NeuroCGRA: A CGRAs with support for neural
networks

Abstract—Coarse Grained Reconfigurable Architectures networks based processing [4]. As a solution to this problem
(CGRAs) are emerging as enabling platforms to meet the high we present NeuroCGRA. The proposed architecture allows to
performance demanded by modern embedded applications. In eficiently interleave the conventional processing wittinea-

many application domains (e.g. robotics and cognitive emluleled . - S .
systems), the CGRAs are required to simultaneously host tion (using neural networks). For the applications thatnex

processing (e.g. Audio/video acquisition) and estimation(e.g. exact CalCUlationS, the device behaves like a normal CGRA,
audio/video/image recognition) tasks. Recent works haveevealed with MACs/ALUs connected via circuit switched interconhec
that the efficiency and scalability of the estimation algorthms \When an application, that can tolerate approximate results

can be significanty improved by using neural networks. gnters the platform the device dynamically morphs into a
However, existing CGRAs commonly employ homogeneous | network
processing resources for both the tasks. To realize the besf neural Network.

both the worlds (conventional processing and neural netwds),

we present NeuroCGRA. NeuroCGRA allows the processing Input Input Hidden Output
elements and the network to dynamically morph into either WLAN layer, layer layer
conventional CGRA or a neural network, depending on the —— ey
hosted application. We have chosen the DRRA as a vehicle to ! vacli
study the feasibility and overheads of our approach. Simuldaon I !
using edge detection reveal that the neural networks can I !
successfully process real-time video for up to 1M pixels. !!
Synthesis results reveal that the proposed enhancementscimr I I
negligible overheads (4.4% area and 9.1% power) compared to ! MAC!
the original DRRA cell. I _!
. INTRODUCTION AND MOTIVATION Output
(a) Conventional CGRA (b) Neural network for
Recently, the increasing speed and performance require- for DSP applications estimation applications

ments of embedded applications, coupled with the demands

for flexibility and low non-recurring engineering costsvha Neur WIAN = ‘-—-E(E-E—D-e—te-iu?il
made reconfigurable hardware a very popular implementatiorMAC O O O WLAN :I i
platform. The reconfigurable architectures can be cladsifie i i
the basis of granularity i.e. number of bits that can be ex- O O O Edge il I
plicitly manipulated. Coarse Grained Reconfigurable At detection I: I
tures (CGRAS), provide operator level configurable funwiio O O O !i I
blocks, word level datapaths, and very area-efficient nguti L= N~ _!

switches. Therefore, compared to the fine-grained arcdhites }
(like FPGAs), CGRASs require lesser configuration memory (c) Neuro CGRA
and configuration time (two or more orders of magnitude
[1]). As a result, CGRAs achieve a significant reduction in
area (from 66 % to 99.06 % [2]) and energy consumed per
computation (from 88 % to 98 % [2]), at the cost of a loss in To visualize our technique, consider Fig. 1. Fig. 1 (a)
flexibility compared to bit-level operations. Therefor&sRAs shows simple WLAN transmitter mapped to a conventional
have been a subject of intensive research since the lasieled@GRA [5], [6]. The figure shows a typical scenario, where
[21, [3]. multipliers/accumulators are connected in a pipelinedtitas
Today, CGRAs host multiple applications simultaneously produce outputs. Fig. 1 (b) depicts edge detection ratabia
on a single platform. Each application can potentially havan a neural network. A neural network typically consists
different requirements (e.g. MPEG4 decoder requires exadtthree elements: (i) neurons (the processing elemeriils), (
calculation while edge detection can tolerate approxiomali. synapse (the interconnect network), and (iii) weights ddat
For the estimation problemseural networkpromise higher for processing). Usually a neural network consists of three
efficiency and scalability compared to conventional preeedayers of neurons (input layer, hidden layer, and outputipy
ing algorithms [4]. However, the existing CGRAs lack thé&ach neuron layer performs calculation on the weights based
support to simultaneously provide conventional and thealeuon the neuron model. The results calculated in one layer

Fig. 1. Motivation for NeuroCGRA

are communicated to the neurons in the next layer (to therk has motivated access the feasibility to implement edge
right). Based on the joint calculation of the neurons, thaetection using spiking neural networks.

edges in an image are detected. Fig. 1 (c) shows functignalit The related work reveals that most of the work on neural
of the proposed CGRA. Each processing element can aetworks deals with their realization on FPGAs. The works
as either as conventional MAC or a Neuron. When WLANhat do use neural networks to enhance efficiency, typically
and edge detection request platform resources the platfoemploy FPGAs or ASICs. None of the existing works accesses
dynamically creates a different partition for each appi@ma the feasibility of implementing neural networks on CGRAs.
For WLAN and edge detection the platform resources morf@ompared to the related work, this paper has three major

into conventional and neural network, respectively. contributions:
This paper is organized as follows. In Section II, a brief 1) We present NeuroCGRA that allows to interleave the
survey of existing platforms used to realize neural netwask conventional calculations with neural networks:

presented. In Section Ill, an overview of the CGRA pIatform, 2) We propose a neural network translator that provides a
used in this paper is described. In Section |V, details of the framework to map neural network on CGRAS, and

proposed method are presented. In Section V, we explain hows) We evaluate benefits and overheads of implementing the
the edge detection is mapped to DRRA. In Section VI, we proposed technique on an actual CGRA.

evaluate the benefits and redundancies imposed by our method

on an actual CGRA. Finally, in Section VII, we summarize our I1l. SYSTEM OVERVIEW

contributions and suggest directions for future research. We have chosen the Dynamically Reconfigurable Resource

Array (DRRA) [16] as a vehicle to evaluate feasibility of

implementing neural networks on an actual CGRA. Neverthe-
Hardware implementations of neural networks has beeness, it seems that the results should applicable to modt gri

subject of intensive research since the last two decades ased CGRAs as well. The motivation for choosing DRRA is

In this section we will review only the most prominent workhat it is well documented, its bandwidth has been tested on

dealing with neural network implementation on reconfigleabdemanding industrial applications (with Huawei) [17], amel

architectures. have available all its architectural details from RTL codes
Much of the work implementing neural networks on rephysical design.

configurable architectures deals with FPGAs. In particular
it focuses on how various algorithms can be realized usify DRRA configuration flow
neural networks. Krips et al. [8] presented an FPGA basedAs shown in Figure 2, DRRA is programmed in two
implementation neural networks to track of video imagephases (off-line and on-line) [18]. The configware (bindoy)
Yang and Paindavoine [9] proposed a an implementatiedmmonly used DSP functions (FFT, FIR filter etc.) is written
of neural networks for face tracking. Maeda and Tada [18] VESYLA (HLS tool for DRRA) and stored in an off-line
developed a neural network model to support online leatnirigprary. For each function, multiple versions, with difét
Himavathi et al. [11] used layer multiplexing technique telegree of parallelism, are stored. The library, thus cohase
implement multi-layer feed-forward networks into FPGA. profiled with frequencies and worst case time of each version
Recent works have revealed that for estimation or approfie map an application, its (simulink type) representatisn i
mate problems, the neural networks in particular offer aighfed to the compiler. The compiler, based on the available
energy efficiency and speedup compared to conventional flnctions (present in library) constructs the binary foe th
gorithms. They have shown that neural networks can alsomplete application (e.g. WLAN). Since the actual exemuti
be used as accelerators. Chen et al. [12] provide a detaitieles are unknown at compile-time, the compiler sends all
discussion of hardware and software based acceleratong(ushe versions (of each function), meeting deadlines, to time r
neural networks) with special emphasis on memory efficienagime configware memory. To reduce memory requirements
Esmaeilzadeh et al. [13] presented an ASIC based acceleréto storing multiple versions, the compiler generates a-com
to efficiently speed up approximate programs. Chakradharpict representation of these versions. Details of comiomess
al. [14] proposed an FPGA based configurable coprocesatgorithm and how it is unraveled are given in [18]. The
that dynamically configures the hardware to provide the besimpact representation is unraveled (parallelized/sesd)
achievable throughput (on the available resources). Tha maynamically by the run-time resource manager (running on
idea of this paper, i.e to interleave conventional processiLEON3 processor).
with neural networks on a unique platform, is inspired from]
this work. The major difference is that our work focuse8: DRRA Computation Layer
on CGRAs, that have significantly different architecturad a DRRA computational layer is shown in Fig. 3. It is com-
lesser flexibility, compared to FPGAs. Zhengrong [15] shdweposed of four elements: (i) Register Files (reg-files), rijr-
that the spiking neural networks (when compared to Sobel aplable Data Path Units (DPUSs), (iii) circuit-Switched Bexe
Canny filter) are more efficient in detecting edges (in terifns ¢SBs), and (iv) sequencers. The reg-files store data for DPUs
accuracy), can be easily customized to detect specific partsThe DPUs are functional units responsible for performing
an image and can tolerate high levels of noise. Zhengrongsmputations. SBs provide interconnectivity betweenredéht

Il. RELATED WORK AND CONTRIBUTIONS

comnior]-Iversions an interested reader can refer to [20]. For understandiigg, F
HLS too)/ | Lbrary P . 4 depicts a simple neuron model. The neurons are connected
Sr';r;lg'er;k J ICo_mprﬂ ?n one—tg-many fashion. In the figure, the neuron 3 rec_eivgs
input spikes from neurons 1, 2, and 3. Each connection is
characterized by a weight (Wt1, Wt2, and Wt3). When a spike
| Application |—-| Leon3 H Conﬁgware| is generated, depending on the neuron model and weight of

deadlines N)
Map| paralielize/ the connection, the neuron performs calculations.
serialize

) DRRA ‘
Runtime
1l
Fig. 2. Configuration Model Wt2 0
Wit3

components of DRRA. The sequencers hold the configware °
which corresponds to the configuration of the reg-files, DPUs

and SBs. Each sequencer can store up to 64 36-bit instrgction
and can reconfigure the elements only in its own cell. As

shown in Fig. 3, aell consists of a Reg-file, a DPU, SBs, and \ye have chosen a simple and the widely used model called

a sequencer, all having the same row and column number 38 4 |ntegrate and Fire (I & F), to model a neuron. The model
given cell. The configware loaded in the sequencers congaing given by the Equation 1:

sequence of instructions (reg-file, DPU, and SB instrusiion

Compile time

Fig. 4. A simplified neuron model

that implements the DRRA program. dv/dt = (Wt*I)+a— (bxV). 1)
e g - e - Where the potentidl” integrates input spikesand leaks over
T L S S ! time with —bV componentVt is the weight of the connection
i 'H_|Se wencel | |- " [Beauenced Coefficienta determines equilibrium point and coefficiett
Row0 1 H _ H
’ : . | —sLL W ! the speed of leakage. When the threshold potential is relache
,i_._....._._._._c.e"_"} i_._“-"_._._._clelzj a neuron outputs a spike and its potential is reset.
7{__ | [Eewll [Regme] | B. Neural network realization on DRRA
i . ‘ —H S8} . | .
I Sequence | Sequencer] To realize neural networks on DRRA, we have embedded
Rowl H H H
= |_5_‘L_:| .—sl—.' a dedicated hardware, called neuroDPU, with each DPU of
i Celll! i Ce||3! DRRA. As a result of our enhancements, the DPU can be
il 1
T LT | configured to either normal or neuron mode. The details of the
Column 0 Column 1 normal mode can be found in [2], here we only concentrate

on the neuron mode. Fig. 5 shows how the DPU functions in
neuron mode. The figure in particular illustrates how simple
neural network shown in Fig. 4 is implemented on DRRA.
C. DRRA Storage Layer (DiMArch) To mimic parallelism in neural networks, we have employed

DiMArch is a distributed scratch pad (data/configwardime multiplexing. Where a time slot is reserved for eachdra
memory that complements DRRA with a scalable memo itting neuron (connected to the receiving neuron). In Big.
architecture. Its distributed nature allows a high spee d4@) the transmitting DRRA cell implements three neurons. A
and configware access to the DRRA computational layer (Cofﬁgster form the reg-file is reserve_d for each neuron. Imeve
pared to the global configuration memory). Further disarssiCycle, the neuroDPU receives an input from one of the three
of DiMArch is beyond the scope of this paper and for detaif€9isters (representing the neurons) in round robin fashio

Fig. 3. DRRA computation layer

we refer to [19]. The neuroDPU applies the Equation 1 to the input and stores
the result in the dedicated register for accumulation. & th
IV. NEURAL NETWORKS/DRRA INTEGRATION result is greater than pre-defined threshdlds stored in the

In this section, we will present the neural network modéipike register (otherwise is stored). Since the transmitting
chosen for this paper followed by its implementation ofell implements three neurons, the value of the spike regist

DRRA. sent to the receiving cell after every three cycle. The raagi
cell stores the value of the spike register a reserved lotati
A. Neural network model (at first address), of the reg-file. Fig. 5 (b) shows processin

For this work we have chosen Spiking Neural Networkdone by the receiving neuron. In each cycle, the neuroDPU of
(SNN). The motivation for choosing SNNs is that they are thbe receiving cell extracts a bit from spike register (stoire
latest generation of neural networks models that closely-enits reg-file) and the weight of the corresponding connectibn
late the biological neurons. For further details about the&NS applies thel & F' model to the inputs and generates the outputs.

I = r - — . L L)
i e, . 1j Inputspikes time division multiplexing). The figure shows that 5 cycles a
Transmidng cel reem el i Lzl Weights needed to collect information from all the DRRA cells in the
Regfie | 11 | Regtle w2 il cluster. It should be noted that 2 additional cycles areiredu
Cnt
spikes w3 " to reconfigure the circuit switched network. The inter aust
l J { ’j = i communication takes two cycles for reconfiguration and an
A R ! output | additional cycle to transmit data. Each cell in the clustem ¢
i e e i Cntr spikes reprgsent an arbitrary neurons, depending on the applicati
register iL_register I i requirements.
1 -
|

(a) Neuron interconnections (b) Neuron implementation

Fig. 5. Neuron realization on DRRA

C. Clustering for scalability

In Section IV-B we showed how a simple neural network

Sequencer
instructions

—* Connect port A to cell 1

IS~

Connect port B to cell 2

| ~1 cycle

Read data celll

S~

Read data cell 2

| -1 cycle

Combine celll and cell2

—1 cycle —2 cycles

L . . Connect port A to cell 3
(containing three neurons) can be realized on DRRA. In this E >1 cycle
. . . Connect port B to cell 4
section, we will explain how a large scale neural network
. . . . Read data cell3 [~
can be implemented in a scalable manner considering the |_—1cycle

architectural details of DRRA. Neural networks may require
one to many communication between large number of neurons.
To implement these connections on DRRA, we had to consider

Read data cell 4

Combine cell3 and cell4

— 1 cycle —2 cycles

[
I

two architectural properties: (i) every DRRA component has

only two read/write ports and (i) a DRRA component can beFig. 7
directly connected to a component at most three hops away.
Since these architectural characteristics were desigfted a

a careful evaluation of area/power trade-off, we decidetd n@. Architectural integration

modify them. The one to many connectivity was realized by To realize NeuroCGRA we have modified the configuration
using time division multiplexing. In the proposed approachflow shown in the Fig. 2. We have added another block to
specific time slot is assigned to each pair of neurons. Tovallgyenerate the configware for the estimation algorithms (show
a scalable solution, we have chosen a hierarchical clustefs, the dotted box). The key component of the new block is a
approach shown in Fig. 6. translator. The translator take three inputs: (i) appiizat(ii)
weights, and (iii) application to generate the reg-file, 8Bd
DPU instructions for DRRA (see Section IlI-B).

Sequencer instructions to implement time divisioultiplexing

Input nodes

Cluster 2 :--------------------------I

1| Network Neural Offline !

i H network ||generated | 1

H ! specs model || weights | 1

Intermediate ! Estimation 1

node ! Transator applications 1

(a) Cluster of DRRA (b) Inter-cluster e EEEFEE R mm - 1
cells connections

Library Compiler[~{Versions

Fig. 6. Inter neural communication realization j !
S:E:grlk Compression
Fig. 6 (@) shows a cluster of 6 DRRA cells. In the cluster one Complle time !
of the cells is chosen as an intermediate node. The inteateedi Application Leon3] configware
node receives data from the 6 cells in the cluster (including deadiines
itself). To allow connections with 6 cells on a 2-port com- Map Paralleize/
ponent, we exploit time division multiplexing combined it
partial and dynamic reconfiguration. In the overall prodéss Runtime DRRA

intermediate cell receives data from 2 cells at a time and the
shifts to the other cells. The process continues till theadat
from all the cells is received. Once every cluster has reckiv
inputs, the intermediate nodes communicate with each othelFig. 9 depicts how each input (to the translator) is repre-
serially to ensure one to many connectivity. Fig. 7 shows tlsented, considering a neural network composed of 8 neurons.
instructions in DRRA sequencers (needed to implement tiide the neural network application is represented tiyected

Fig. 8. Maodified programming flow

acyclic graph similar to [21]. Where each node represents iastructions to interconnect the clusters are also geeérat
neuron and the edges represent the interconnection betwgsémilar to Fig. 7).

the two nodes. The motivation for choosing the directed

acyclic graph is that it easily represents most of the neu'almput_ application, weights, network specifications ;
network applications and can be easily converted to linkstd | Outpﬁt' DPU reg,-file and’SB instructions - '
for automated application generation. The weights arestas [% Geﬁer at ,e DPU | nstructions ' y
a look-up table. For each neuron, the weights of all conmecte if Neural application existshen

neurons are stored. If there is no connection between a ;:air| DPU=neural mode

of neurons (e.g. neuron 4 and 5 in the figur@)is stored. else '

Finally, the network specifications in form the cluster size | DPU=normal mode -

and the in each cluster is provided to the translator. In t1eend '

simplest case i.eclustersize = 1, only one DRRA cell for /+ Generate Reg-file instructions y
each neuron layer (input, hidden and output layer) is sefiici for j « 0to N do

If clustersize > 1, the required the cellsDRRA., are

given by DRRA, = clusters, — clusters;. Whereclusters, [+ élvppllsi Ctahtel Onnunber neurons tn y
and clusters; denote respectively the processing and the . . .
intermediate clusters. Spike reg!ster delay=zon; ; .
I+ con; is the connections per DRRA
*
Application Weights N:;\évgsrk for kC <e_| lo to con; do /
Bs |Nu1|Nu2|Nu3] i=62 ;
gvg O | e] [sion Reg — file= Wy ;
()G ©®) ? e =
5 if ij0 then o
l | store Wt in DiIMArch
[Trar}slator] end
Weights Delay.:o ;
DM Reg-file = Delay ;
Delay ++ ;
end
end
/* Cenerate SB instructions */
if Cluster size< 2 then

| Generate SB instructions to connect three layers ;
else
Generate SB instructions for clusters;
Generate SB instruction for inter-cluster
communications;
end

Fig. 9. Translator functionality overview

The translator functionality is shown in Algorithm 1. The
translator works in three steps: (i) DPU instruction getiera
(i) Reg-file instruction generation, and (iii) SB instrigst
generation. The algorithm shows the translator functional
when clustersize = 1. If an application requires more clus-
ters, the same algorithm can be applied to generate inisingct
for each cluster. In the first step, a separate DPU instmstio T0 mimic the neuron functionality, we have enhanced the
is generated. In the second step, the reg-file for each celffgctionality of the Data Path Unit (DPU). With each DPU we
initialized. One of the register in each reg-file is reserwed have added a special unit to perform | & F model. The weights
store spikes. Since each register of the reg-file is 16-hiewi are stored in reg-files and the DiMArch. The reg-file are also
the spike register can contain up to 16 spikes. The weightsed to store spikes from other interconnected neuronseSin
for each neuron connection is loaded to the register filea. Ithe spiked neural networks require timing information, we
neuron is connected to greater than 63 neurons, the weightshave added a global counter counter. To realize the complex
stored in DiMArch memory. The details of the data transféteural network the sequencers are programmed to implement
from DiMArch to reg-files is beyond the scope of this papetPM.
and for details an interested reader can refer to [19]. Tta to
number of neurons per reg-file is dependent on the cluster siz
In the third step, the switch-box instructions are genekale Edge detection is an image processing technique to identify
the clustersize = 1 only three interconnect instructions (oneedges in an image. The edge detection algorithms commonly
for each layer) are needed. Otherwise, additional intareonh identify the points in image at which the intensity level

Algorithm 1: Translator functionality

V. EDGE DETECTION ONDRRA

changes dramatically. When the change in intensity is beéyoconsists of a single neuron connected by the four neurons of
threshold, an edge is identified. Edge detection is mairtlye middle layer. Therefore, four registers are reserved®
used to reduce the image size for many applications e.g. fdoar connections. The DPU of the output layer performs the |
detection. Conventional edge detection, techniques ssch&F model and generates the final output.

Roberts filter, Sobel filter, or Canny filter employ a mask to

the image. In this paper we will evaluate analyze the edge i~ Regamer || T e | e T

detection using the Sobel filter network and neural networks [i|| i [we_Jwie : i :

on DRRA | |1 R |

A. Edge detection using Spiking Neural Networks i i | [_[wiiz : i :
' . . . e era i | Hd oz e | A v |
To evaluate the efficacy of implementing neural networks, I g:igg M we s | w1

we have chosen the neural network based edge detection : Pixel3 : I [wisTwte Ji]]! wid__||

algorithm presented in [22]. The motivation for choosing i i ! Input | Llnput '

spiking neural network based edge detection is that it issmor 1 if|ilezkest | | ffiLsekest | |

flexible (e.g. can be easily customized to detect white lines Neuro

in an image) resilient to noise compared to Sobel and Canny DPU

filters [15]. The overall technique is shown in Fig. 10. The Cell 1 Cell 2 Cell 3

techniques relies on three layers of neurons. The first layer

consists of input neurons. The input neurons receive thgéma Fig. 11. Edge detection on DRRA

and apply the | & F processing to the received pixel values.

The result is sent to the middle or intermediate layer of

neurons. The intermediate layer has four parallel arrays of)
neurons. It should be noted that for clarity, the figure on- Cycle requirement
shows one neuron in each array. Each of these layers perforrithe main goal of implementing edge detection using spiking
the processing for up, down, left and right edges respdgtiveneural networks was that it can be easily customized (e.g. to
and is connected to the input layer by differing weightgletect white objects in an image) and offers higher tolezaac
The processed information is transmitted to the neuronén thoise [15]. However, its real-time behavior is also impotta
output layer. This neuron integrates the outputs from the fofor its use in robotics and cognitive embedded systems. To
neurons of the middle layer to detect an edge. For more detaihalyze the real-time properties of the proposed appraeeh,
about the theory behind neural network based edge detectisimulated the edge detection using neural networks and the

VI. RESULTS

an interested reader can refer to [22], [15]. Sobel filter using images of different sizes (cf. Table | and
Fig. 12). The figure and the table compares the time needed

ooloo 0000 to detect edges using Sobel filter and neural networks. NN1

ooloo 000 (column 1 of Table I) indicates a neural network implementa-

0000 0000 tion with no offline learning similar to [12]. The table anceth

0000 0000 figure indicate that with offline learning the neural network

Pixels Middle Results requires lesser cycles than the Sobel filter and hence can als

layer layer be used as an accelerator. Another key thing to notice is
that the neural network based edge detection algorithm can

Fig. 10. Edge detection using neural networks determine the edges of an image containing up tol Ad

pixels in 16000000 cycles. Since DRRA can operate at 500
MHz the edges can be calculated 0.04 secs per image (which
is sufficient for high quality TV requiring approximately 24
Fig. 11 illustrates how edge detection is mapped to DRRAames/sec). To evaluate the effect of online learning, we
For clarity, the figure only shows the mapping for an image&mulated edge detection with different allowed iterasioAs
with only 2*2 pixels. Four neurons in receptor layer arshown in Table | and Fig. 12, the obtained results suggest tha
statically stored in registers 1, 2, 3, and 4 of the cell 1. THer up to 4 iterations, neural networks provide better tigin
pixel values are sequentially transferred to the DPU of tell When 7 iterations are allowed, the Sobel filter outperforms
The DPU applies | & F model to the received pixel value antthe neural network based implementation (in terms of tifing
generates two outputs: (i) spike and (ii) accumulation @aluSince complete online edge detection requires thousands of
The technique to generate these spikes was already showgyiole, we conclude that only the edge detection with offline
Section IV. The 4 neurons of the middle layer are mapped learning can be used as an accelerator.
the cell 2 of DRRA. In each cycle, the weight of the connection To study the effect of complexity on the Sobel filter and
and the spike from the spike register is sent to the DPU. Theural network based edge detection (with online learning)
DPU behaves the same way, as the DPU of cell 1, and semdssimulated edge detection with images of different sizés (
the spike register value to the output layer. The outputrlayEig. 13). The figure shows the additional cycles needed by the

B. Implementation of Edge detection on DRRA

TABLE |

CYCLE REQUIREMENTSOBEL FILTER VS NEURAL NETWORKS

Images Sobel NN1 NN4 NN7
cycles cycles cycles cycles
5%5 747 400 1600 2800
10*10 5312 1600 6400 11200
15*15 14027 3600 14400 25200
20*20 26892 6400 25600 44800
50*50 191232 40000 160000 280000
100*100 797132 160000 640000 1120000
150*150 1818032 360000 1440000 2520000
200*200 3253932 640000 2560000 4480000
400*400 13147532 2560000 | 10240000(17920000
1000*1000 | 82668332 | 16000000| 64000000| 112000000
—Sobel Algorithm —Neural networkl
Neural network4—Neural network?7
120000000
__ 100000000 //
£ 80000000 /
3 //
£ 60000000
E 40000000 //
[=
20000000 /
0 ‘ —
ONIR S TR S S Y NS AR
M MR S e L Lt
MV W
Pixels
Fig. 12. Cycles required Sobel vs spiking neural network

B. Overhead analysis

To check the overhead imposed by the additional | & F unit,
we synthesized it using 6m technology with frequency
of 500 MHz. Table Il shows the obtained results. It can be
seen that the proposed enhancement incurs 9.1% area and
4.2% power overheads. Further evaluation revealed that the
most of overhead (95% area) results from the fixed-point
multipliers used to implement Equation 1. This overhead can
be significantly reduced either by using a look up table or
reusing the existing multiplier in the DPU (which will be
considered in future).

TABLE I
AREA AND POWER CONSUMPTION OH & F UNIT

| | T& F [DRRA cell | Overhead (%)|

PowermW | 6.44 70.40 9.1
Areapm? | 50920 | 1199506 4.2

VIl. CONCLUSION

In this paper, we have presented NeuroCGRA, to efficiently
host estimation algorithms (using neural networks) alddg s
normal calculations algorithms on a CGRA. The overall ar-
chitecture relies on dedicated hardware blocks (to miméc th
neuron) and a modified control flow (to translate the neural
network application model to DRRA bitstream). To imple-
ment the neural networks, we embedded additional hardware
to mimic the neuron functionality. The synthesis/simwati
results using edge detection reveal that proposed artivigec

neural networks compared to the Sobel filter. It can be selfigurs acceptable overheads (4.4% area and 9.1% power) and
that as the size of the image increases, the average oveshed}f0CesSs a video stream of up tq 1M pixels in real-time. Future
the neural network based implementation decreases. Enid tr'éSéarch on NeuroCGRA will involve development of other
reveals that very large images, the neural networks witmenl @gorithms. Additionally, we also plan to test the feasipil
learning can also be used as accelerators. However, furtREHSINg neural networks, with online learning, as acceteea
investigation is needed to quantify the use neural networl{8" large holographic images).

with online learning.

Overheads (%)

—10iter —20iter 30iter
100
90
80 \\\
70 \
60
50
40
30
20
10
0 T 11T T T T T T
N O 1N O O O O © O O
¥ + +4 N 1nh & n © O O
N * % * *¥ «— «d N < O
O 1N O O % % * *x
- <4 N Ih O O © O *
o 1n © © ©
o +H N I O
Pixels S

Fig. 13. Overheads with increasing complexity

REFERENCES

[1] D. Alnajjar, H. Konoura, Y. Ko, Y. Mitsuyama, M. Hashimmt and
T. Onoye, “Implementing flexible reliability in a coarseagred reconfig-
urable architecture JEEE Transactions on Very Large Scale Integration
(VLSI) Systemsyol. PP, no. 99, pp. 1-1, 2012.

[2] M. A. Shami, “Dynamically reconfigurable resource attayh.D.
dissertation, Royal Institute of Technology (KTH), Stookh, Sweden,
2012. [Online]. Available: web.it.kth.sehemani/Athesis15.pdf

[3] Z. ul Abdin and B. Svensson, “Evolution in architecturasd pro-
gramming methodologies of coarse-grained reconfigurataepating,”
Microprocess. Microsyst.vol. 33, no. 3, pp. 161-178, May 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.micp2008.10.003

[4] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, lzeCend
D. Grossman, “Enerj: Approximate data types for safe andeggn
low-power computation,” inProceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementat
ser. PLDI '11. New York, NY, USA: ACM, 2011, pp. 164-174.
[Online]. Available: http://doi.acm.org/10.1145/19%841993518

[5] S. M. A. H. Jafri, O. Ozbak, A. Hemani, N. Farahini, K. Paul

J. Plosila, and H. Tenhunen, “Energy-aware CGRAs using rdyjcedly

reconfigurable isolation cells.” ifProc. International symposium for

quality and design (ISQEDRO013, pp. 104-111.

S. Jafri, M. A. Tajammul, A. Hemani, K. Paul, J. PlosilaydaH. Ten-

hunen, “Energy-aware-task-parallelism for efficient dyim voltage,

and frequency scaling, in cgras,” Bmbedded Computer Systems: Ar-
chitectures, Modeling, and Simulation (SAMOS XIlIl), 20dt@inational

Conference on2013, pp. 104-112.

6

—

(7]

(8]

[0

[20]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

J. Misra and |. Saha, “Artificial neural networks in ham®: A survey
of two decades of progressNeurocomput. vol. 74, no. 1-3, pp.
239-255, Dec. 2010. [Online]. Available: http://dx.dogt0.1016/j.
neucom.2010.03.021

M. Krips, T. Lammert, and A. Kummert, “Fpga implementati of a
neural network for a real-time hand tracking system,”EHtectronic
Design, Test and Applications, 2002. Proceedings. Thet REEE
International Workshop gn2002, pp. 313-317.

F. Yang and M. Paindavoine, “Implementation of an rbf rau
network on embedded systems: Real-time face tracking aedtiig
verification,” Trans. Neur. Netw.vol. 14, no. 5, pp. 1162-1175, Sep.
2003. [Online]. Available: http://dx.doi.org/10.110MN.2003.816035
Y. Maeda and T. Tada, “Fpga implementation of a pulsesigmeural
network with learning ability using simultaneous pertuitya,” Neural
Networks, IEEE Transactions pwol. 14, no. 3, pp. 688-695, May 2003.
S. Himavathi, D. Anitha, and A. Muthuramalingam, “Fézavard neural
network implementation in fpga using layer multiplexing feffective
resource utilization,"Neural Networks, IEEE Transactions ,omol. 18,
no. 3, pp. 880-888, May 2007.

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam
“Diannao: A small-footprint high-throughput accelerafor ubiquitous
machine-learning,” irProceedings of the 19th International Conference
on Architectural Support for Programming Languages and 1@peg
Systemsser. ASPLOS '14. New York, NY, USA: ACM, 2014, pp. 269—
284. [Online]. Available: http://doi.acm.org/10.1145/1940.2541967
H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burgerutaleacceler-
ation for general-purpose approximate programs,Mieroarchitecture
(MICRO), 2012 45th Annual IEEE/ACM International Symposian
Dec 2012, pp. 449-460.

S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cagdamb
“A dynamically configurable coprocessor for convolutionakural
networks,” inProceedings of the 37th Annual International Symposium
on Computer Architectureser. ISCA '10. New York, NY, USA:
ACM, 2010, pp. 247-257. [Online]. Available: http://daira.org/10.
1145/1815961.1815993

Z. Li, “Aerial image analysis using spiking neural nefiks with applica-
tion to power line corridor monitoring,” Ph.D. dissertatjoQueensland
University of Technology, 2011.

M. A. Shami and A. Hemani, “Classification of massiveharallel
computer architectures,” ifProc. IEEE Int. Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDR3¥dy 2012,
pp. 344-351.

N. Farahini, S. Li, M. A.l Tajammul, M. A. Shami, G. Chefs, Hemani,
W. Ye, “39.9 GOPs/Watt multi-mode CGRA accelerator for a tinul
standard base station,” iroc. IEEE Int. Symp. Circuits and Systems
(ISCAS) 2013.

S. Jafri, A. Hemani, K. Paul, J. Plosila, and H. Tenhyn&ompact
generic intermediate representation (CGIR) to enable bateling in
coarse grained reconfigurable architecturesPiiac. International Con-
ference on Field-Programmable Technology (FRPDgc. 2011, pp. 1 6.
M. A. Tajammul, S. M. A. H. Jafri, A. Hemani, J. Plosilané H. Ten-
hunen, “Private configuration environments for efficiennfaguration
in CGRASs,” in Proc. Application Specific Systems Architectures and
Processors (ASAPR)Vashington, D.C., USA, 5-7 June 2013.

E. Izhikevich, “Simple model of spiking neuronsiNeural Networks,
IEEE Transactions gnvol. 14, no. 6, pp. 1569-1572, 2003.

Y.-K. Kwok and |. Ahmad, “Static scheduling algorithmsor
allocating directed task graphs to multiprocessor&CM Comput.
Surv, vol. 31, no. 4, pp. 406-471, Dec. 1999. [Online]. Available
http://doi.acm.org/10.1145/344588.344618

Q. Wu, T. M. McGinnity, L. P. Maguire, A. Belatreche, ari8l P.
Glackin, “Edge detection based on spiking neural networldehd in
ICIC (2), 2007, pp. 26-34.

