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For compact subsets E of the unit disk D we study the capacity of the condenser 
(D, E) by means of set functionals defined in terms of hyperbolic geometry. In 
particular, we study experimentally the case of a hyperbolic triangle and arrive at 
the conjecture that of all triangles with the same hyperbolic area, the equilateral 
triangle has the least capacity.
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1. Introduction

Solutions to geometric extremal problems often exhibit symmetry—the extremal configurations are sym-
metric although the initial configuration is not. The classical example from antiquity is the isoperimetric 
problem which asks to find the planar domain with largest area, given its perimeter [4]. The solution is the 
circle. Here one studies the relationship between two domain functionals, the area of the domain and the 
perimeter of its boundary.

The classical book of G. Polya and G. Szegö [30] is a landmark of the study of extremal problems. 
The extremal problems they studied had geometric flavor and most of these problems have their roots in 
mathematical physics, but the authors called these isoperimetric problems because of their similarity to the 
classical geometric problem. One of their main topics was to investigate extremal problems of condenser 
capacity. The notion of a condenser has its roots in Physics and the mathematical study of capacity belongs 
to potential theory. Given a simply connected domain G in the plane and a compact set E in G, the pair 
(G, E) is called a condenser and its capacity is defined as

cap(G,E) = infu
∫
G

|∇u|2 dm
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where the infimum is taken over all functions u : G → R in C∞
o (G) with u(x) ≥ 1 for all x ∈ E. For a 

large class of sets E it is known that the infimum is attained by a harmonic function u : G → R which is a 
solution to the classical Dirichlet problem for the Laplace equation

Δu = 0 , u(x) = 0 , x ∈ ∂G , u(x) = 1 , x ∈ E .

The capacity cannot usually be expressed as an analytic formula. The capacities of even the simplest 
geometric condensers, for example when G is the unit disk and E is a triangle or a square, seem to be 
unknown. Rather we could say that the cases when explicit formulas exist are exceptional. This being the 
case, it is natural to look for upper or lower bounds, or numerical approximations for the capacity. An 
important extremal property of the capacity is that it decreases under a geometric transformation called 
symmetrization [11,30,31]. After the symmetrization the condenser is transformed onto another symmetric 
condenser and its capacity might be possible to estimate in terms of well-known special functions [2]. Several 
types of symmetrizations are studied in [30,31] and in the most recent literature [3,14,22,37].

In their study of isoperimetric problems and symmetrization, Polya and Szegö used domain functionals 
to study extremal problems for condenser capacities. V. Maz’ya [25] found many applications of capacities 
to PDEs and Sobolev spaces and was the first to observe the connection between isoperimetric problems 
and the sharp constant in Sobolev inequalities. The above capacity is a conformal invariant [1,3] and this 
fact has many applications both to theory [19,15] and to practice [12,32].

A natural approach to study capacity would make use of conformal invariance. Euclidean geometry is 
invariant under similarity transformations but not under conformal maps. Thus it seems appropriate to use 
the conformally invariant hyperbolic geometry when studying capacity. We apply here numerical methods 
developed by the first author in a series of papers, see e.g., [27] and the references cited therein. This method, 
based on boundary integral equations, enables us to compute the capacity when G is the unit disk D and 
the set E is of very general type with piecewise smooth boundary. Here we will study the case when E is a 
hyperbolic polygon.

In the Euclidean geometry the sum of the angles of a triangle equals π whereas in the hyperbolic geometry, 
the hyperbolic area of a triangle with angles α, β, γ equals

π − (α + β + γ) .

The two domain functionals of a hyperbolic triangle T , the hyperbolic area and its capacity cap(D, T ) are 
both conformally invariant and therefore we expect an explicit formula also for the capacity. Surprisingly 
enough, we have not been able to find such a formula in the literature. Some leading experts of geometric 
function theory we contacted also were not aware of such a formula.

In this paper we have made an effort to introduce all the basic facts from the hyperbolic geometry so 
as to make our paper as self-contained as possible, using the relevant pages from [5] as a source. After 
the preliminary material we provide a description of our computational method. Then we describe the 
algorithms for computing the capacities cap(D, E) of hyperbolic polygons E and give our main results in 
the form of tables, experimental error analysis of computations, and graphics.

Our work and experiments lead to several conjectures including those about an isoarea property of the 
capacity. For instance, our results support the conjecture that among all hyperbolic triangles T of a given 
area, the equilateral hyperbolic triangle T0 has the least capacity,

cap(D, T ) ≥ cap(D, T0) .

Finally, we remark that isoperimetric and isoarea problems for condenser capacities and other domain 
functionals have been analyzed in more general setting in the recent preprints [10,13].
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2. Preliminary results

In this section we summarize the few basic facts about the hyperbolic geometry of the unit disk that we 
use in the sequel [5]. This geometry is non-euclidean, the parallel axiom does not hold. The fundamental 
difference between the Euclidean geometry of C and the hyperbolic geometry of D is different notion 
of invariance: while the Euclidean geometry is invariant with respect to translations and rotations, the 
hyperbolic geometry is invariant under the groups of Möbius automorphisms of D. We follow the notation 
and terminology from [5,19]. For instance, Euclidean disks are denoted by

B2(x, t) = {y ∈ C : |x− y| < t} .

2.1. Hyperbolic distance. [15,5] For x, y ∈ D the hyperbolic distance ρD(x, y) is defined by

shρD(x, y)
2 = |x− y|√

(1 − |x|2)(1 − |y|2)
. (2.2)

The main property of the hyperbolic distance is the invariance under the Möbius automorphisms of the unit 
disk D of the form

Ta : z �→ z − a

1 − az
.

These transformations preserve hyperbolic length and area. In the metric space (D, ρD) one can build a non-
euclidean geometry, where the parallel axiom does not hold. In this geometry, usually called the hyperbolic 
geometry of the Poincare disk, lines are circular arcs perpendicular to the boundary ∂D. Many results of 
Euclidean geometry and trigonometry have counterparts in the hyperbolic geometry [5].

Let G be a Jordan domain in the plane. One can define the hyperbolic metric on G in terms of the 
conformal Riemann mapping function h : G → D = h(G) as follows:

ρG(x, y) = ρD(h(x), h(y)) .

This definition yields a well-defined metric, independent of the conformal mapping h [5,21]. In hyperbolic 
geometry the boundary ∂G has the same role as the point of {∞} in Euclidean geometry: both are like 
“horizon”, we cannot see beyond it.

2.3. Hyperbolic disks. We use the notation

Bρ(x,M) = {z ∈ D : ρ(x, z) < M}

for the hyperbolic disk centered at x ∈ D with radius M > 0. It is a basic fact that they are Euclidean disks 
with the center and radius given by [19, p. 56, (4.20)]

⎧⎪⎪⎨
⎪⎪⎩
Bρ(x,M) = B2(y, r) ,

y = x(1 − t2)
1 − |x|2t2 , r = (1 − |x|2)t

1 − |x|2t2 , t = th (M/2) ,
(2.4)

Note the special case x = 0,

Bρ(0,M) = B2(0, th (M/2)) . (2.5)
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It turns out that the hyperbolic geometry is more useful than the Euclidean geometry when studying the 
inner geometry of domains in geometric function theory.

2.6. Capacity of a ring domain. A ring domain D has two complementary components, compact sets E and 
F such that D = C \ (E ∪ F ). It can be understood as a condenser (D ∪ E, E). In particular, the capacity 
of the annulus {z ∈ C : a < |z| < b} is given by [2], [19, (7.3)]

2π/ log(b/a) . (2.7)

Another ring domain with known capacity is the Grötzsch ring or condenser (D, [0, r]), 0 < r < 1. Its 
capacity can be expressed in terms of the complete elliptic integral K(r) as follows [2]. First define the 
decreasing homeomorphism μ : (0, 1] → [0, ∞) by

μ(r) = π

2
K(

√
1 − r2)
K(r) , K(r) =

π/2∫
0

dt√
1 − r2 sin2 t

,

for r ∈ (0, 1) , μ(1) = 0. Now the Grötzsch capacity can be expressed as follows [19, p. 122, (7.18)]

2π/μ(r) . (2.8)

2.9. Domain functionals and extremal problems. Numerical characteristics of geometric configurations are 
often studied in terms of domain functionals. In this paper we study condensers and their capacities in terms 
of area and perimeter. The book of Polya and Szegö [30] studies a large spectrum of these problems and many 
later researcher have continued their work. See the books of C. Bandle [4] and Kesavan [22] for isoperimetric 
problems and A. Baernstein [3] and V.N. Dubinin [14] for classical analysis and geometric function theory. 
In addition, the papers Sarvas [31], Brock-Solynin [11], and Betsakos [6] should be mentioned.

The condenser capacity is invariant under conformal mapping. Therefore it is a natural idea to express 
the domain functionals in terms of conformally invariant geometry. There are various results for condenser 
capacity which reflect this invariance, but we have not seen a systematic study based on these ideas.

We study condensers of the form (D, E) where E is a compact set. In this case we use the hyperbolic 
geometry to define domain functionals. Our initial point is to record the relevant data [5, p. 132, Thm 7.2.2]
for the above two explicitly known cases, for the condensers (D, Ej) with j = 1, 2 where E1 = Bρ(0, M)
and E2 = [0, th(M/2)]. We consider the set E2 as a slit with two sides and therefore take its perimeter to 
be equal to 2M which is twice its hyperbolic diameter M = ρ(0, th(M/2)).

Now consider a disk E1 = Bρ(0, M1) and a segment E2 = [0, th(M2/2)] with the same hyperbolic 
perimeter c, i.e., 2π shM1 = c and 2M2 = c. Then

M1 = arsh c

2π , M2 = c

2 .

Hence, by (2.7),

f1(c) ≡ cap(D, E1) = 2π
log(1/ th(M1/2)) = 2π

log
(
1/ th arsh(c/(2π))

2

) = 2π

log
(√

1 + 4π2

c2 + 2π
c

) ,

and, by (2.8),

f2(c) ≡ cap(D, E2) = 2π = 2π
.

μ( th(M2/2)) μ( th(c/4))
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Table 1
Two well-known capacities. For the perimeter, see [5, p. 132].

Set Capacity Perimeter

E1 2π/ log(1/ th(M/2)) 2π shM

E2 2π/μ( th(M/2)) 2M

E1 f1(c) ≡ 2π/ log(
√

1 + 4π2/c2 + 2π/c) c

E2 f2(c) ≡ 2π/μ( th(c/4)) c

Fig. 1. The difference f1(c) − f2(c) of the functions defined in Table 1.

Fig. 1 shows that for a fixed value of the hyperbolic perimeter c > 0, disks have larger capacity than a 
slit of the same hyperbolic perimeter, in other words f1(c) > f2(c) for all c > 0. This conclusion led us to 
discover the following, apparently new, inequality for the special function μ

π

2 >
μ(t)

log
(√

1 + u2 + u
) > 1 , u = π

2 arth t
, t ∈ (0, 1) . (2.10)

In the following sections we will study variations of this theme for hyperbolic triangles and polygons.

2.11. Modulus of a curve family. For the reader’s convenience we summarize some basic facts about the 
moduli of curve families and their relation to capacities from the well-known sources [1,14,15,19,23]. Let 
Γ be a family of curves in Rn. By A(Γ) we denote the family of admissible functions, i.e. non–negative 
Borel–measurable functions ρ : Rn → R ∪ {∞} such that

∫
γ

ρ ds ≥ 1

for each locally rectifiable curve γ in Γ. For p ≥ 1 the p–modulus of Γ is defined by

Mp(Γ) = inf
ρ∈A(Γ)

∫
Rn

ρp dm , (2.12)

where m stands for the n–dimensional Lebesgue measure. If A(Γ) = ∅, we set Mp(Γ) = ∞. The case 
A(Γ) = ∅ occurs only if there is a constant path in Γ because otherwise the constant function ∞ is in A(Γ). 
Usually p = n, n = 2, and we denote Mn(Γ) also by M(Γ) and call it the modulus of Γ.

Lemma 2.13. [19, 7.1] The p–modulus Mp is an outer measure in the space of all curve families in Rn. That 
is,

(1) Mp(∅) = 0,



6 M.M.S. Nasser, M. Vuorinen / J. Math. Anal. Appl. 499 (2021) 125050
(2) Γ1 ⊂ Γ2 implies Mp(Γ1) ≤ Mp(Γ2),

(3) Mp

( ∞⋃
i=1

Γi

)
≤

∞∑
i=1

Mp(Γi).

Let Γ1 and Γ2 be curve families in Rn. We say that Γ2 is minorized by Γ1 and write Γ2 > Γ1 if every 
γ ∈ Γ2 has a subcurve belonging to Γ1.

Lemma 2.14. [19, 7.2] Γ1 < Γ2 implies Mp(Γ1) ≥ Mp(Γ2).

The curve families Γ1, Γ2, . . . are called separate if there exist disjoint Borel sets Ei in Rn such that if 
γ ∈ Γi is locally rectifiable then 

∫
γ
χids = 0 where χi is the characteristic function of Rn \ Ei.

Lemma 2.15. [19, 7.3] If Γ1, Γ2, . . . are separate and if Γ < Γi for all i, then

Mp(Γ) ≥
∑

Mp(Γi) .

The set of all curves joining two sets E, F ⊂ G in G is denoted by Δ(E, F ; G). The next result gives an 
alternative way to define the capacity of a condenser.

Theorem 2.16. [19, 9.6] If E = (A, C) is a bounded condenser in R2, then

capE = M
(
Δ(C, ∂A;A)

)
.

One of the fundamental properties of the modulus is its conformal invariance [1], [19] and by Theorem 2.16
we immediately see that the condenser capacity is a conformal invariant, too.

2.17. Numerical computation of the capacity. Several numerical methods have been presented in the litera-
ture for numerical computation of the capacity, see e.g., [7–9,18,28,29,36] and the references cited therein. 
In this paper, we use the numerical method presented in [28] for computing the capacity of condensers for 
doubly connected domains. The method can be used for a large class of doubly connected domains including 
domains with piecewise smooth boundaries and domains whose boundary components are rectilinear slits. 
The numerical examples presented in [28] demonstrate the accuracy and efficiency of the method. Further, 
the MATLAB files for these examples are available for download at https://github .com /mmsnasser /cci.

Consider a bounded simply connected domain G in the complex plane and a compact set E in G such that 
D = G \E is a doubly connected domain and the boundary components of D are piecewise smooth Jordan 
curves. The domain D can be mapped by a conformal mapping w = f(z) onto the annulus {w : q < |w| < 1}
where q is an undetermined real constant depending on D (see Fig. 2). Assuming that f(α) > 0 for a given 
point α in D, the conformal mapping f is unique. Since capacity of condensers is invariant under conformal 
mappings, the formula (2.7) implies that

cap(G,E) = 2π
log(1/q) .

The conformal mapping f is approximated in [28] by means of the boundary integral equation with the 
generalized Neumann kernel [26] where the integral equation is solved using the fast and accurate numerical 
method presented in [27] which is based on the Fast Multipole Method toolbox [17].

To be more specific, the MATLAB function annq from [28] will be used in this paper to compute the 
capacity of the condenser (G, E) where we assume that the boundary components of D = G \E are piecewise 
smooth Jordan curves. We denote the external boundary component of D by Γ1 and the inner boundary 

https://github.com/mmsnasser/cci
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Fig. 2. The domain D (left) and the annulus domain (right).

component by Γ2. These boundary components are oriented such that, when we proceed along the boundary 
Γ1 ∪ Γ2, the domain D is always on the left side. To use the function annq, we parametrize each boundary 
component Γj by a 2π-periodic complex function ηj(δj(t)), t ∈ [0, 2π], where δj : [0, 2π] → [0, 2π] is a 
bijective strictly monotonically increasing function, j = 1, 2. When Γj is smooth, we choose δj(t) = 1. For 
piecewise smooth boundary component Γj, the function δj is chosen as described in [24, p. 697]. We define 
n equidistant nodes s1, . . . , sn in the interval [0, 2π] by

sk = (k − 1)2π
n
, k = 1, . . . , n, (2.18)

where n is an even integer. In MATLAB, we compute the vectors et and etp by

et = [η1(δ1(s)) , η2(δ2(s))] ∈ C2n,

etp = [η′1(δ1(s))δ′1(s) , η′2(δ2(s))δ′2(s)] ∈ C2n,

where s = [s1, . . . , sn] ∈ Rn. Then the capacity of the condenser (G, E) is computed by calling

[~,cap] = annq(et,etp,n,alpha,z2,’b’),

where z2 is an auxiliary point in E, i.e., z2 is chosen in the domain bounded by Γ2 (see Fig. 2). The values of 
the parameters in the function annq are chosen as in [28]. For more details, we refer the reader to [28]. The 
codes for all presented computations in this paper are available in the link https://github .com /mmsnasser /
iso.

3. The unit disk and a hyperbolic polygon

In this section we compare the capacities cap(D, P ) of hyperbolic polygons of equal hyperbolic area to 
the corresponding capacity when all the sides are of equal hyperbolic length. Our experiments suggest that 
in the latter case the capacity is minimal.

We reported this experimental result to A. Yu. Solynin, who has considered similar questions for a 
different notion of capacity [33–35]. In their significant paper [35] Solynin and Zalgaller have proved a 
famous conjecture which expresses a similar extremal property conjectured by Polya and Szegö for some 
other capacity. We are indebted to A. Solynin for these references and useful exchange of emails. However, 
for the case of the capacity considered here, at the present time, there is no analytic verification of our 
conjectured lower bound.

3.1. Hyperbolic triangle. First, we consider condensers of the form (D, T ) where T is a closed hyperbolic 
triangle with vertices s1, s2, s3 ∈ D. The sides of T are subarcs of circles orthogonal to ∂D, each subarc 

https://github.com/mmsnasser/iso
https://github.com/mmsnasser/iso
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joining two vertices. Denote the angles at vertices s1, s2, s3 by σ1, σ2, σ3, respectively. Then the hyperbolic 
area of T is given by [5, p. 150, Thm 7.13.1]

h-area(T ) = π − (σ1 + σ2 + σ3) . (3.2)

It is a basic fact that h-area(T ) is invariant under Möbius transformations of D onto itself. Also the capacity 
of the condenser (D, T ) has the same invariance property.

3.3. Open problem. Given s1, s2, s3 ∈ D, find a formula for cap(D , T ).

Motivated by the simple fact that symmetry is often connected with extremal problems, we arrived at 
the following conjecture.

3.4. Conjecture. Let s1, s2, s3 ∈ D, and let T be the hyperbolic triangle with vertices s1, s2, s3. If T0 is an 
equilateral hyperbolic triangle with h-area(T0) = h-area(T ), then

cap(D , T ) ≥ cap(D , T0) . (3.5)

By Möbius invariance we may without loss of generality normalize T0 as follows. Write ω = (σ1 + σ2 +
σ3)/3. If A, B, C are the lengths of the sides opposite to the angles σ1, σ2, σ3, resp., then by [5, p. 150, Ex. 
7.12(2)] the triangle is equilateral iff σ1 = σ2 = σ3 = ω and

2 ch(A/2) sin(ω/2) = 1 . (3.6)

We may assume also that

s1 = r , s2 = reiθ , s3 = rei2θ , θ = 2π/3 .

By [5, p. 40] we have

sh2(A/2) =
(

r
√

3
1 − r2

)2

= 1
4 sin2(ω/2)

− 1

and solving this for r2 we obtain

r2 = 2 cosω −
√

3 sinω

2 cosω − 1 . (3.7)

These observations show that given a hyperbolic triangle T with angles σ1, σ2, σ3, there is a hyperbolic 
triangle T0 with vertices

r , reiθ , rei2θ , θ = 2π/3

where r2 is given by (3.7) with ω = (σ1 + σ2 + σ3)/3. Both hyperbolic triangles T and T0 have the same 
hyperbolic area.

We compute cap(D, T ) numerically using the MATLAB function annq with n = 3 ×212 where the domain 
D is the bounded doubly connected domain in the interior of the unit circle and in the exterior of the triangle 
(see Fig. 3 where the auxiliary points α and z2 in annq are shown as the star and the dot, respectively). 
The values of cap(D, T0) are computed similarly. The approximate values of the capacities cap(D, T ) and 
cap(D, T0) for several values of s1, s2, and s3 are presented in Table 2. The presented numerical results 
validate the conjectural inequality (3.5). Numerical experiments for several other values s1, s2, and s3 (not 
presented here) also validate the conjectural inequality (3.5).
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Fig. 3. The domains for computing cap(D, T ) (left) and cap(D, T0) (right) for s1 = 0.95i, s2 = 0.7 − 0.4i, s3 = −0.5 − 0.8i.

Table 2
The values of cap(D, T ) and cap(D, T0).

s1 s2 s3 cap(D, T ) cap(D, T0)
0.6 0.2 − 0.5i −0.3 − 0.5i 5.61438997196594 4.96507462804161
0.9 0.2 − 0.5i −0.3 − 0.5i 7.57256635823731 5.39880575287883
0.3i 0.3 − 0.5i −0.3 − 0.5i 5.63768713032485 5.60191869448996

0.5i 0.25 − 0.4i −0.25 − 0.4i 5.52754816211621 5.21348957109433
0.9i 0.78 − 0.45i −0.78 − 0.45i 13.2881689311943 13.2881521959934
0.95i 0.7 − 0.4i −0.5 − 0.8i 13.925083178168 12.4763956631105

0.2i 0.17 − 0.1i −0.17 − 0.1i 3.23750018859583 3.23740547036233
0.1i 0.087 − 0.05i −0.087 − 0.05i 2.40145519670096 2.40145213607884
−0.1i 0.5 − 0.5i −0.5 − 0.5i 5.98941024500733 4.85509874205801
−0.1i 0.7 − 0.5i −0.7 − 0.5i 8.25251632031962 4.89997376235823

3.8. Hyperbolic polygon with m vertices. Second, we consider condensers of the form (D, P ) where P is a 
closed hyperbolic polygon with m vertices β1, β2, . . . , βm ∈ D such that 0 ∈ P .

The hyperbolic distance between any two points z, w ∈ D can be computed by (2.2). Thus, the perimeter 
of the hyperbolic polygon P is

L =
m∑

k=1

ρD(βk, βk+1)

where βm+1 = β1. Let P0 be the hyperbolic polygon centered at 0 and the hyperbolic length of all of its 
sides are equal to L/m. Then P and P0 have the same hyperbolic perimeter L. Assume that the vertices of 
the hyperbolic polygon P0 are

vk = r exp
(

2πki
m

)
, k = 1, 2, . . . ,m. (3.9)

Define vm+1 = v1, then the perimeter of the hyperbolic polygon P0 is

L =
m∑

k=1

ρD(vk, vk+1) =
m∑

k=1

2 arsh
(

|vk − vk+1|√
1 − |vk|2

√
1 − |vk+1|2

)
,

which, in view of (3.9), can be written as

L =
m∑

k=1

2 arsh
(
r|1 − exp

( 2πi
m

)
|

1 − r2

)
= 2m arsh

(2r sin π
m

1 − r2

)
.

Then, r can be computed through
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Table 3
The values of cap(D, P ) and cap(D, P0).

m βj , j = 1, 2, . . . ,m cap(D, P ) cap(D, P0)
3 0.6, 0.1 − 0.8i,−0.5 + 0.6i 9.0274303701827 9.0727047521464

4 0.601,−0.6i,−0.599, 0.6i 8.32794045818652 8.32794231176463

5 0.6, 0.1 − 0.8i,−0.5 − 0.5i,−0.5 + 0.6i, 11.9589944965757 12.0640771315217
0.5 + 0.5i

6 0.6, 0.1 − 0.8i,−0.5 − 0.5i,−0.8, 13.5302396750618 13.6288953941387
−0.5 + 0.6i, 0.5 + 0.5i

7 0.6, 0.1 − 0.8i,−0.5 − 0.5i,−0.8, 15.9302933204366 16.0808062702924
−0.5 + 0.6i, 0.9i, 0.5 + 0.5i

8 0.6, 0.5 − 0.5i, 0.1 − 0.8i,−0.5 − 0.5i,−0.8, 16.7814228075271 16.9697317437596
−0.5 + 0.6i, 0.9i, 0.5 + 0.5i

12 0.7 + 0.2i, 0.7 − 0.2i, 0.4 − 0.5i,−0.8i, 20.8062404526413 21.0023784573093
−0.4 − 0.7i,−0.7 − 0.4i,−0.8,−0.7 + 0.3i,
−0.4 + 0.7i, 0.9i, 0.3 + 0.8i, 0.5 + 0.5i

Fig. 4. The domains for computing cap(D, P ) (left) and cap(D, P0) (right) for β1 = 0.5, β2 = 0.6 − 0.6i, β3 = −0.6 − 0.4i, 
β4 = −0.3 + 0.6i, β5 = 0.2 + 0.5i.

r =
− sin π

m +
√

sin2 π
m + sh2 L

2m

sh L
2m

3.10. Conjecture. For the above two hyperbolic polygons P and P0,

cap(D , P ) ≤ cap(D , P0) . (3.11)

The MATLAB function annq with n = m × 212 is used to compute approximate values of cap(D, P )
and cap(D, P0) where the domain D is the bounded doubly connected domain in the interior of the unit 
circle and in the exterior of the hyperbolic polygon (see Fig. 4 where the auxiliary points α and z2 in 
annq are shown as the star and the dot, respectively). The computed approximate values for several values 
of m and β1, β2, . . . , βm are presented in Table 3. These numerical results validate the inequality (3.11). 
Numerical experiments for several other values m and β1, β2, . . . , βm ∈ D (not presented here) also validate 
the conjecture inequality (3.11).

Note that in our experiments we have used hyperbolic polygons starlike with respect to 0: in other words, 
each radius intersects the polygonal curve exactly at one point.

Finally, Fig. 5 and Table 4 present approximate values of the capacity of the hyperbolic polygon P0 for 
several values of m and r. For m = 3, the polygon P0 is an equilateral hyperbolic triangle.
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Fig. 5. The values of cap(D, P0) vs. r for 0.05 ≤ r ≤ 0.95.

Table 4
The values of cap(D, P0) for several values of m and r.
r\m 3 4 5 6 7
0.1 2.3993612914 2.5281340146 2.5942462887 2.6324787004 2.6565098093
0.2 3.2528141529 3.4946167264 3.6244949167 3.7016779579 3.7510464324
0.3 4.0913694284 4.4816138033 4.7030688851 4.8395121547 4.9289424320

0.4 4.9856760383 5.5743497987 5.9308261981 6.1608778512 6.3167666667
0.5 5.9799062371 6.8325631892 7.3878902352 7.7670978659 8.0354723585
0.6 7.1266240809 8.3279319407 9.1730250087 9.7887982158 10.248675793

0.7 8.5161561610 10.180067164 11.444185389 12.431726677 13.216542846
0.8 10.349853454 12.653202360 14.534982854 16.110376899 17.447408861
0.9 13.274319211 16.602537087 19.510028327 22.105923933 24.452171599

4. Hyperbolic disks

In this section we consider disjoint hyperbolic disks Bρ(xj , Lj) in D and denote

B = ∪p
j=1Bρ(xj , Lj).

By subadditivity of the capacity [19, Lemma 7.1(3), Thm 9.6], we have

cap(D, B) ≤
p∑

j=1
cap(D, Bρ(xj , Lj)). (4.1)

We study here whether the set B on the left-hand side of this inequality can be replaced by a hyperbolic 
disk under two constraints:

(1) Isoarea problem: The set B is replaced by a hyperbolic disk Bρ(0, L) such that the hyperbolic area of 
Bρ(0, L) is equal to the sum of the hyperbolic areas of the disks Bρ(xj , Lj), i.e.,

h-area(Bρ(0, L)) =
p∑

j=1
h-area(Bρ(xj , Lj)). (4.2)

(2) Isoperimetric problem: The set B is replaced by a hyperbolic disk Bρ(0, L̂) such that the hyperbolic 
perimeter of Bρ(0, L̂) is equal to the sum of the hyperbolic perimeters of the disks Bρ(xj , Lj), i.e.,

h-perim(Bρ(0, L̂)) =
p∑

h-perim(Bρ(xj , Lj)) (4.3)

j=1
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By (2.5) and (2.7)

cap(D, Bρ(xj , Lj)) = 2π
− log th(Lj/2) . (4.4)

Similarly,

cap(D, Bρ(0, L)) = 2π
− log th(L/2) , (4.5)

cap(D, Bρ(0, L̂)) = 2π
− log th(L̂/2)

. (4.6)

By [5, Theorem 7.2.2, p. 132],

h-area(Bρ(0, L)) = 4π sh2
(
L

2

)
, h-area(Bρ(0, Lj)) = 4π sh2

(
Lj

2

)
,

and

h-perim(Bρ(0, L̂)) = 2π sh
(
L̂
)
, h-perim(Bρ(0, Lj)) = 2π sh (Lj) ,

for j = 1, 2, . . . , p. Thus, it follows from (4.2) that the constant L is related to the constants L1, L2, . . . , Lp

by

sh2
(
L

2

)
=

p∑
j=1

sh2
(
Lj

2

)
. (4.7)

Similarly, it follows from (4.3) that the constant L̂ is related to the constants L1, L2, . . . , Lp by

sh(L̂) =
p∑

j=1
sh (Lj) . (4.8)

Lemma 4.9. Let L be defined by (4.7) and L̂ be defined by (4.8), then L̂ > L.

Proof. Rewrite the equations (4.7) as

√
sh2L + 1 − 1 =

p∑
j=1

(√
sh2Lj + 1 − 1

)
,

which implies that

sh2(L) =

⎛
⎝1 +

p∑
j=1

(√
sh2Lj + 1 − 1

)⎞⎠
2

− 1. (4.10)

Define a real function f(x) on the interval [0, 1] by

f(x) =

⎛
⎝x +

p∑(√
sh2Lj + x2 − x

)⎞⎠
2

− x2
j=1
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which can be written as

f(x) = 2x
p∑

j=1

(√
sh2Lj + x2 − x

)
+

⎛
⎝ p∑

j=1

(√
sh2Lj + x2 − x

)⎞⎠
2

. (4.11)

Then, in view of (4.10) and (4.8), we have f(0) = sh2(L̂) and f(1) = sh2(L).
We shall prove that f(x) is decreasing on [0, 1]. The function f(x) can be written as

f(x) = 2x g(x) + (g(x))2 (4.12)

where the real function g(x) is defined on the interval [0, 1] by

g(x) =
p∑

j=1

(√
sh2Lj + x2 − x

)
. (4.13)

Hence

g′(x) =
p∑

j=1

⎛
⎝ x√

sh2Lj + x2
− 1

⎞
⎠ = −

p∑
j=1

√
sh2Lj + x2 − x√

sh2Lj + x2
< 0. (4.14)

Thus

f ′(x) = 2g(x) + 2xg′(x) + 2g(x)g′(x)

= 2
p∑

j=1

(√
sh2Lj + x2 − x

)
− 2x

p∑
j=1

√
sh2Lj + x2 − x√

sh2Lj + x2

−2g(x)
p∑

j=1

√
sh2Lj + x2 − x√

sh2Lj + x2

= 2
p∑

j=1

⎛
⎝√

sh2Lj + x2 − x− x

√
sh2Lj + x2 − x√

sh2Lj + x2
− g(x)

√
sh2Lj + x2 − x√

sh2Lj + x2

⎞
⎠ ,

which implies that

f ′(x)/2 =
p∑

j=1

⎛
⎝(√

sh2Lj + x2 − x

)⎛
⎝1 − x√

sh2Lj + x2

⎞
⎠− g(x)

√
sh2Lj + x2 − x√

sh2Lj + x2

⎞
⎠

and further

f ′(x)/2 = −
p∑

j=1

(
g(x) −

(√
sh2Lj + x2 − x

)) √
sh2Lj + x2 − x√

sh2Lj + x2
. (4.15)

For all values of x in (0, 1), it follows from (4.13) that g(x) −
(√

sh2Lj + x2 − x

)
> 0 for all indices j, and 

hence (4.15) implies that f ′(x) < 0. Thus, f ′(x) is decreasing on [0, 1] and hence sh2(L̂) = f(0) > f(1) =
sh2(L). Since L, L̂ > 0, the proof follows. �
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Theorem 4.16. cap(D, Bρ(0, L̂)) ≤
∑p

j=1 cap(D, Bρ(xj , Lj))

Proof. In view of (4.4) and (4.6), to prove the theorem, we need to prove that

2π
− log th(L̂/2)

≤
p∑

j=1

2π
− log th(Lj/2) . (4.17)

Note that

2π
− log th(t/2) = 2π

− log sh(t/2)
ch(t/2)

= 2π
− log sh(t)√

sh2(t)+1+1

= 2π

log
√

sh2(t)+1+1
sh(t)

= 2π
log

(√
1 + 1

sh2(t) + 1
sh(t)

) = 2π
arsh

(
1

sh(t)

)

Thus, equation (4.17) can be written as

2π
arsh

(
1∑p

j=1 sh(Lj)

) ≤
p∑

j=1

2π
arsh

(
1

sh(Lj)

) . (4.18)

Thus, we need to prove that

f

⎛
⎝ p∑

j=1
sh(Lj)

⎞
⎠ ≤

p∑
j=1

f ( sh(Lj)) (4.19)

where the function f : [0, ∞) → [0, ∞) is defined by

f(t) = 2π
arsh

( 1
t

) ,
for t ∈ (0, ∞) and

f(0) = lim
t→0+

f(t) = 0.

Since

f ′(t) = 2π
t
√
t2 + 1 arsh2 ( 1

t

) > 0

for t ∈ (0, ∞), the function f(t) is strictly increasing. Thus, by [2, 7.42(1)], to prove (4.19), it is enough to 
show that f(t)/t is deceasing on (0, ∞), which in turn is equivalent to showing that the function

g(t) = f(1/t)
1/t

is increasing on (0, ∞). The function g(t) can be written as

g(t) = 2π t

arsh(t) = g1(t)
g2(t)

where g1(t) = 2πt and g2(t) = arsh(t). Since g1(0) = 0, g2(0) = 0, and the function
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Fig. 6. On the left, the equilateral regular hyperbolic polygons P3, P5, P7 with h-area c = 3 and the circle |z| = 1/M1 where M1 is 
given by (5.2). On the right, the equilateral regular hyperbolic polygons P3, P5, P7 with h-perim c = 20 and the circle |z| = 1/M2
with M2 given by (5.6).

ĝ(t) = g′1(t)
g′2(t)

= 2π
√

1 + t2

is increasing on (0, ∞), then it follows from [2, Theorem 1.25] that the function g(t) is increasing on (0, ∞). 
This completes the proof of the theorem. �
Theorem 4.20. cap(D, Bρ(0, L)) ≤

∑p
j=1 cap(D, Bρ(xj , Lj))

Proof. By Theorem 4.16, L < L̂. Then, in view of Lemma 4.9, we have

2π
− log th(L/2) ≤ 2π

− log th(L̂/2)
≤

p∑
j=1

2π
− log th(Lj/2) .

Now the proof follows from (4.4) and (4.5). �
5. The dependence of the capacity on the number of vertices

Let Pm be an equilateral regular hyperbolic polygon with m vertices (see Fig. 6). We fix a constant c > 0, 
then we consider the sequence Pm, m = 3, 4, 5, . . . with all hyperbolic polygons having the hyperbolic area c. 
We consider also the same sequence under the constraint that the perimeters of Pm are equal to c. For both 
cases, we show by experiments that the sequence cap(D, Pm) is monotone.

5.1. Hyperbolic area. Assume 0 < c < π and consider the equilateral regular hyperbolic polygon Pm such 
that

h-area(Pm) = c, for all m = 3, 4, . . . ,

see Fig. 6 (left) for c = 3 and m = 3, 5, 7.
Let M1 be chosen such that

h-area(Pm) = c = h-area(B2(0, 1/M1)).

Then, by (2.5), B2(0, 1/M1) = Bρ(0, M̂1) where

M̂1 = 2 arth(1/M1) .
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Fig. 7. The values of cap(D, Pm) for several values of c and m where h-area(Pm) = c.

Hence

c = h-area(B2(0, 1/M1)) = h-area(Bρ(0, M̂1)) = 4π sh2(M̂1/2),

which implies that the constant M̂1 is given by

M̂1 = 2 arsh
√
c/(4π) .

Thus,

M1 = 1
th M̂1

2

= 1
th( arsh

√
c/(4π))

=
√

1 + 4π/c. (5.2)

Note that M1 > 1 and, by (2.7),

cap(D, B2(0, 1/M1)) = 2π
logM1

= 4π
log(1 + 4π/c) .

We compute numerically the values of cap(D, Pm) for several values of c and m using the MATLAB 
function annq with n = m × 210. The obtained numerical results are presented in Fig. 7. These numerical 
results lead to the following conjecture.

5.3. Conjecture. Let 0 < c < π and let Pm be a sequence of equilateral regular hyperbolic polygons such 
that h-area(Pm) = c for all m = 3, 4, . . .. Then, the sequence cap(D, Pm) is decreasing and bounded from 
below with

cap(D, Pm) ≥ 2π
logM1

, (5.4)

where M1 is given by (5.2).
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5.5. Hyperbolic perimeter. Assume c > 0 and consider the equilateral regular hyperbolic polygon Pm such 
that

h-perim(Pm) = c, for all m = 3, 4, . . . ,

see Fig. 6 (right) for c = 20 and m = 3, 5, 7.
Let M2 be chosen such that

h-perim(Pm) = c = h-perim(S1(0, 1/M2)),

where S1(0, 1/M2) = {z : |z| = 1/M2}. Then, by (2.5), S1(0, 1/M2) = {z : ρ(0, z) = M̂2} where

M̂2 = 2 arth(1/M2).

Thus

c = h-perim(S1(0, 1/M2)) = h-perim({z : ρ(0, z) = M̂2}) = 2π sh(M̂2),

which implies that

M̂2 = arsh c

2π ,

and hence

M2 = 1
th M̂2

2

= 1
th

( 1
2 arsh c

2π
) =

√
1 + 4π2

c2
+ 2π

c
. (5.6)

The MATLAB function annq with n = m ×210 is used to compute numerically the capacities cap(D, Pm)
for several values of c and m. The obtained results are presented in Fig. 8 and suggest the following 
conjecture, where by (2.7),

cap(D, B2(0, 1/M2)) = 2π
logM2

.

5.7. Conjecture. Let c > 0 and let Pm be a sequence of equilateral regular hyperbolic polygons such that 
h-perim(Pm) = c for all m = 3, 4, . . .. Then, the sequence cap(D, Pm) is increasing and bounded from above 
with

cap(D, Pm) ≤ 2π
logM2

, (5.8)

where M2 is given by (5.6).

Remark 5.9. At the stage when the manuscript was processed for publication, we have learned about F.W. 
Gehring’s work [16, Corollary 6] which implies that the upper bound (5.8) here holds for all sets E ⊂ D

with the hyperbolic perimeter at most c. Note that in [16] the hyperbolic metric differs by factor (1/2) from 
our hyperbolic metric and therefore [16, Corollary 6] gives the constant π in the formula for M2 whereas we 
have 2π.
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Fig. 8. The values of cap(D, Pm) for several values of c and m where h-perim(Pm) = c.

6. Subadditivity and additivity of the modulus

For curve families Γj , j = 1, 2, . . ., we have the following subadditivity property by Lemma 2.13, [19, 
Lemma 7.1(3)]

M
( ∞⋃

i=1
Γj

)
≤

∞∑
j=1

M (Γj) , (6.1)

and if the families Γj are separate we have the additivity Lemma 2.15, [19, Lemma 7.3]

M
( ∞⋃

i=1
Γj

)
=

∞∑
j=1

M (Γj) , (6.2)

6.3. Equilateral hyperbolic triangle. In this section, for a given s ∈ (0, 1), we consider the equilateral 
hyperbolic triangle T with vertices

a0 = s, a1 = s eiθ, a2 = s e2iθ, θ = 2π
3 .

Assume that the three angles of this triangle are equal to β and the length of all three sides of the triangle 
is b. Let D be the doubly connected domain between the unit circle and the triangle T . Then, there exists a 
unique real constant q ∈ (0, 1) and a unique conformal mapping f : D → Ω = B2(0, 1) \B2(0, q) normalized 
by f(α) > 0 where α ∈ (s, 1) (see Fig. 9). Let Dj be the sub-domain of D defined by

Dj = {z : z ∈ G, θj−1 < arg z < θj} , j = 1, 2, 3,

where θj = jθ, for j = 0, 1, 2, 3. By symmetry, the conformal mapping w = f(z) will map each sub-domain 
Dj onto a sub-domain Ωj of Ω where
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Fig. 9. The doubly connected domain D and its image Ω.

Ωj = {w : q < |w| < 1, θj−1 < argw < θj} , j = 1, 2, 3.

The sub-domains D1 and Ω1 are the shaded domains in Fig. 9.
Let

Γ = Δ(S1(q), S1;B2(0, 1) \B2(0, q)) (6.4)

be the family of all curves joining S1(q) and S1 in B2(0, 1) \B2(0, q). Let also

Δ = {u s : u ∈ S1, q ≤ s ≤ 1} ⊂ Γ.

In this case Δ consists of radial segments joining the boundary components of the ring B2(0, 1) \B2(0, q). 
Moreover, choose the separate subfamilies

Δj = {u s : u ∈ S1, θj−1 ≤ arg(u) ≤ θj , q ≤ s ≤ 1}, j = 1, 2, 3.

Then by (6.2)

M(Γ) = M(Δ) =
3∑

j=1
M(Δj).

For the above conformal mapping f , we see that f−1(S1(q)) = T . Hence, by [19, Lemma 7.1(3)] and [20, 
Theorem 2. 7],

M(Δ(T, S1;D)) =
m∑
j=1

M(f−1Δj) (6.5)

where f−1Δj = {f−1 ◦ γ : γ ∈ Δj}. By symmetry and by [38, 5.17], we have

M(f−1Δ3) = M(f−1Δ2) = M(f−1Δ1) = M(Δ1).

Consequently,

cap(D, T ) = M(Δ(T, S1;D)) =
3∑

M(f−1Δj) = 3M(f−1Δ1) = 3M(Δ1). (6.6)

j=1
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Fig. 10. The doubly connected domain D̂ (left) and the family of curves Δ̃.

6.7. Lower bound for the capacity of equilateral hyperbolic triangle. Let T̂ be the connected set consisting 
of the three segments reikα for α = 2π/3, 0 ≤ r ≤ s and k = 0, 1, 2. Let also D̂ be the domain obtained by 
removing T̂ from the unit disk D (see Fig. 10).

Lemma 6.8. The capacity cap(D, T̂ ) is given by

cap(D, T̂ ) = 6π
μ (s3) .

Proof. Let D̂1 be the sub-domain of D̂,

D̂1 =
{
z : z ∈ Ĝ, θ0 < arg z < θ1

}
,

where θ0 = 0 and θ1 = 2π/3 (see the shaded domain in Fig. 10 (left)). The domain D̂1 can be mapped by 
the conformal mapping

g(z) = z3/2

onto the upper half of the unit disk and the two segments from s to 0 and from 0 to s eθ1i are mapped onto 
the segment [−s3/2, s3/2]. Let Δ̃ be the family of curves in the upper half of the unit disk connecting the 
segment [−s3/2, s3/2] to the upper half of the unit circle (see Fig. 10 (right)). Then using the same argument 
as above,

cap(D, T̂ ) = M(Δ(T̂ , S1;D)) = 3M(Δ̃). (6.9)

By symmetry, it follows from [38, 5.20, 7.32],

M(Δ̃) = 1
2γ2

(
1

th1
2ρD(−s3/2, s3/2)

)
= π

μ
(
th1

2ρD(−s3/2, s3/2)
) . (6.10)

Using (2.2), we have

th1
2ρD(−s3/2, s3/2) = 2s3/2

s3 + 1 ,

and hence

M(Δ̃) = π(
3/2 3

) . (6.11)

μ 2s /(s + 1)
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Using the formula ([2, (5.4)])

μ(r) = 1
2μ

((
r

1 +
√

1 − r2

)2
)
,

with r = 2s3/2/(s3 + 1) and hence 
(

r
1+

√
1−r2

)2
= s3, we obtain

M(Δ̃) = 2π
μ (s3) . (6.12)

The proof then follows from (6.9) and (6.12). �
Lemma 6.13. The capacity cap(D, T ) can be estimated by

cap(D, T ) ≥ 6π
μ (s3) . (6.14)

Proof. Let Δ = Δ(T, S1; G) and Δ̂ = Δ(T̂ , S1; Ĝ), then Δ < Δ̂. Hence, by Lemma 2.14,

cap(D, T ) = M(Δ) ≥ M(Δ̂) = cap(D, T̂ ),

and the proof follows from Lemma 6.8. �
6.15. An upper bound for the capacity of equilateral hyperbolic triangle.

Lemma 6.16. The capacity cap(D, T ) can be estimated by

cap(D, T ) ≤ 3π
μ
(√

3s/
√
s4 + s2 + 1

) . (6.17)

Proof. For j = 1, 2, 3, let Δ̂j = Δ([aj−1, aj ], S1, D) where [aj−1, aj ] is the hyperbolic segment from aj−1 to 
aj (see Fig. 9). Here aj = s ejiθ for j = 0, 1, 2, 3 and θ = 2π/3, i.e., a3 = a0. Then [38, 7.32],

M(Δ̂j) = γ2

(
1

th1
2ρD(aj−1, aj)

)
= 2π

μ
(
th1

2ρD(aj−1, aj)
) , j = 1, 2, 3. (6.18)

Note that M(Δ̂1) = M(Δ̂2) = M(Δ̂3). Let also Δ̂∗
j be the set of all curves in Δ̂j not intersecting the 

hyperbolic line through aj−1 and aj , then by symmetry,

M(Δ̂∗
j ) = π

μ
(
th1

2ρD(aj−1, aj)
) , j = 1, 2, 3. (6.19)

By (2.2), we have

thρD(a0, a1)
2 = thρD(s, seiα)

2 =
√

3s√
s4 + s2 + 1

, (6.20)

and hence

M(Δ̂∗
1) = π

μ
(
th1

2ρD(a0, a1)
) = π

μ
( √

3s√
4 2

) . (6.21)

s +s +1
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Fig. 11. The capacity cap(D, T ) of the equilateral hyperbolic triangle T with the vertices s, se2πi/3, and se4πi/3.

It follows from (6.19) that M(Δ̂∗
1) = M(Δ̂∗

2) = M(Δ̂∗
3) since T is an equilateral hyperbolic triangle. Thus, 

for the family of curves Δ = Δ(T, S1; G), by the subadditivity, Lemma 2.13, we have

cap(D, T ) = M(Δ) ≤ 3M(Δ̂∗
1). (6.22)

The proof follows from (6.21). �
Lemmas 6.13 and 6.16 yield the following corollary.

Corollary 6.23. For the equilateral hyperbolic triangle T with the vertices s, se2πi/3, and se4πi/3, we have

6π
μ (s3) ≤ cap(D, T ) ≤ 3π

μ
(√

3s/
√
s4 + s2 + 1

) . (6.24)

The inequality (6.24) is confirmed by numerical results as in Fig. 11 where the numerical values of 
cap(D, T ) are computed using the MATLAB function annq with n = 3 × 212.

6.25. The capacity, the hyperbolic perimeter, and the hyperbolic area. For the equilateral hyperbolic triangle 
T (shown in Fig. 9), we have ([5, p. 150])

2 ch b

2 sin β

2 = 1. (6.26)

Let u be the hyperbolic perimeter and v be the hyperbolic area of the triangle T . Then u = h-perim(T ) = 3b
and v = h-area(T ) = π − 3β. Thus, b = u/3, β = (π − v)/3, and equation (6.26) can be written as

2 chu6 sin π − v

6 = 1. (6.27)

The upper bound of cap(D, T ) given in (6.24) can be written in terms of the hyperbolic perimeter u of 
the triangle T . Since T is an equilateral hyperbolic triangle, then u = 3ρD(a0, a1), and (6.20) implies that

thu6 =
√

3s√
s4 + s2 + 1

. (6.28)

Thus it follows from (6.17) that



M.M.S. Nasser, M. Vuorinen / J. Math. Anal. Appl. 499 (2021) 125050 23
cap(D, T ) ≤ 3π
μ( thu

6 ) (6.29)

Similarly, the upper bound can be written in terms of the hyperbolic area v of the triangle T . Using the 
formula ([2, (5.2)])

μ(r)μ
(√

1 − r2
)

= π2

4 ,

with r = th(u/6) and hence 
√

1 − r2 = 1/ ch(u/6), we obtain

μ
(

thu6

)
μ

(
1

chu
6

)
= π2

4 , (6.30)

which in view of (6.27) can be written as

μ
(

thu6

)
μ

(
2 sin π − v

6

)
= π2

4 . (6.31)

Hence, the inequality (6.29) can be written in terms of the hyperbolic area v of the triangle T as

cap(D, T ) ≤ 12
π
μ

(
2 sin π − v

6

)
. (6.32)

It is possible to write also the lower bound of cap(D, T ) given in (6.24) in terms of the hyperbolic 
perimeter u and the hyperbolic area v of the triangle T . This can be done by writing s3 in terms of u and 
v. By (6.28), we can show that

shu6 =
√

3 s
1 − s2 ,

and hence

shu6 th2u

6 = 3
√

3 s3

1 − s6 .

Consequently, we have

s3 = −σ +
√

σ2 + 1, σ = 3
√

3
2 shu

6 th2 u
6
, (6.33)

which rewrite (6.24) in terms of the hyperbolic perimeter u. Further, in view of (6.28) and (6.27), we can 
show that

chu6 =
√
s4 + s2 + 1
1 − s2 , sin π − v

6 = 1 − s2

2
√
s4 + s2 + 1

,

and hence

tan π − v

6 = 1 − s2
√

3(1 + s2)
.

Thus
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s3 =
(

1 − τ

1 + τ

)3/2

, τ =
√

3 tan π − v

6 , (6.34)

rewrite (6.24) using the hyperbolic area v.
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