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ABSTRACT Smartphone mechanocardiography (sMCGQG) is a new technique that allows patients to record
a cardiac rhythm strip using a smartphone built-in tri-axial accelerometer and gyroscope. In this study,
we investigated how a self-applied sMCG can reliably contribute to the differentiation of atrial fibrillation
(AFib) from the sinus thythm (SR). A study sample of 300 elderly adults including 150 AFib cases with
persistent and paroxysmal AFib was recruited. Among the 300 subjects, 182 subjects (82 AFib) completed
two recordings, one physician-applied and one self-applied. The remaining patients (n = 118) were nervous,
in a quite poor condition, and not interested in or capable of concentrating on using a smartphone in the
acute setting of a hospital in order to perform the self-applied recording. Two data processing frameworks
were used, knowledge-based learning (KL) which is a rule-based algorithm and machine learning (ML)
which is an automated classification technique. For the ML approach, we considered four classifiers,
namely random forest (RF), extreme gradient boosting (XGB), support vector machines (SVM), and
artificial neural network (NN). For evaluation, a leave-one-subject-out cross-validation was adopted for the
ML approach. Compared to physician-interpreted ECG-derived labels, the KL approach predicted AFib
with sensitivity values of 0.963 and 0.976, specificity values of 0.980 and 0.929, and F-measure values
of 0.972 and 0.952 for the physician- and self-applied measurements, respectively. Similarly, NN which
was the best ML classifier according to the F-measure values, demonstrated, on average, sensitivity values
of 0.976 and 0.938, specificity values of 0.962 and 0.936, and F-measure values of 0.969 and 0.937,
respectively. All other classifiers delivered quite similar results. The sSMCG technology for AFib detection,
supported by the KL and ML approaches, can accurately differentiate AFib from SR in both physician-
and self-applied recording scenarios. This new technology can help to screen patients with episodic or
undiagnosed AFib and also be used as a home-based self-applied monitoring technique.

INDEX TERMS Accelerometers, biomedical engineering, cardiography, gyroscopes, machine learning,

signal processing.

I. INTRODUCTION

Atrial fibrillation (AFib) is one of the most prevalent car-
diovascular conditions that can result in a stroke and heart
failure, two of the most common causes of mortality and
morbidity [1]. An irregular heart rhythm as well as fast
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atrial pacing, not always detectable with suboptimal heart
monitoring modalities, are the major characteristics of AFib.
Diagnosis of AFib is complicated since the shape and the
chronology of the next ventricular complex cannot be pre-
dicted. Detecting inter-beat intervals that are completely ran-
dom and irregular utilizing a rhythm irregularity analysis
is a favorable approach to AFib diagnosis [2]. Abnormal
ventricular complexes (due to the rapid atrial pacing more
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than 400 bpm) are recognizable in episodes where amplitude
and morphology of the intraventricular conduction and fusion
alternate with a fast or slow frequency. Detecting irregular
variability of the ventricular complexes is a well-grounded
approach to a reliable AFib diagnosis [2].

Diagnosing asymptomatic and/or paroxysmal AFib is
known to be very challenging as episodes of AFib start
occasionally and stop spontaneously [3]. These infrequently
appearing AFib episodes may or may not be seen in a
short electrocardiogram (ECG) strip taken during a routine
checkup at a clinic. In the early stages of developing AFib,
it may remain undetected since the patient might not feel any
symptoms; this is called silent AFib [1]. Home-monitoring
via ubiquitous and/or hand-held recording devices could help
to recognize paroxysmal AFib by gathering more frequent
and longer (intermittent) snapshots of beat-to-beat inter-
vals during day-to-day life [2]. Nevertheless, self-recording
of vital signs and symptoms, and self-interpretation of
the acquired data remain open challenges that need to be
addressed.

Today, self-monitoring of cardiovascular health status has
become increasingly straightforward by the advent of smart-
phones, smartwatches, and wearable sensors. Sustainable
ambulatory AFib monitoring modalities require no more
devices than a single smartphone, smartwatch, or a comfort-
able wearable/handheld sensor. Clinically validated devices
such as smartphone- and smartwatch-coupled ECG moni-
tors (e.g. AliveCore Kardiamobile, Kardiaband [4], Apple
Watch [5], [6]), hand-held ECG recorders (e.g. Zenicor
EKG [7] and Mydiagnostick [8]), the wearable ECG patch
(Zio Patch [9]), wearable/mobile photoplethysmography
(PPG) recorders (e.g. Fibricheck [10], Preventicus [11],
and Samsung Simband [12]) can successfully enable self-
detection of heart arrhythmia and in particular sporadic AFib
outside clinical settings. However, AFib may remain sporadic
and unrecognizable even with the above-mentioned devices.
This implies that long-term continuous monitoring tech-
niques are required for an in-time diagnosis [13]. To detect
symptoms appearing at periodic or random intervals, an effec-
tive strategy for longer-term monitoring, up to several days
or weeks at a time, is needed [13], [14]. Despite vigorous
research, efficient and cost-effective approaches to detect and
screen for asymptomatic AFib are yet to be introduced.

Smartphone mechanocardiography (sMCG) is a new heart
monitoring technique which records precordial chest accel-
eration (seismocardiogram or SCG) and angular velocity
(gyrocardiogram or GCG) signals. This new technique allows
patients to record a cardiac rhythm strip using smartphone
built-in inertial measurement units (IMU) including tri-axial
microelectromechanical (MEMS) accelerometer and gyro-
scope sensors. In this study, we sought to investigate the
feasibility of self-monitoring using sSsMCG for AFib detec-
tion for clinical patients. In our previous contributions [2],
[15], [16], we introduced mobile phone detection of AFib by
processing only physician-applied sMCG recordings using
different data analytic architectures. In this work, however,
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we aim to further evaluate diagnostic accuracy and reli-
ability of the AFib detection using a self-applied sMCG
recording. To this end, we obtained sMCG data from a
group of subjects (n = 300) who were examined during two
recording scenarios. Among the 300 subjects, 182 subjects
(82 AFib) completed two recordings, one physician-applied
and one self-applied SsMCG recording. The remaining sub-
jects (n = 118) were either unable or unwilling to perform the
self-applied recording. It must be taken into account that our
smartphone app was not designed for elderly users at the time
of recording. Besides, many elderly users had no previous
experience of using smartphone ehealth apps. However, not a
single recording was rejected because of poor signal quality.

Diagnostic reliability of sMCG for AFib detection was
assessed by deploying two independent approaches, namely
knowledge-based learning (KL) and machine learning (ML).
The KL algorithm, which operates based on characterizing
the regularity of the beating pattern of the heart, was deployed
to predict AFib in those subjects who had completed both
physician- and self-applied measurements (n = 182). For the
ML approach, training and testing the ML algorithm was
done through an iterative process in which every time one
subject’s measurements were placed into the test set and the
rest of the measurements into the training set. The testing
process was only done for the same aforementioned 182 sub-
jects. The ML approach was examined using four different
classifiers, namely random forest (RF) [17], extreme gradient
boosting (XGB) [18], support vector machines (SVM) [19],
and artificial neural network (NN) [20]. Then the intra- and
inter-agreement of the predictions of the two algorithms were
assessed for each subject and each category. To facilitate
the assessment of subject-by-subject predictions, we intro-
duce barcode plots with colored ribbons to mark the true
label and the predicted labels of the measurements of each
subject.

Il. MATERIALS AND METHODS

A. STUDY PARTICIPANTS

The study sample considered in this paper includes clinical
patients from the MODE-AF (mobile-phone detection of
atrial fibrillation) trial. The MODE-AF study (ClinicalTri-
als.gov Identifier: NCT03274583) examined the feasibility
and effectiveness of AFib detection with a smartphone and
a complementary app for acquiring MCG signals at a 200 Hz
sampling frequency. The smartphone was placed on the bare
chest of the participants without any chest belt, strap, or any
additional sensor attachment equipment. The smartphone was
oriented with its screen facing upward and its lower edge
aligned with the lower edge of the sternum. For the clinical
trial, 300 (150 persistent and paroxysmal AFib) participants
with a previous history of cardiovascular diseases with a
mean age of 74.75 (range 73.0 to 76.6) were enrolled and
their written informed consent obtained. Detail descriptions
of the measurement protocol and the demographics of the
participants are available in [2], [16].
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A trained physician was responsible for the recruitment
of all the subjects, obtaining all the sMCG recordings, and
performing physician-applied measurements and data docu-
mentation. Of the 300 subjects, 193 subjects were also able
to collect at least one self-applied recording successfully.
However, 11 subjects who collected less than 30 seconds
self-applied data were excluded.

The study administrator instructed the subjects on how to
turn the device on, how to navigate to the data acquisition
application and how to start the recording. They were then
instructed to find the correct placement of the phone on
their chest. The instruction was repeated as many times as
needed individually. After the investigator deemed that the
subject had understood the task sufficiently, the first record-
ing was performed. Each subject was given three chances to
collect at least one successful self-applied measurement. For
every attempt, the subjects were left alone for 10 minutes to
carry out the recording on their own. The longest recording
was then selected for the analysis. The investigator evalu-
ated subjectively how well the subjects had learned to use
the application or whether they had refused to attempt the
recording.

Altogether, 182 (82 AFib) subjects whose both physician-
and self-applied recordings were longer than 30 seconds were
considered suitable for the study. The remaining subjects who
were either unable or unwilling to carry out the self-applied
recording according to the given instructions were excluded
from the prospective head-to-head analysis. Corresponding
physician-applied recordings of these excluded subjects were
however used for training the implemented ML models to
classify AFib, as described in the following sections.

Ill. ANALYSIS PIPELINES

For this study, we evaluated the detection performance of
two independent classification techniques, namely machine
learning (or ML) and knowledge-based learning (or KL). The
KL approach thoroughly examines the presence of periodicity
in the recorded sMCG signals, i.e. SCG and GCG, while the
ML approach builds a model utilizing various time-frequency
features extracted from these signals.

A. KL APPROACH

The KL approach is a rule-based algorithm which operates
based on a sequence of rather simple but effective tests, which
are used to determine whether the signal is periodic (i.e. SR)
or not (i.e. AFib). A flowchart of the procedure exploited in
the KL approach is presented in Figure 1. The ventricular
event rate of a normal heart is typically lower than the high
atrial event rate of the heart in AFib. Hence, screening of
AFib is possible simply by monitoring the overall temporal
periodicity of MCG signals. To this end, signals are pre-
processed for baseline wander and noise removal by band-
pass filtering (passband 4-40 Hz). In spite of the high lower
passband limit, the periodicity information of the signal is
still retained due to the impulsive nature of the heart signal.
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FIGURE 1. The flowchart of the analysis pipeline designed for the KL
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FIGURE 2. The autocorrelation of GCG-Y of a typical AFib measurement
(top row) and a typical SR measurement (bottom row).

The measurements correspond to the same subjects

whose data is shown in Figure 6 top two rows.

The pre-processed signals in all channels were then seg-
mented temporally into 7-second segments with a 2-second
overlap, within which periodicity information was obtained
for each channel separately. The segment length and the
overlap size were selected empirically.

The periodicity of every signal segment was obtained
using autocorrelation as described in the following. For each
7-second segment, autocorrelation peaks were found. Based
on the characteristics of the peaks three successive tests were
implemented to exclude aperiodic signals. The first test deter-
mines whether the number of autocorrelation side-peaks is at
least three in the current channel and the current 7-second
segment. If this is true, the channel in question is a candidate
for being periodic (otherwise aperiodic). Second, the ampli-
tude of the first side-peak needs to be at least 0.4, to retain
the channel as a candidate for being periodic (otherwise it
is aperiodic). In the third phase, we tested whether all the
side-peaks were evenly located. If all these requirements are
fulfilled for at least one channel, the whole 7-second segment
is labelled as periodic. The state of periodicity is then denoted
by Os for aperiodic and 1s for periodic segments.

After going through all the segments, if the number of
periodic segments is above 10% of the total number of
segments, the measurement is considered periodic (i.e. SR)
and aperiodic otherwise (i.e. AFib). Figure 2 illustrates the
application of autocorrelation for quantification of beat-to-
beat regularity. The top row in this figure corresponds to
an AFib case while the bottom row corresponds to an SR
case. The autocorrelation of the AFib case lacks consistent
side-peaks while for the SR case there is a clear repeating
pattern.

Both the physician- and self-applied measurements in the
study test set were evaluated by the KL approach and there-
after their predicted labels were obtained accordingly.

B. ML APPROACH

The ML approach consists of three major building blocks
namely signal pre-processing, feature extraction, and classi-
fication. A visual step-by-step procedure implemented in the
ML approach is presented in Figure 3.
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1) SIGNAL PRE-PROCESSING

Singular spectrum analysis (SSA) [21] was exploited to
discard noisy components of sMCG signals. In practice,
SSA generates a trajectory matrix from the original series
of SMCG signals by a sliding window of length &~ 100m:s.
The trajectory matrix is approximated using singular value
decomposition. Next, the components of the trajectory matrix
that were less affected by the motion artefacts and noise
are found by visual inspection and contribute to reconstruct-
ing the noise-free signals. The SSA function applies signal
smoothing, filtering, and detrending as described in [16].
Following the SSA process, the envelopes of the signals were
extracted to be used for feature extraction. The envelops were
computed by adopting three-stage, moving-average filtering
with a growing window size [16]. As a result of this pre-
processing, two pre-processed channels were developed for
every channel in the raw data; that is, in total six SSA-filtered
and six envelopes of SSA filtered channels were formed and
subsequently fed into the feature extraction phase. Before
the feature extraction, signals were segmented into 10-second
segments with a 75% overlap. Overlapping segments provide
a smoother change of the parameters as the frames move
forward.

2) FEATURE EXTRACTION

A wide spectrum of time-frequency features was extracted
from both SSA-filtered and corresponding MCG signal
envelopes. Table 1 displays the types of features which were
computed from each segment of every SCG and GCG chan-
nel. Since we were aiming to predict a single label for each
measurement rather than each signal segment, we took the
median of the calculated features over all the signal segments.
This allowed us to obtain a robust overview of the computed
features in each measurement [12], [16]. In total, 552 features
were extracted for each measurement. The detailed expla-
nation of the mathematics behind each feature is described
in [16].

3) TRAINING MODEL AND VALIDATION

Since we consider a supervised learning approach for AFib
detection, the learner is provided with two sets of data,
a training set and a test set. Training and testing the ML
algorithm were done through an iterative process in which
every time one subject’s measurements were placed into the
test set and the other subjects’ measurements were placed into
the training set (see Figure 3). The testing process was only
done for those subjects (n = 182) who had both physician-
and self-applied measurements. Those subjects who only had
physician-applied measurements were always present in the
training set and never present in the test set. For instance,
in iteration one, one subject was randomly selected from
those who had both physician- and self-applied measure-
ments and was regarded as a test subject. The training set
was subsequently comprised of the remaining 299 physician-
applied and the remaining 181 self-applied measurements.

VOLUME 7, 2019



S. Mehrang et al.: Reliability of Self-Applied sMCG for AFib Detection

IEEE Access

/ 6-channel MCG data n = 300 subjects /

ML approach

Does the
subject have
self-applied
data?

exclude the
self-applied
measurement

Add his/her
physician-applied

measurement to the
only-training data set

No

Yes

Yes

Is the length of the
self-applied data more
than 30 seconds?

Add both of his/her
physician- and self-applied

measurements to the training
and validation data set

Data pre-processing and segmentation |

I Feature extraction

Repeat for all channels

Data pre-processing and segmentation

/ 6-channel raw MCG data /

N

v

SSA filtering

Envelope

calculation

!

!

Segmentation

n = 299 physician-applied

n = 181 self-applied

Training set (n = 480)

m=1
physician-applied

m=1
self-applied

Test set (m = 2)

Iteration 1: physician- and self-applied measurements of subject 1 is left out of training and used for test

n = 299 physician-applied

n = 181 self-applied

Training set (n = 480)

m=1
physician-applied

m=1
self-applied

Test set (m = 2)

Iteration 182: physician- and self-applied measurements of subject 182 is left out of training and used for test

Leave One Subject Out Cross-Validation

separate the physician- and self-applied labels while preserving the subject IDs

self-applied

physician-applied

store the predicted labels of the self-applied measurements/ /

store the predicted labels of the physician-applied

measurements

FIGURE 3. The flowchart of the analysis pipeline designed for the ML approach.
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TABLE 1. The extracted features were adopted from the Jafari et al. study [16].

Number | Feature Number | Feature

1 Zero crossing rate (ZCR) 29-31 Covariance

2 Signal energy (Es) 32 Approximate entropy (ApEn)

3 Signal energy entropy (Ente) 33 Spectral entropy (SpEn)

4 Spectral centroid (S Peentroid) 34 Shannon entropy (SEE)

5 Spectral spread (S Pspread ) 35 Turning point ratios (TPR)

6 Spectral flux (SPfyz) 36 Median of RR intervals

7 Spectral roll-off 37 RMSSD

8 Fundamental frequency (Fp) 38 PSD of RR intervals

9 Heart rate (HR) 39 Higuchi fractal dimensions (HFD)
10 Harmonic-to-noise ratio (HNR) 40-41 Hjorth parameters

11-16 6 dominant spectral peaks 42 Sample entropy

17-22 Corresponding frequencies of the 6 spectral peaks 43-44 Kurtosis and skewness

23-27 Power spectral density (PSD) in 5 frequency bands | 45-46 Arithmetic mean and RMS level
28 Median amplitude spectrum (MAD)

TABLE 2. Prediction performances of the KL and the ML approaches for the physician- and self-applied data. The presented numbers correspond to the

comparison of true labels and the predicted labels.

Measurement Status  Approach  Classifier | Sensitivity Specificity F-measure Kappa-score AUC
RF 0.948 (0.01)  0.920 (<0.01)  0.934 (<0.01)  0.864 (0.01)  0.975 (<0.01)
ML XGB 0.915(0.00)  0.920(<0.01)  0.917 (<0.01)  0.834 (0.00)  0.979 (0.00)
Self-applied SVM 0.927 (<0.01)  0.920 (<0.01)  0.923 (<0.01)  0.845 (0.00) 0.978 (<0.01)
NN 0.938 (0.01) 0.936 (0.01) 0.937 (0.01) 0.873 (0.01) 0.973 (0.01)
KL 0.976 (0.00) 0.929 (0.00) 0.952 (0.00) 0.900 (0.00) -
RF 0.955 (0.01) 0.980 (<0.01)  0.967 (<0.01)  0.937 (0.01) 0.997 (<0.01)
ML XGB 0.951 (0.00) 0.980 (<0.01)  0.965 (<0.01)  0.933 (<0.01)  0.997 (<0.01)
Physician-applied SVM 0.988 (<0.01)  0.930 (0.00) 0.958 (<0.01)  0.912(0.01) 0.997 (<0.01)
NN 0.976 (0.01) 0.962 (0.01) 0.969 (<0.01)  0.936 (0.01) 0.997 (<0.01)
KL 0.963 (0.00) 0.980 (0.00) 0.972 (0.00) 0.944 (0.00) -

Accordingly, in this iteration, the test set was comprised
of one physician- and one self-applied measurement cor-
responding to the test subject. This iterative process was
repeated for a total of 182 times until all 182 subjects who had
both physician- and self-applied measurements were tested
once.

Four ML models namely RF [17], XGB [18], SVM [19],
and NN [20] classifiers were deployed to examine the
performance of the ML approach. For each of these four ML
models, the process of training and testing the ML classi-
fier was repeated for 10 iterations. Subsequently, the arith-
metic mean and standard deviation of sensitivity, specificity,
F- measure, Kappa-score, and area under the receiver oper-
ating characteristic curve (AUC) were calculated over these
10 iterations and reported for both physician- and self-applied
measurements.

For all the four classifiers, we kept the default parame-
ters as no tuning was applied. The parameters for the RF
classifier [22] were 1025 trees, Gini as the measure for the
quality of splits, square root of the features for the max-
imum number of features when looking for the best split.
For the XGB classifier [18], we used a forest size equal
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to 1025 trees, step size shrinking (eta) equal to 0.3, min-
imum loss reduction (gamma) equal to 0, and max depth
equal to 6, L,-regularization (lambda) equal to 1, as well as
Li-regularization (alpha) equal to 0. For the SVM classi-
fier [22], the parameters were the radial basis function for
the kernel, (number of features)™! for the kernel coefficient
(gamma), and 1 for the penalty term (C). Lastly, for the NN
classifier [22], we used a single hidden layer with 100 neu-
rons, rectified linear unit (relu) activation, and an adaptive
moment estimation (adam) optimizer.

IV. RESULTS

In this section, the prediction performances of the two
approaches, the prediction consistency of the physician- and
self-applied data as measured by the KL and ML approaches,
as well as the prediction agreement of the KL and ML
approaches are presented.

A. PREDICTION PERFORMANCES

The results of the performed classifications on the test set for
the KL and ML approaches for both of the physician- and
self-applied data are illustrated in Table 2.
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1) KL APPROACH RESULTS

For the physician-applied data, the KL approach provided a
sensitivity of 0.963 (0.00) and a specificity of 0.980 (0.00).
For the self-applied data, the sensitivity and specificity val-
ues were 0.976 (0.00) and 0.929 (0.00), respectively. The
F- measure was 0.972 (0.00) for the physician-applied data
and 0.952 (0.00) for the self-applied data. The Kappa-score of
the predicted labels versus true labels was 0.944 (0.00) for the
physician-applied data and 0.900 (0.00) for the self-applied
data. The KL approach is a deterministic algorithm; therefore,
all the standard deviation values are zero. Since the KL
algorithm does not provide prediction probabilities, the AUC
value was not computed for the KL algorithm results.

2) ML APPROACH RESULTS

Repeated 10 times, the four RF, XGB, SVM, and NN classi-
fiers were trained and tested following the framework illus-
trated in Figure 3. The performance metrics calculated for all
the four ML classifiers are described in Table 2. According
to Table 2, the best sensitivity and specificity values for
the physician-applied data were 0.988 (<0.01) and 0.980
(<0.01) while for the self-applied data they were 0.948
(0.01) and 0.936 (0.01), respectively. The highest acquired
F-measure was 0.969 (<0.01) for the physician-applied data
and 0.937 (<0.01) for the self-applied data. The best Kappa-
score of the predicted labels versus true labels was 0.937
(0.01) for the physician-applied data and 0.873 (0.01) for the
self-applied data. The best AUC for the physician-applied
data was 0.997 (<0.01) and for the self-applied data was
0.979 (0.00). ROC curves of the predictions made by the
ML approach for the physician- and self-applied data are
presented in Figure 4a and Figure 4b, respectively.

B. PREDICTION CONSISTENCY OF THE KL APPROACH

In order for us to compare the exact prediction of each
approach for a certain subject, we introduce a barcode plot
in which the true label (or the ground truth) for each subject
is marked with a color (see Figure 5). In this figure, pink
represents the SR category and blue represents the AFib cat-
egory. Columns C and E in Figure 5 illustrate the predictions
made by the KL approach for the physician- and self-applied
data, respectively. The agreement of the two measurement
scenarios obtained by the KL approach — measured by Kappa-
score — was 0.911. This shows a slightly better agreement as
compared with the ML approach.

C. PREDICTION CONSISTENCY OF THE ML APPROACH

We sought to compare the performance of the physician- and
self-applied AFib detection by selecting the best classifier
based on the F-measure values. Accordingly, the NN classi-
fier was chosen as the best classifier as reported in Table 2.
The agreement of the predictions made by the two measure-
ment scenarios analyzed by the ML approach was assessed
by Kappa-score. The resulting Kappa-score was equal to
0.811 for the physician- versus the self-applied classification.
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FIGURE 4. ROC curves of the ML classifiers for the physician- and
self-applied measurements.

A visual representation of the exact predictions made by the
NN classifier is presented in columns B and D in Figure 5.

D. PREDICTION AGREEMENT OF THE KL AND

THE ML APPROACHES

1) PHYSICIAN-APPLIED MEASUREMENTS

As shown in columns B and C in Figure 5, there were very
few misclassifications made by the KL and ML approaches.
In the SR group, two and four measurements were wrongly
predicted by the KL and ML, respectively. In the AFib group,
there were two misclassifications made by the ML approach
and three misclassifications made by the KL approach. There
was no common misclassification made by both of the ML
and KL approaches in the physician-applied data. The agree-
ment of the two approaches for the classification of the
physician-applied measurements was equal to 0.900.

2) SELF-APPLIED MEASUREMENTS

According to columns D and E in Figure 5, there were four
subjects in the SR group whose measurements were misclas-
sified by both the KL and ML approaches. Furthermore, there
were three more misclassifications made by the KL approach
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FIGURE 5. Barcode plot of the predictions made by ML and KL approaches for the physician- (columns B and C) and the self-applied
(columns D and E) data in comparison with the true labels (column A). The ground truth of the labels are coded with colors;

pink represents the SR category and blue represents the AFib category.

as well as two more misclassifications made by the ML
approach. In the AFib group, there were only two misclassifi-
cations made by the KL approach whilst there were five mis-
classifications made by the ML approach. The two KL and
ML approaches did not have any common misclassifications
in the AFib group. The agreement of the two approaches for
the classification of the self-applied measurements was equal
to 0.867.

In Figure 6, a few examples of correctly classified and
misclassified measurements are outlined. The presented data
in this figure were selected to show the typical style of AFib
and SR (subjects 1 and 2) and further clarify the sources of
misclassifications (subjects 3 to 5) in the self-applied data.
Although occurring only rarely, the sources of error were low-
quality data and paroxysmal AFib.

V. DISCUSSION

The subjects who participated in this study were all elderly
adults who were admitted to the Department of Cardiology,
Turku Hospital, Turku, Finland. Cardiologists recorded the
sMCG data from the subjects first and then instructed them
to carry out the self-applied measurement. Each subject was
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given three opportunities to collect at least one successful
self-applied measurement. Of the 300 participants, 182 sub-
jects were able and willing to contribute to collecting the self-
applied measurement according to the given instructions. The
prospective head-to-head analysis was only done for these
subjects.

The results of this study are in line with our
previous contributions where we introduced the concept of
mechanocardiography for AFib detection by considering
only physician-applied sMCG recordings [2], [15], [16].
The major contribution of this study was the performance
assessment of AFib detection in self-applied sMCG record-
ings. We demonstrated that self-applied measurements can
reliably contribute to the detection of AFib. Additionally,
our results are comparable with the latest smartphone-based
AFib detection technologies. Recently, research studies have
shown that facial pulsatile PPG recorded by a smartphone
camera could facilitate AFib detection with sensitivity value
of 0.95 and specificity value of 0.96 [23]. Similarly, AFib
detection using fingertip PPG collected by a smartphone
camera resulted in sensitivity value of 0.92 and specificity
value of 1.00 [24]. PPG-based detection of AFib using a
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FIGURE 6. From self-applied data, snapshots of correctly classified signals from AFib and SR categories in the two top rows (subject 1 and subject
2), an AFib case misclassified by KL (subject 3), an AFib case misclassified by ML (subject 4), and a SR case misclassified by both KL and ML

(subject 5) are provided.

smartwatch provided 0.98 and 0.90 sensitivity and specificity
rates [25]. ECG-based detection of AFib using an Apple
Watch with a KardiaBand resulted in 0.93 sensitivity as well
as 0.84 specificity rates [5].

This study was designed in such a way that those partic-
ipants who did not have proper self-applied measurements
but proper physician-applied measurement were placed into
the training set to be exclusively used for training the ML
approach. The rest of the subjects who had both physician-
and self-applied measurements that were of a proper quality
and duration were used as a test set. That is, the testing
process was only done for those subjects (n = 182) who had
both physician- and self-applied measurements.

The barcode plots introduced in this paper facilitated
the investigation of the subject-by-subject variations of the
predictions made by the ML and KL approaches. The
agreement of AFib recognition using the self- and the
physician-applied sMCG measurements was investigated in
this work. Two different approaches, namely ML and KL,
were deployed to assess whether the same level of accu-
racy can be obtained for the self-applied data in comparison
with the physician-applied data. The results of both the ML
and KL approaches showed that a slightly lower level for
the F-measure and kappa-score were accomplished with the
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self-applied measurements as compared with the physician-
applied measurements.

All the four ML classifiers that were used in this study pro-
vided quite similar performance levels in both the physician-
and self-applied data sets. This implies that AFib detection
was not dependent on the type of the deployed classifiers.
The results of the NN classifier, which provided the slightly
higher F-measure for both of the physician- and self-applied
data, was selected and analyzed further.

According to Table 2, the presented performance metrics
for both the ML and KL approaches confirmed that switching
to the self-applied data led to negligible performance depre-
ciation. However, the KL approach was better able to tolerate
the variations caused by transferring the data acquisition
responsibility to the subjects themselves.

In Figure 6, the top two rows (subjects 1 and 2) indicate
the typical characteristics of AFib and SR data which are
quite straightforward to classify by both the ML and KL
approaches. The next row from the top (subject 3) corre-
sponds to an AFib case whose self-applied measurement was
misclassified by the KL approach. The signals of this case
look mostly regular except for the abrupt transitions from
high heart rate to lower heart rate. The fourth row from the top
(subject 4) associates with an AFib case whose self-applied
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measurement was misclassified by the ML approach. It seems
the low quality of data confused the ML approach. The
bottom row (subject 5) exemplifies a potentially mislabeled
measurement as we could barely find any regularity in the
data. Such mislabeled measurements were quite rare in our
data set. The reason for assigning wrong labels could be the
sporadic nature of AFib in some patients.

It is worth noting that all participants in this study
were elderly adults who might not have been very compe-
tent smartphone users and probably unfamiliar with phones
equipped with a touchscreen. Many patients were nervous,
in a quite poor condition, and not interested in or capable of
concentrating on using a smartphone in this acute hospital
setting. Nevertheless, the most common and important reason
for an unsuccessful self-applied recording was the unfamiliar-
ity with touch screen devices (maybe sometimes combined
with poor eyesight, loss of coordination, physical trauma,
etc.). For example, most of the elderly subjects pressed the
touch screen very hard, as if they were using a regular phone
with a keypad, which resulted in failure of the touch screen to
register their touch. It seemed difficult for the elderly patients
to learn the right touch intensity; many did not learn; hence no
successful recording was made. Those patients who had expe-
rience with smartphones, of course, did not have this problem.

On the other hand, the user interface of the deployed signal
acquisition application on the mobile phone was not exclu-
sively designed for elderly adults. The smartphone applica-
tion was primarily meant to be a data logger rather than an
application designed for ordinary consumers. Despite all the
aforementioned limitations, 182 subjects were willing and
able to make a successful self-applied recording. Our results
show that by using SMCG we were able to detect AFib with
a F-measure value equal to 0.937. The user interface, unfa-
miliarity with smartphones, and the clinical condition of the
subjects while being hospitalized were the major limitations
of the self-applied data acquisition in this study.

Another potential source of error causing misclassifica-
tion, as depicted in Figure 6, could be due to sporadic AFib
episodes. This potentially hindering factor must be inves-
tigated in future research studies. In the MODE-AF study
dataset, the focus was on the discrimination of AFib from SR;
however, there are other types of arrhythmias such as atrial
flutter, premature atrial contractions, ventricular tachycardia,
ventricular fibrillation, and premature ventricular contrac-
tions which will be investigated in future studies.

VI. CONCLUSION

Smartphone mechanocardiography is a reliable measurement
modality for AFib detection. The findings of this study
suggest that in a study sample of 182 elderly adults, both
physician- and self-applied measurements could provide suf-
ficient information for successful AFib detection. These find-
ings contribute in several ways to our understanding of the
heart mechanical functioning and therefore provide a basis
for arrhythmia detection using sSMCG. The present study
adds to the growing body of research that indicates the
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practicality of built-in inertial sensors of smartphones and/or
wearable devices for continuous monitoring of heart condi-
tions. Further research should be undertaken to explore the
effectiveness of sSMCG in screening for AFib.

ACKNOWLEDGMENT
The authors would like to thank all the participants in the
study.

REFERENCES

[1] P. Kirchhof, S. Benussi, D. Kotecha, A. Ahlsson, D. Atar, B. Casadei,
M. Castella, H.-C. Diener, H. Heidbuchel, J. Hendriks, G. Hindricks,
A. S. Manolis, J. Oldgren, B. A. Popescu, U. Schotten, and B. V. Putte,
2016 ESC Guidelines for the management of atrial fibrillation developed
in collaboration with EACTS,” Eur. J. Cardio-Thoracic Surg., vol. 50,
no. 5, pp. el—e88, 2016.

[2] J. Jaakkola, S. Jaakkola, O. Lahdenoja, T. Hurnanen, T. Koivisto,
and M. Pank&édld, T. Knuutila, T. O. Kiviniemi, T. Vasankari, and
K. E. J. Airaksinen, ‘“Mobile phone detection of atrial fibrillation with
mechanocardiography: The mode-af study (mobile phone detection of
atrial fibrillation),” Circulation, vol. 137, no. 14, pp. 1524-1527, 2018.

[3] R. W. Rho and R. L. Page, “Asymptomatic atrial fibrillation,” Progr.
Cardiovascular Diseases, vol. 48, no. 2, pp. 79-87, 2005.

[4] J.K.Lau, N. Lowres, L. Neubeck, D. B. Brieger, R. W. Sy, C. D. Galloway,
D.E. Albert, and S. B. Freedman, “iPhone ECG application for community
screening to detect silent atrial fibrillation: A novel technology to prevent
stroke,” Int. J. Cardiol., vol. 165, no. 1, pp. 193-194, 2013.

[5] J. M. Bumgarner, C. T. Lambert, A. A. Hussein, D. J. Cantillon,
B. Baranowski, K. Wolski, B. D. Lindsay, O. M. Wazni, and K. G. Tarakji,
“Smartwatch algorithm for automated detection of atrial fibrillation,”
J. Amer. College Cardiol., vol. 71, no. 21, pp. 2381-2388, 2018.

[6] M. P. Turakhia, M. Desai, H. Hedlin, A. Rajmane, N. Talati, T. Ferris,
S. Desai, D. Nag, M. Patel, P. Kowey, J. S. Rumsfeld, A. M. Russo,
M. T. Hills, C. B. Granger, K. W. Mahaffey, and M. V. Perez, “Rationale
and design of a large-scale, app-based study to identify cardiac arrhythmias
using a smartwatch: The apple heart study,” Amer. Heart J., vol. 207,
pp. 6675, Jan. 2019.

[7]1 T. Hendrikx, M. Rosenqvist, P. Wester, H. Sandstrom, and R. Hornsten,
“Intermittent short ECG recording is more effective than 24-hour Holter
ECG in detection of arrhythmias,” BMC Cardiovascular Disorders,
vol. 14, no. 1, p. 41, 2014.

[8] R. Tieleman, Y. Plantinga, D. Rinkes, G. Bartels, J. Posma, R. Cator,
C. Hofman, and R. P. Houben, ‘“Validation and clinical use of a novel
diagnostic device for screening of atrial fibrillation,” Europace, vol. 16,
no. 9, pp. 1291-1295, 2014.

[9] P. M. Barrett, R. Komatireddy, S. Haaser, S. Topol, J. Sheard, J. Encinas,
A.J. Fought, and E. J. Topol, “Comparison of 24-hour Holter monitoring
with 14-day novel adhesive patch electrocardiographic monitoring,” Amer.
J. Med., vol. 127, no. 1, pp. 95.e11-95.e17, Jan. 2014.

[10] C. Mortelmans, ““Validation of a new smartphone application (‘Fib-
riCheck’) for the diagnosis of atrial fibrillation in primary care,” KU
Leuven, Leuven, Belgium, Tech. Rep., 2016.

[11] L. Krivoshei, S. Weber, T. Burkard, A. Maseli, N. Brasier, M. Kiihne,
D. Conen, T. Huebner, A. Seeck, and J. Eckstein, ‘“‘Smart detection of atrial
fibrillation,” Europace, vol. 19, no. 5, pp. 753-757, 2016.

[12] S. Nemati, M. M. Ghassemi, V. Ambai, N. Isakadze, O. Levantsevych,
A. Shah, and G. D. Clifford, “Monitoring and detecting atrial fibrillation
using wearable technology,” in Proc. 38th Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc. (EMBC), Aug. 2016, pp. 3394-3397.

[13] A.J. Camm, P. Kirchhof, G. Y. Lip, and E. A. Schotten, “Guidelines for
the management of atrial fibrillation: The task force for the management of
atrial fibrillation of the European society of cardiology (ESC),” Eur. Heart
J., vol. 31, no. 19, pp. 2369-2429, 2010.

[14] V. Fuster et al., “ACC/AHA/ESC guidelines for the management of
patients with atrial fibrillation: Executive summary: A report of the Ameri-
can college of cardiology/American heart association task force on practice
guidelines and the European society of cardiology committee for practice
guidelines and policy conferences (committee to develop guidelines for the
management of patients with atrial fibrillation) developed in collaboration
with the north American society of pacing and electrophysiology,” J. Amer.
College Cardiol., vol. 38, no. 4, pp. 1231-1265, 2001.

VOLUME 7, 2019



S. Mehrang et al.: Reliability of Self-Applied sMCG for AFib Detection

IEEE Access

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

O. Lahdenoja, T. Hurnanen, Z. Iftikhar, S. Nieminen, T. Knuutila,
A. Saraste, T. Kiviniemi, T. Vasankari, J. Airaksinen, M. Pinkéilid, and
T. Koivisto, “Atrial fibrillation detection via accelerometer and gyro-
scope of a smartphone,” IEEE J. Biomed. Health Inform., vol. 22, no. 1,
pp. 108-118, Jan. 2018.

M. J. Tadi, S. Mehrang, M. Kaisti, O. Lahdenoja, T. Hurnanen, J. Jaakkola,
S. Jaakkola, T. Vasankari, T. Kiviniemi, J. Airaksinen, T. Knuutila,
E. Lehtonen, T. Koivisto, and M. Pinkiild, “Comprehensive analysis
of cardiogenic vibrations for automated detection of atrial fibrillation
using smartphone mechanocardiograms,” IEEE Sensors J., vol. 19, no. 6,
pp. 2230-2242, Nov. 2018.

L. Breiman, ‘“Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
2001.

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2016, pp. 785-794.

C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273-297, 1995.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533-536,
Oct. 1986.

N. Golyandina and A. Zhigljavsky, Singular Spectrum Analysis for Time
Series. Springer, 2013.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12,
pp. 2825-2830, Oct. 2011.

B. P. Yan, W. H. Lai, C. K. Chan, S. C.-H. Chan, L.-H. Chan, K.-M. Lam,
H.-W. Lau, C.-M. Ng, L.-Y. Tai, K.-W. Yip, O. T. L. To, B. Freedman,
Y. C. Poh, and M.-Z. Poh, “Contact-free screening of atrial fibrillation
by a smartphone using facial pulsatile photoplethysmographic signals,”
J. Amer. Heart Assoc., vol. 7, no. 8, 2018, Art. no. e008585.

N. Brasier, C. J. Raichle, M. Dorr, A. Becke, V. Nohturfft, S. Weber,
F. Bulacher, L. Salomon, T. Noah, R. Birkemeyer, and J. Eckstein, ‘“Detec-
tion of atrial fibrillation with a smartphone camera: First prospective,
international, two-centre, clinical validation study (DETECT AF PRO),”
EP Europace, vol. 21, no. 1, pp. 41-47, 2018.

G. H. Tison, J. M. Sanchez, B. Ballinger, A. Singh, J. E. Olgin,
M. J. Pletcher, E. Vittinghoff, E. S. Lee, S. M. Fan, and R. A. Gladstone,
C. Mikell, N. Sohoni, J. Hsieh, and G. M. Marcus, ‘“Passive detection
of atrial fibrillation using a commercially available smartwatch,” JAMA
Cardiol., vol. 3, no. 5, pp. 409-416, 2018.

SAEED MEHRANG was born in Isfahan, Iran,
in 1990. He received the M.Sc. degree in infor-
mation technology from the Tampere University
of Technology, in 2016. He is currently pursu-
ing the Ph.D. degree with the Health Technology
Group, Faculty of Science and Engineering, Uni-
versity of Turku. He has cooperated as a Data
Scientist in several research projects. His research
is mainly focused on the applications of deep
learning, machine learning, and signal and image

processing for medical and healthcare technologies.

MOJTABA JAFARI TADI was born in Isfahan,
Iran, in 1989. He received the B.Sc. degree in
biomedical engineering, in 2012, the M.Sc. degree
in biomedical imaging from Abo Academi Uni-
versity, and the Ph.D. degree in medical physics
and engineering from the University of Turku,
Finland, in 2014 and 2018, respectively, where he
has been a Senior Researcher/Postdoctoral Fellow
with the Health Technology Group, Faculty of
e Science and Engineering, since 2019. His research

interests include noninvasive physiologic monitoring for human health and
medical imaging, and developing signal processing and machine learning
techniques for detecting chronic diseases.

VOLUME 7, 2019

TERO HURNANEN received the master’s degree
from the Department of Physics, University of
Turku, in 2006, where he is currently a Researcher
with the Department of Future Technology. He has
been previously working in areas of spectroscopy,
digital signal processing, and telecommunica-
tion. He is currently researching algorithms for
automatic detection of atrial fibrillation.

TIMO KNUUTILA is currently an Adjunct Profes-
sor with the Department of Future Technologies,
University of Turku. He has excellent knowledge
of data mining, algorithms, and machine learning
techniques.

OLLI LAHDENOJA received the M.Sc. and D.Sc.
(Tech) degrees from the University of Turku
(UTU), Finland, in 2003 and 2015, respectively,
where he is currently a Senior Researcher with
the Department of Future Technologies, within the
area of biomedical engineering. His research inter-
ests include biomedical engineering, biomedical
signal processing, and computer vision. He has
worked in several research projects related to a
concrete implementation of systems related to

these areas. He has published several peer-reviewed international journals
and conference papers in these fields.

JUSSI JAAKKOLA was born in Pirkkala, Finland,
in 1991. He received the Medicinae Doctor (M.D.)
degree and the Ph.D. degree in cardiology and
cardiovascular medicine from the University of
Turku, Finland, in 2016 and 2018, respectively.
He is currently an Internal Medicine Resident with
the Satakunta Central Hospital (Satasairaala), Pori,
Finland. His current research interests include the
screening of atrial fibrillation and aortic valve
replacement therapy.

SAMULI JAAKKOLA was born in 1981.
He received the university degree (LL), the Medic-
inae Doctor (M.D.) degree, and the Ph.D. degree in
cardiology and cardiovascular medicine from the
University of Turku, Finland, in 2010, 2016, and
2018, respectively. He is currently a Cardiology
Specialist with the Turku Heart Center, Turku,
Finland.

146811



IEEE Access

S. Mehrang et al.: Reliability of Self-Applied sMCG for AFib Detection

TUIJA VASANKARI is a Registered Nurse and
is currently a Study Coordinator with the Heart
Center of Turku University Hospital. Her expertise
includes study protocols, patient information and
informed consent forms, and clinical trials.

TUOMAS KIVINIEMI was born in Finland,
in 1979. He received the M.D. degree, in 2006,
the Ph.D. degree, in 2006, and the Adjunct Pro-
fessorship, in 2013, from the University of Turku,
Finland, where he has been a Specialist in cardiol-
ogy, since 2012. As a Clinical Cardiologist, Clin-
ical Trialist, and Translational Researcher with a
special research interest in atrial fibrillation (AF)
and long-term complications after percutaneous
and surgical procedures, he has produced over
90 peer-reviewed publications in English. He has been a Visiting Scientist
with Brigham and Women’s Hospital, Harvard Medical School, Boston,
USA, since 2018. His current research interests include clinical trials in the
field of cardiovascular medicine, detection of AF, and translational research
in the field of cell biology of AF and atrial cardiomyopathy. He served
as the Secretary and the President, and serves as the Past-President for
EAPCI Working Group of Finnish Cardiac Society. He has been a Fellow
of European Society of Cardiology (FESC), since 2017.

146812

JUHANI AIRAKSINEN is currently a Pro-
fessor in cardiology and the Director of the
Heart Center, Turku University Hospital. He has
supervised 13 doctoral theses and has pub-
lished over 400 peer-reviewed articles. His main
research interests include atrial fibrillation and
antithrombotic treatment.

TERO KOIVISTO received the M.Sc. degree in
system circuits from the University of Turku,
in 2004. He has approximately 15 invention dis-
closures and five patents pending. His research
interests include integrated circuits for ultra-low-
power autonomous biomedical sensors and cardiac
measurement techniques, especially, atrial fibril-
lation detection using MEMS accelerometers and
pressure sensors. Since 2011, he has managed
several projects in the field of cardiac monitoring
and is currently operating as a Research and Development Leader in these
projects.

MIKKO PANKAALA received the master’s, licen-
tiate’s, and doctor’s degrees in microelectronics
from the University of Turku, in 2004, 2008,
and 2014, respectively, where he is currently
an Adjunct Professor with the Department of
Future Technologies. He has extensive expertise
in biosignal processing. He has been involved
with the research projects cardiac monitoring via
accelerometer and gyroscope sensors. He has also
had a key role in the development methods and
algorithms for an accelerometer-based detection of atrial fibrillation. He has
published 31 peer-reviewed publications and has one granted and six pending
patents regarding cardiac measurements, apparatus, and algorithms.

VOLUME 7, 2019



	INTRODUCTION
	MATERIALS AND METHODS
	STUDY PARTICIPANTS

	ANALYSIS PIPELINES
	KL APPROACH
	ML APPROACH
	SIGNAL PRE-PROCESSING
	FEATURE EXTRACTION
	TRAINING MODEL AND VALIDATION


	RESULTS
	PREDICTION PERFORMANCES
	KL APPROACH RESULTS
	ML APPROACH RESULTS

	PREDICTION CONSISTENCY OF THE KL APPROACH
	PREDICTION CONSISTENCY OF THE ML APPROACH
	PREDICTION AGREEMENT OF THE KL ANDTHE ML APPROACHES
	PHYSICIAN-APPLIED MEASUREMENTS
	SELF-APPLIED MEASUREMENTS


	DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	SAEED MEHRANG
	MOJTABA JAFARI TADI
	TERO HURNANEN
	TIMO KNUUTILA
	OLLI LAHDENOJA
	JUSSI JAAKKOLA
	SAMULI JAAKKOLA
	TUIJA VASANKARI
	TUOMAS KIVINIEMI
	JUHANI AIRAKSINEN
	TERO KOIVISTO
	MIKKO PÄNKÄÄLÄ


