to test the feasibility
of using neural networks, with online learning, as accelerators
(for large holographic images).

REFERENCES

[1] D. Alnajjar, H. Konoura, Y. Ko, Y. Mitsuyama, M. Hashimoto, and
T. Onoye, “Implementing flexible reliability in a coarse-grained reconfig-
urable architecture,”IEEE Transactions on Very Large Scale Integration
(VLSI) Systems,, vol. PP, no. 99, pp. 1–1, 2012.

[2] M. A. Shami, “Dynamically reconfigurable resource array,” Ph.D.
dissertation, Royal Institute of Technology (KTH), Stockholm, Sweden,
2012. [Online]. Available: web.it.kth.se/∼hemani/Athesis15.pdf

[3] Z. ul Abdin and B. Svensson, “Evolution in architecturesand pro-
gramming methodologies of coarse-grained reconfigurable computing,”
Microprocess. Microsyst., vol. 33, no. 3, pp. 161–178, May 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.micpro.2008.10.003

[4] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general
low-power computation,” inProceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’11. New York, NY, USA: ACM, 2011, pp. 164–174.
[Online]. Available: http://doi.acm.org/10.1145/1993498.1993518

[5] S. M. A. H. Jafri, O. Ozbak, A. Hemani, N. Farahini, K. Paul,
J. Plosila, and H. Tenhunen, “Energy-aware CGRAs using dynamically
reconfigurable isolation cells.” inProc. International symposium for
quality and design (ISQED), 2013, pp. 104–111.

[6] S. Jafri, M. A. Tajammul, A. Hemani, K. Paul, J. Plosila, and H. Ten-
hunen, “Energy-aware-task-parallelism for efficient dynamic voltage,
and frequency scaling, in cgras,” inEmbedded Computer Systems: Ar-
chitectures, Modeling, and Simulation (SAMOS XIII), 2013 International
Conference on, 2013, pp. 104–112.

[7] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey
of two decades of progress,”Neurocomput., vol. 74, no. 1-3, pp.
239–255, Dec. 2010. [Online]. Available: http://dx.doi.org/10.1016/j.
neucom.2010.03.021

[8] M. Krips, T. Lammert, and A. Kummert, “Fpga implementation of a
neural network for a real-time hand tracking system,” inElectronic
Design, Test and Applications, 2002. Proceedings. The First IEEE
International Workshop on, 2002, pp. 313–317.

[9] F. Yang and M. Paindavoine, “Implementation of an rbf neural
network on embedded systems: Real-time face tracking and identity
verification,” Trans. Neur. Netw., vol. 14, no. 5, pp. 1162–1175, Sep.
2003. [Online]. Available: http://dx.doi.org/10.1109/TNN.2003.816035

[10] Y. Maeda and T. Tada, “Fpga implementation of a pulse density neural
network with learning ability using simultaneous perturbation,” Neural
Networks, IEEE Transactions on, vol. 14, no. 3, pp. 688–695, May 2003.

[11] S. Himavathi, D. Anitha, and A. Muthuramalingam, “Feedforward neural
network implementation in fpga using layer multiplexing for effective
resource utilization,”Neural Networks, IEEE Transactions on, vol. 18,
no. 3, pp. 880–888, May 2007.

[12] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput acceleratorfor ubiquitous
machine-learning,” inProceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’14. New York, NY, USA: ACM, 2014, pp. 269–
284. [Online]. Available: http://doi.acm.org/10.1145/2541940.2541967

[13] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceler-
ation for general-purpose approximate programs,” inMicroarchitecture
(MICRO), 2012 45th Annual IEEE/ACM International Symposium on,
Dec 2012, pp. 449–460.

[14] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi,
“A dynamically configurable coprocessor for convolutionalneural
networks,” inProceedings of the 37th Annual International Symposium
on Computer Architecture, ser. ISCA ’10. New York, NY, USA:
ACM, 2010, pp. 247–257. [Online]. Available: http://doi.acm.org/10.
1145/1815961.1815993

[15] Z. Li, “Aerial image analysis using spiking neural networks with applica-
tion to power line corridor monitoring,” Ph.D. dissertation, Queensland
University of Technology, 2011.

[16] M. A. Shami and A. Hemani, “Classification of massively parallel
computer architectures,” inProc. IEEE Int. Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW), May 2012,
pp. 344–351.

[17] N. Farahini, S. Li, M. A.l Tajammul, M. A. Shami, G. Chen,A. Hemani,
W. Ye, “39.9 GOPs/Watt multi-mode CGRA accelerator for a multi-
standard base station,” inProc. IEEE Int. Symp. Circuits and Systems
(ISCAS), 2013.

[18] S. Jafri, A. Hemani, K. Paul, J. Plosila, and H. Tenhunen, “Compact
generic intermediate representation (CGIR) to enable latebinding in
coarse grained reconfigurable architectures,” inProc. International Con-
ference on Field-Programmable Technology (FPT),, Dec. 2011, pp. 1 –6.

[19] M. A. Tajammul, S. M. A. H. Jafri, A. Hemani, J. Plosila, and H. Ten-
hunen, “Private configuration environments for efficient configuration
in CGRAs,” in Proc. Application Specific Systems Architectures and
Processors (ASAP), Washington, D.C., USA, 5–7 June 2013.

[20] E. Izhikevich, “Simple model of spiking neurons,”Neural Networks,
IEEE Transactions on, vol. 14, no. 6, pp. 1569–1572, 2003.

[21] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithmsfor
allocating directed task graphs to multiprocessors,”ACM Comput.
Surv., vol. 31, no. 4, pp. 406–471, Dec. 1999. [Online]. Available:
http://doi.acm.org/10.1145/344588.344618

[22] Q. Wu, T. M. McGinnity, L. P. Maguire, A. Belatreche, andB. P.
Glackin, “Edge detection based on spiking neural network model,” in
ICIC (2), 2007, pp. 26–34.

