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Abstract

Independent component analysis is a standard tool in modern data analysis and
numerous different techniques for applying it exist. The standard methods however
quickly lose their effectiveness when the data are made up of structures of higher
order than vectors, namely matrices or tensors (for example, images or videos), being
unable to handle the high amounts of noise. Recently, an extension of the classic
fourth order blind identification (FOBI) specially suited for tensor-valued observa-
tions was proposed and showed to outperform its vector version for tensor data. In
this paper we extend another popular independent component analysis method, the
joint approximate diagonalization of eigen-matrices (JADE), for tensor observations.
In addition to the theoretical background we also provide the asymptotic properties of
the proposed estimator and use both simulations and real data to show its usefulness
and superiority over its competitors.
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1 Introduction

In the following “tensor” is used to refer to an array in Rp1×···×pr and before the actual ideas

are described we first review some key properties of tensors and matrices needed later.

A tensor of rth order X ∈ Rp1×···×pr can be seen as a higher order analogy of vectors

and matrices. Whereas a matrix can be viewed either as a collection of rows or that of

columns, a tensor of rth order has in total r modes. The m-mode vectors of a tensor are

given by letting the mth index vary while keeping all other indices fixed, m = 1, . . . , r.

A tensor X ∈ Rp1×···×pr thus contains ρm := Πr
s 6=mps m-mode vectors of length pm. The

opposite construct, fixing a single index im and varying the others, then gives what we call

the m-mode faces of a tensor. The number of m-mode faces then totals pm and each is a

tensor of size p1 × · · · × pm−1 × pm+1 × · · · × pr.

For representing tensor contraction we use the Einstein summation convention in which

a twice-appearing index in a product implies summation over the range of the index. For

example, for a tensor X = {xi1i2i3} we have

xi1i2jxi1i2k :=

p1∑
i1=1

p2∑
i2=1

xi1i2jxi1i2k.

Two special cases of tensor contraction prove especially useful for us. The product X�mA

of a tensor X ∈ Rp1×···×pr with a matrix A ∈ Rpm×pm , m = 1, . . . , r, is defined as the

p1 × · · · × pr-dimensional tensor with the elements

(X�m A)i1···ir = xi1···im−1jmim+1···iraimjm . (1)

That is, the multiplication X �m A linearly transforms X from the direction of the mth

mode without changing the size of the tensor. The operation can alternatively be viewed

as applying the linear transformation given by A separately to each m-mode vector of the

tensor. The second useful product, X �−m Y, of two tensors of the same size, X,Y ∈

Rp1×···×pr is defined as the pm × pm-dimensional matrix with the elements

(X�−m Y)jk = xi1···im−1jim+1···iryi1···im−1kim+1···ir . (2)

The special case X�−m X provides higher order counterparts for the products of a vector

x ∈ Rp1 or a matrix X ∈ Rp1×p2 with itself, such as xxT , XXT or XTX, and proves useful

in defining the “covariance matrix” of a tensor.
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Finally, define the vectorization vec(X) ∈ Rp1···pr of a tensor X ∈ Rp1×···×pr as the

stacking of the elements xi1···ir in such a way that the leftmost index goes through its cycle

the quickest and the rightmost index the slowest. Then it holds for a tensor X ∈ Rp1×···×pr

and matrices A1 ∈ Rp1×p1 , . . . ,Ar ∈ Rpr×pr that

vec(X�1 A1 · · · �r Ar) = (Ar ⊗ · · · ⊗A1)vec(X),

where ⊗ is the Kronecker product.

In this paper we assume that the tensor-valued i.i.d. random elements Xi ∈ Rp1×···×pr ,

i = 1, . . . , n, are observed from the recently suggested (Virta et al., 2016) tensor independent

component (IC) model :

X = µ+ Z�1 Ω1 · · · �r Ωr, (3)

where Ω1 ∈ Rp1×p1 , . . . ,Ωr ∈ Rpr×pr are full rank mixing matrices, µ ∈ Rp1×···×pr is the

location center, and Z ∈ Rp1×···×pr is an unobserved random tensor. The model (3) is

further equipped with the following assumptions.

Assumption 1. The components of Z are mutually independent.

Assumption 2. The components of Z are standardized in the sense that E[vec(Z)] = 0

and Cov[vec(Z)] = I.

Assumption 3. For each m = 1, . . . , r, at most one m-mode face of Z consists entirely of

Gaussian components.

Assumption 2 implies that E[X] = µ and that

Cov[vec(X)] = (ΩrΩ
T
r )⊗ · · · ⊗ (Ω1Ω

T
1 )

has the so-called Kronecker structure. Assumption 3 is a tensor analogy for the usual

vector independent component model assumption on maximally one Gaussian component

and without it some column blocks of some of the matrices Ω1, . . . ,Ωr could be identifiable

only up to a rotation. After the above assumptions we can still freely change the signs

and orders of the columns of all Ω1, . . . ,Ωr, or multiply any Ωs by a constant and divide

any Ωt by the same constant, but this indeterminacy is acceptable in practice. The model
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along with its assumptions now provides a natural extension for the standard independent

component model which is obtained as a special case when r = 1.

Alternatively, the model can be seen as an extension of the general location-scatter

model for tensor-valued data, which is equivalent to (3) with only Assumption 2 and is often,

for r = 1, 2, combined with the assumption on Gaussianity or sphericity of vec(Z). Under

the location-scatter model the covariance matrix of vec(X) again has the above Kronecker

structure. In addition to requiring less parameters to estimate than a full p1 · · · pr×p1 · · · pr
covariance matrix, the assumption on Kronecker structure is a natural choice in many

applications, see e.g. Werner et al. (2008). One particular example is multivariate repeated

measures data where the observations are matrices with each row coinciding to one of a set

of p1 variables and the columns correspond to the p2 time points on which the variables

are measured. In that case the matrix Ω1 in (3) specifies the covariance structure between

the variables and Ω2 the covariance structure between the time points. For the estimation

of covariance parameters under the assumption on Kronecker structure in the matrix case,

r = 2, see Srivastava et al. (2008); Wiesel (2012); Sun et al. (2015). For the general tensor

Gaussian distribution and the estimation of its parameters see Hoff et al. (2011).

The extension of dimension reduction methods from vector to matrix or tensor ob-

servations is in signal processing usually done via tensor decompositions such as the CP-

decomposition and the Tucker decomposition. A review of them with a plethora of refer-

ences for applications is given in Kolda and Bader (2009), see also Lu et al. (2011) for more

applications. For examples of particular dimension reduction methods incorporating matrix

or tensor predictors, see e.g. Vasilescu and Terzopoulos (2005); Zhang et al. (2008); Virta

et al. (2016) for independent component analysis, Li et al. (2010); Pfeiffer et al. (2012);

Xue and Yin (2014); Ding and Cook (2015) for sufficient dimension reduction and Ding

and Cook (2014); Greenewald and Hero (2015) for principal components analysis-based

techniques. More references are also given in Li et al. (2010); Virta et al. (2016).

In tensor independent component analysis the objective is to estimate, based on the

sample X1, . . . ,Xn, some unmixing matrices Φ1, . . . ,Φr such that X �1 Φ1 · · · �r Φr has

mutually independent components. A näıve method for accomplishing this would be to

vectorize the observations and resort to some standard method of independent component
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analysis, but in doing so the resulting estimate lacks the desired Kronecker structure. In

addition, vectorizing and using standard tools meant for vector-valued data requires the

stronger, component-wise version of Assumption 3, inflates the number of parameters and

can make the dimension of the data too large for standard methods to handle. To cir-

cumvent this, Vasilescu and Terzopoulos (2005); Zhang et al. (2008); Virta et al. (2016)

proposed estimating an unmixing matrix separately for each of the modes and Virta et al.

(2016) presented an extension of the classic fourth order blind identification (FOBI) (Car-

doso, 1989) for tensor observations called TFOBI.

In the vector independent component model, x = µ + Ωz, the standardized vector

xst := Cov[x]−1/2(x−E[x]) equals Uz for some orthogonal matrix U. In FOBI the rotation

U is then found using the eigendecomposition of the matrix of fourth moments B :=

E[xstx
T
stxstx

T
st]. This same approach is taken in TFOBI by performing both steps of the

procedure, the standardization and the rotation, on all r modes of X. Assuming centered

X, in Virta et al. (2016) the m-mode covariance matrices,

Σm(X) := ρ−1m E [X�−m X] , m = 1, . . . , r, (4)

are first used to standardize the observations as Xst := X�1Σ
−1/2
1 · · ·�rΣ−1/2r . The tensor

Z is then found by rotating Xst from all r modes and the rotation matrices can be found

from the eigendecompositions of the m-mode matrices of fourth moments:

Bm := ρ−1m E [(Xst �−m Xst)(Xst �−m Xst)] .

Another widely used independent component analysis method for vector-valued data,

called the joint approximate diagonalization of eigen-matrices (JADE) (Cardoso and Souloumiac,

1993), also uses fourth moments to estimate the required final rotation but utilizes them

in the form of cumulant matrices (assuming E [x] = 0),

Cij(x) := E
[
xixj · xxT

]
− E[xixj]E

[
xxT

]
(5)

− E [xi · x]E
[
xj · xT

]
− E [xj · x]E

[
xi · xT

]
.

The final rotation from xst to z is in JADE obtained by jointly diagonalizing the matrices

Cij(xst) = E
[
xst,ixst,j · xstxTst

]
− δijI− Eij − Eji, (6)
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where Eij is a matrix with a single one as element (i, j) and zeroes elsewhere and δij

is the Kronecker delta. Compared to FOBI which only uses p(p + 1)/2 sums of fourth

joint moments of xst, JADE thus has a clear advantage in using all possible fourth joint

cumulants of xst in the estimation of the rotation matrix.

Because of the well-known fact that JADE outperforms FOBI in most cases (see e.g.

Miettinen et al. (2015)) it is natural to expect that the extension of JADE to tensor-

valued data would similarly be superior to TFOBI. This is indeed the case, and in the

following sections we formulate the tensor joint diagonalization of eigen-matrices (TJADE)

which is obtained from JADE by applying very much the same extensions as required

when moving from FOBI to TFOBI. We first briefly discuss the standard vector-valued

independent component model and review the theory and assumptions behind the original

JADE in Section 2. The corresponding aspects of TJADE are presented in Section 3 and

the asymptotical properties of both methods in Section 4. Simulations comparing TJADE

to TFOBI and both the original JADE and original FOBI are presented in Section 5 along

with a real data example and we close in Section 6 with some discussion. The proofs can

be found in Appendix A.

2 Original JADE

The original JADE assumes that the vector-valued observations are generated by the vector

independent component model

xi = µ+ Ωzi, i = 1, . . . , n, (7)

where the mixing matrix Ω ∈ Rp×p has full rank, µ ∈ Rp and the i.i.d. random vectors

zi ∈ Rp have mutually independent components standardized to have zero means and unit

variances. To ensure the existence of the JADE solution we must further assume that at

most one of the components of z has zero excess kurtosis (Cardoso and Souloumiac, 1993).

Assuming next that the data are centered, that is, E[x] = 0, we standardize the vectors

as xst = Σ−1/2x. The standardized vectors can be shown to satisfy xst = Uz for some

orthogonal matrix U, see Cardoso and Souloumiac (1993). To estimate U, JADE uses

the cumulant matrices Cij(xst), i, j = 1, . . . , p, in (6). Under the independent component
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model the cumulant matrices can be shown to satisfy, for all i, j = 1, . . . , p,

Cij(xst) = U

(
p∑

k=1

uikujkκkE
kk

)
UT , (8)

where κk := E(z4k)−3, the excess kurtosis of the kth component, and uab are the components

of U. The expression in (8) is the eigendecomposition of Cij(xst) and while the rank of any

single matrix Cij(xst) may not be large enough to estimate U, JADE instead simultaneously

(approximately) diagonalizes them all, that is, finds UT as

UT = argmax
U: UTU=I

p∑
i=1

p∑
j=1

‖diag(UCij(xst)U
T )‖2. (9)

This has the advantage of considering all fourth joint cumulants in the estimation. Opti-

mization problems of type (9) are called joint diagonalization problems, see e.g. Cardoso

and Souloumiac (1993); Bunse-Gerstner et al. (1993); Cardoso and Souloumiac (1996);

Belouchrani et al. (1997).

In Miettinen et al. (2015) a thorough analysis of the statistical properties of JADE is

given and the authors show the JADE estimator is an independent component functional,

that is, the resulting components are invariant up to sign-change and permutation under

affine transformations, even outside the independent component model. See also Moreau

(2001) who discusses the higher-order extensions of cumulant-based joint diagonalization

methods for blind source separation.

3 Tensor JADE

In formulating TJADE we assume that the data are generated by the tensor IC model (3)

and satisfy Assumptions 1, 2 and 3. Assuming E[X] = 0, we next go separately through

the tensor analogies of the standardization and rotation steps of the original JADE.

3.1 Standardization step

We take the same approach for standardization of X as in Virta et al. (2016), that is, use

the m-mode covariance matrices, Σ1, . . . ,Σr, to standardize X simultaneously from all r
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modes. This gives us the standardized tensor

Xst := X�1 Σ
−1/2
1 · · · �r Σ−1/2r .

where, for the asymptotics, we assume that the standardization functionals Σ
−1/2
m , m =

1, . . . , r, are chosen to be symmetric, see e.g. Ilmonen et al. (2012). Estimates Σ̂1, . . . , Σ̂r of

the m-mode covariance matrices are obtained by applying (4) to the empirical distribution

of X. The next step towards Z is guided by Theorem 5.3.1 in Virta et al. (2016) which

states that

Xst = τ · Z�1 U1 · · · �r Ur, (10)

for some orthogonal matrices U1 ∈ Rp1×p1 , . . . ,Ur ∈ Rpr×pr and for τ = (
∏m

i=1 p
1/2
m )r−1‖Ωr⊗

· · · ⊗Ω1‖1−rF , where ‖ · ‖F is the Frobenius norm.

3.2 Rotation step

We extend the cumulant matrices by noting that the operation �−m provides an m-mode

analogy for the product of a vector and its transpose. By writing the random quantity

xixj ·xxT in (5) either as eTi xxTej ·xxT or as xxTeie
T
j xxT , where ei is the ith standard basis

vector, two straightforward tensor m-mode analogies for the matrices of fourth cumulants

Cij, i, j = 1, . . . , pm, in (5) are then given by

Cij
1,m(X) = ρ−1m E

[
eTi (X�−m X)ej · (X�−m X)

]
− ρ−1m E

[
eTi (X∗ �−m X∗)ej · (X�−m X)

]
− ρ−1m E

[
eTi (X∗ �−m X)ej · (X∗ �−m X)

]
− ρ−1m E

[
eTi (X∗ �−m X)ej · (X�−m X∗)

]
,

(11)

and

Cij
2,m(X) = ρ−1m E

[
(X�−m X)Eij(X�−m X)

]
− ρ−1m E

[
(X∗ �−m X∗)Eij(X�−m X)

]
− ρ−1m E

[
(X∗ �−m X)Eij(X∗ �−m X)

]
− ρ−1m E

[
(X∗ �−m X)Eij(X�−m X∗)

]
,

(12)
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with m = 1, . . . , r, where X∗ is an independent copy of X, that is, a random variable that

is independent of X and has the same distribution as X. Note that the expressions (11)

and (12) are not cumulant matrices in the true sense of the word but rather consist of sums

of certain joint cumulants. Theoretically, a third way to generalize the idea is obtained

by considering xxTeje
T
i xxT . However, that would be redundant as the resulting set of

matrices for i, j = 1, . . . , pm is the same as with (12) and the individual matrices can be

obtained by just reversing i and j in (12). Naturally, for vector observations, r = 1, both

(11) and (12) are equivalent.

Define next for the model (3) its kurtosis tensor κ ∈ Rp1×···×pr as (κ)i1···ir := E[z4i1···ir ]−3

and its m-mode average kurtosis vector as κ̄(m) := (κ̄
(m)
1 , . . . , κ̄

(m)
pm ), where κ̄

(m)
k is the

average of the excess kurtoses of the random variables in the kth m-mode face of the tensor

Z, k = 1, . . . , pm. The following theorem then shows that (11) and (12) actually serve in

TJADE the same purpose as their vector counterparts do in JADE.

Theorem 1. If τ , U1, . . . , Ur are as defined in (10), then, for c = 1, 2 and m = 1, . . . , r,

the matrices of fourth cumulants Cij
c,m, i, j = 1, . . . , p satisfy

Cij
c,m(Xst) = τ 4 ·Um

(
pm∑
k=1

u
(m)
ik u

(m)
jk κ̄

(m)
k Ekk

)
UT
m.

According to Theorem 1, UT
m simultaneously diagonalizes all matrices Cij

c,m(Xst), i, j =

1, . . . , pm, regardless of c, giving two straightforward ways of estimating the m-mode ro-

tation Um by using (9) with Cij(xst) replaced by Cij
c,m(Xst) for the chosen value of c.

However, in estimating an individual matrix Cij
c,m(Xst) in (11) or (12) we have to esti-

mate four matrices in total, the last two of which are costly to estimate because of the

independent copies X∗. Using the method of the proof of Theorem 1 one can show that,

analogously to the vector-valued case,

Cij
1,m(Xst) = Bij

1,m −Ξm

(
δijρmI + Eij + Eji

)
ΞT
m,

where Bij
1,m := ρ−1m E

[
eTi (Xst �−m Xst)e

j · (Xst �−m Xst)
]

and Ξm := ρ−1m E [Xst �−m Xst] =

τ 2I, which provides a natural estimator for τ 2. Similarly

Cij
2,m(Xst) = Bij

2,m −Ξm

(
δijI + ρmEij + Eji

)
ΞT
m,
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where Bij
2,m := ρ−1m E

[
(Xst �−m Xst)E

ij(Xst �−m Xst)
]

and Ξm is as above.

Natural estimates for the previous matrices are provided by

Ĉij
1,m := B̂ij

1,m − Ξ̂m

(
δijρmI + Eij + Eji

)
Ξ̂
T

m and (13)

Ĉij
2,m := B̂ij

2,m − Ξ̂m

(
δijI + ρmEij + Eji

)
Ξ̂
T

m, (14)

where i, j = 1, . . . , pm, and the estimates B̂ij
1,m, B̂ij

2,m and Ξ̂m are obtained by applying the

definitions of Bij
1,m, Bij

2,m and Ξm to the empirical distribution of X, including an empirical

standardization by Σ̂
−1/2
1 , . . . , Σ̂

−1/2
r . Choosing then either of the sets, c = 1, 2, the rotation

matrix UT
m, m = 1, . . . , r, is found by simultaneous (approximate) diagonalization as

UT
m = argmax

U: UTU=I

pm∑
i=1

pm∑
j=1

‖diag(UCij
c,m(Xst)U

T )‖2. (15)

The corresponding estimates ÛT
m, m = 1, . . . , r, are obtained by replacing in (15) the

matrices Cij
c,m(Xst) with their estimates Ĉij

c,m .

Combining the standardization and the rotation, the final TJADE algorithm for a

sample, Xi ∈ Rp1×···×pr , i = 1, . . . , n, consists of the following steps.

1) Center Xi and estimate Σ̂1, . . . , Σ̂r.

2) Standardize: Xi ← Xi �1 Σ̂
−1/2
1 · · · �r Σ̂

−1/2
r .

3) Choose c and estimate the r rotations ÛT
1 , . . . , Û

T
r by diagonalizing for each m =

1, . . . , r simultaneously the sets Ĉij
c,m, i, j = 1, . . . , pm.

4) Rotate: Xi ← Xi �1 ÛT
1 · · · �r ÛT

r .

Using Lemma 5.1.1 from Virta et al. (2016) the final result can be written as the product

Xi�1 Φ̂1 · · ·�r Φ̂r, where Φ̂m := ÛT
mΣ̂

−1/2
m , m = 1, . . . , r, is the m-mode TJADE estimate.

Remark 1. Technically, there is no reason why we could not use different c for estimating

different rotations Um. However, the asymptotic properties of the different approaches are

in the next section shown to be equivalent and thus the choice of c is for large enough

samples irrelevant.
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For a vector valued x ∈ Rp and a full-rank matrix A ∈ Rp×p, (Ax)st = Uxst for some

orthogonal U (Ilmonen et al., 2012). Unfortunately, the analogous relation in the tensor

setting,

(X�1 A1 · · · �r Ar)st = Xst �1 U1 · · · �r Ur (16)

for some orthogonal U1, . . . ,Ur, holds only for orthogonal A1, . . . ,Ar. This lack of m-

affine equivariance of Σm(X), m = 1, . . . , r, is discussed in Virta et al. (2016) along with

a conjecture that in the general tensor case, r > 1, no standardization functional leading

into the property (16) exists. In practice this means that outside the model (3) a change

(other than rotation or reflection) in the coordinate system leads into different estimated

components. However, the TJADE estimator is still Fisher consistent by Theorem 1.

4 Asymptotic properties

The asymptotical properties of JADE were considered in Bonhomme and Robin (2009),

Miettinen et al. (2015), Virta et al. (2015) and are in Miettinen et al. (2015), Virta et al.

(2015) based on the fact that the JADE functional is affine equivariant, allowing them to

consider only the case of no mixing, Ω = I. In the following we consider the analogous case

of Ω1 = I, . . . ,Ωr = I for TJADE. However, because of the lack of full affine equivariance,

the results generalize only to orthogonal mixing from all r modes.

For a tensor X ∈ Rp1×···×pr define its m-flattening X(m) ∈ Rpm×ρm as the horizon-

tal stacking of all m-mode vectors of the tensor into a matrix in a predefined order, see

De Lathauwer et al. (2000) for a rigorous definition. If the stacking order is assumed

to be cyclical in the dimensions in the sense of De Lathauwer et al. (2000) we have for

X∗ := X�1 A1 · · · �r Ar the identity

X∗(m) = AmX(m) (Am+1 ⊗ · · · ⊗Ar ⊗A1 ⊗ · · · ⊗Am−1)
T . (17)

The reason why m-flattening is particularly useful for us is that it allows us to write the

m-mode product of a tensor with itself as an ordinary matrix product, namely X�−mX =

X(m)X
T
(m), regardless of the stacking order. This, combined with the fact that the matrices

Cij
c,m(X) depend on X only via the previous product, implies that it is sufficient to derive

the asymptotics for the case r = 2 only. The results for tensors of order r > 2 are then
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obtained by applying the case r = 2 for each of the m-flattened matrices X(1), . . . ,X(r).

Similarly, even for the case r = 2 we only need to consider the 1-mode TJADE estimate

Φ̂1 (matrix multiplication from left) as the results for Φ̂2 follow by simply transposing X.

Interestingly, we also have no need to specify the used set of cumulant matrices c, as the

two choices, c = 1 and c = 2, are shown to lead into asymptotically equivalent estimators.

We next provide the asymptotic expressions for the elements of the TJADE estimate

Φ̂1 =: Φ̂ in the case of a matrix-valued sample Xi ∈ Rp1×p2 , i = 1, . . . , n. The asymptotic

properties of Φ̂ can be shown to depend on row means of various moments of Z, particularly

on the elements of κ̄(1) but also on

β̄
(1)

:=
1

p2

p2∑
l=1

(
E[z41l], . . . ,E[z4p1l]

)
T and ω̄(1) :=

1

p2

p2∑
l=1

(
Var[z31l], . . . ,Var[z3p1l]

)
T .

Define further the covariance of two rows of kurtoses as

ρkk′ =
1

p2

p2∑
l=1

(βklβk′l)− β̄(1)
k β̄

(1)
k′ ,

where βkl := E[z4kl]. For the asymptotic expression of Φ̂ in Theorem 2 we need the terms

ŝkk′ :=
1

p2

p2∑
l=1

(
1

n

n∑
i=1

zi,klzi,k′l

)
, q̂kk′ :=

1

p2

p2∑
l=1

(
1

n

n∑
i=1

(
z3i,kl − E[z3kl]

)
zi,k′l

)
,

r̂kk′ :=
1

p2

p2∑
l=1

p2∑
l′=1
l′ 6=l

(
1

n

n∑
i=1

z2i,klzi,kl′zi,k′l′

)
,

the joint limiting normality of which is easy to show, assuming the eighth moments of Z

exist.

Theorem 2. Let Z1, . . . ,Zn be a random sample from a distribution with finite eighth

moments and satisfying Assumptions 1, 2 and 4 (see below). Then there exists a sequence

of TJADE estimates such that Φ̂→P I and

√
n(φ̂kk − 1) = −1

2

√
n(ŝkk − 1) + oP (1),

√
nφ̂kk′ =

√
nψ̂kk′ −

√
nψ̂k′k − dkk′

√
nŝkk′

(κ̄
(1)
k )2 + (κ̄

(1)
k′ )2

+ oP (1),

where k 6= k′, ψ̂kk′ := κ̄
(1)
k (r̂kk′ + q̂kk′) and dkk′ := (p2 + 2)(κ̄

(1)
k − κ̄

(1)
k′ ) + (κ̄

(1)
k )2.
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Using the expressions of Theorem 2 the asymptotic variances of the elements of Φ̂ can

now be computed.

Corollary 1. Under the assumptions of Theorem 2 the limiting distribution of
√
n vec(Φ̂−

I) is multivariate normal with mean vector 0 and the following asymptotic variances.

ASV (φ̂kk) =
β̄
(1)
k − 1

4p2
,

ASV (φ̂kk′) =
ζk + ζk′ + (κ̄

(1)
k′ )4 − 2κ̄

(1)
k κ̄

(1)
k′ ρkk′

p2((κ̄
(1)
k )2 + (κ̄

(1)
k′ )2)2

, k 6= k′,

where ζk := (κ̄
(1)
k )2[ω̄

(1)
k − (β̄

(1)
k )2] + (κ̄

(1)
k )2(κ̄

(1)
k + 2)(p2 − 1).

It is easily seen that the expressions in Corollary 1 revert to the forms of Corollary

4 in Miettinen et al. (2015) when r = 1, that is, we observe just a vector x. In this

case κ̄(1) contains just the element-wise kurtoses of the elements of z. Of the popular

ICA methods, FastICA, FOBI and JADE, it is well-known that only for FOBI does the

asymptotic behavior of φ̂kk′ depend on components other than zk and zk′ . The analogous

result holds also for TFOBI and TJADE in the sense that in TFOBI the asymptotic

behavior of φ̂
(m)
kk′ depends on the whole tensor Z (Virta et al., 2016) and in TJADE only

on the kth and k′th m-mode faces of Z.

The denominators in Theorem 2 imply that for the existence of the limiting distributions

we need the following assumption.

Assumption 4. For each m = 1, . . . , r, at most one of the components of κ̄(m) is zero.

Assumption 4 for TJADE is much less restrictive than the assumption needed for

TFOBI, for each m = 1, .., r the components of κ̄(m)are distinct (Virta et al., 2016), and

the one needed for vector JADE, at most one element of κ is zero (Miettinen et al., 2015).

More specifically, in TJADE, and in tensor independent component analysis in general,

several individual elements of Z are allowed to be Gaussian, as long as Assumption 3 is not

violated. Conveniently located, a majority of the elements of Z can thus be Gaussian.

The analytical comparison of TJADE and TFOBI via the asymptotic variances involves

in general case rather complicated expressions and thus we resort to simulations for their

comparison in the next section.

13



5 Simulations and examples

In the following all computations were done in R 3.1.2 (R Core Team, 2014) especially using

the R-packages JADE (Miettinen et al., 2015), Rcpp (Eddelbuettel et al., 2011; Eddelbuet-

tel, 2013) and ggplot2 (Wickham, 2009). For the approximate joint diagonalization, an

algorithm based on Jacobi angles was used, see e.g Cardoso and Souloumiac (1996). Test-

ing the algorithms in various settings showed that both c = 1 and c = 2 yield almost

identical results with respect to the MDI-values (see below) but the former is computation-

ally more efficient and thus the TJADE solution in the simulations is computed with the

choice c = 1.

5.1 Efficiency comparisons

We compared the separation performance of TJADE with its nearest competitor, TFOBI,

and also with regular FOBI and JADE as applied to vectorized tensor data, called here

VFOBI and VJADE. Note that VFOBI and VJADE do not use the prior information on

the data structure and are therefore expected to be worse than TFOBI and TJADE. The

simulation setting was the same as in Virta et al. (2016): we simulated n independent 3×4

matrix observations with individual elements coming from a diverse array of distributions.

The excess kurtoses of the distributions used were -1.2, -0.6, 0, 1, 2, 3, 4, 5, 6, 8, 10 and

15 and the exact distributions used are given in Appendix A.

We generated 2000 repetitions for each sample size, n = 1000, 2000, 4000, 8000, 16000, 32000,

and for each sample the same data was mixed using three different distributions for the el-

ements of the 1-mode and 2-mode mixing matrices, Ω1 and Ω2. In the first case the mixing

matrices were random orthogonal matrices of sizes 3×3 and 4×4 distributed uniformly with

respect to the Haar measure. In the second and third case the elements of both matrices

were generated independently from N (0, 1) and Uniform(−1, 1) distributions, respectively.

The mixed data were then subjected to each of the four methods producing the four

unmixing matrix estimates, Φ̂V F , (Φ̂2,MF ⊗ Φ̂1,MF ), Φ̂V J and (Φ̂2,MJ ⊗ Φ̂1,MJ). To allow

comparison we took the Kronecker product of the 2-mode and 1-mode unmixing matrices

of TFOBI and TJADE meaning that all the four previous matrices estimate the inverse of

the same matrix (Ω2 ⊗Ω1), up to scaling, sign-change and permutation of its columns.
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Figure 1: The plot of sample size versus the transformation n(p− 1)MDI2 under combina-

tions of the four methods and three different distributions for the mixing matrices.

The actual comparison was done by first computing the minimum distance index (MDI)

(Ilmonen et al., 2010) of the estimates D(Φ̂Ω) = (p − 1)−1/2 inf
C∈C
‖CΦ̂Ω − I‖F , where Φ̂ ∈

Rp×p is the estimated unmixing matrix, Ω ∈ Rp×p is the mixing matrix and C is the

set of all p × p matrices with a single non-zero element in each row and column. MDI

thus measures how far away Φ̂Ω is from the set C. The index varies from 0 to 1 with

0 indicating a perfect separation. In our simulation we further transformed the MDI-

values as n(p− 1)MDI2 which in vector-valued independent component analysis converges

in distribution to a random variable with finite mean and variance (Ilmonen et al., 2010).

The mean transformed MDI-values for different sample sizes, methods and mixing ma-

trices are shown in Figure 1. The lines for both VFOBI and VJADE are for all mixings

identical since both methods are affine equivariant. For TFOBI and TJADE the separa-

tion is best under orthogonal mixing, the results for normal and uniform mixing being a

bit worse. But the main implication of the plot is that none of the other methods can

really compete with TJADE in matrix independent component analysis. Interestingly, also

regular JADE combined with vectorization is better than TFOBI.
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5.2 Assumption comparisons

In the second simulation we compared the four methods of the previous simulation via their

assumptions. For this we used three simulation settings of 3×3×2 tensors with independent

elements having either Gaussian (N), Laplace (L), exponential (E), or continuous uniform

(U) distributions standardized to have zero means and unit variances. The distributions of

the tensors are shown in the following by the two 3× 3× 1 faces of each setting:
N L E U U U

L L E U L L

E E E U L E



N L L U U U

L L L U L L

L L L U L L



E E N N N N

E E N N N N

N N N N N N


It is easy to see that none of the above settings satisfies the assumptions of VFOBI as all

of them have at least two identical components. Only setting 1 satifies the assumption of

TFOBI on distinct kurtosis means in all modes and settings 1 and 2 satisfy the assumption

on maximally one component having zero excess kurtosis required by VJADE. All three

settings satisfy Assumption 4 on maximally one zero kurtosis mean in each mode required

by TJADE.

We simulated 2000 repetitions of all three settings for different sample sizes using iden-

tity mixing and the resulting transformed MDI-values of the four methods are depicted in

Figure 2. The above reasoning about the violation of assumptions is clearly visible in the

plots. The mean transformed MDI-values of the different methods break one-by-one when

the setting changes from 1 to 2 to 3 leaving TJADE as the only method able to handle all

three settings. Interestingly, VJADE failed to converge 4601 times out of the 36000 total

repetitions across all settings, the majority of failures occurring in the third setting.

The plot for setting 1 further indicates that there exist cases where TFOBI beats

VJADE, proving that, though very efficient, the JADE methodology itself is not the only

factor in the superior performance of TJADE; the tensor structure also plays a role.

5.3 Real data example

Extreme kurtosis can be shown to be associated with multimodal distributions and thus

independent component analysis is commonly used as preprocessing step in classification
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Figure 2: The means of transformed MDI-values for different combinations of setting,

sample-size and method. Moving from left to right, all other methods but TJADE break

down one-by-one.

to obtain directions of interest. In this spirit we consider the semeion1 data set, available

in the UCI Machine Learning Repository (Lichman, 2013) as a classification problem. The

data consist of 1593 binary 16 × 16 pixel images of hand-written digits. For this example

we chose only the images representing the digits 0, 1 and 7, having respective group sizes

of 161, 162 and 158. The objective is to find a few components separating the three digits.

Subjecting the data to TJADE gives the results depicted in Figure 3. The left-hand

side plot shows the scatter plot of the two resulting components with the lowest kurtoses

using the individual digit images as plot markers. Clearly the two found directions are

sufficient to separate all three groups of digits. The same conclusion can be drawn from

the corresponding density estimators and rug plots on the right-hand side of Figure 3. As a

next step, some low-dimensional classification algorithm could be applied to the extracted

components to create a classification rule.

1Semeion Research Center of Sciences of Communication, via Sersale 117, 00128 Rome, Italy; Tattile

Via Gaetano Donizetti, 1-3-5,25030 Mairano (Brescia), Italy.
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Figure 3: The results of applying TJADE on the semeion data. The plot on the left-hand

side shows the scatter plot of the two components having the lowest kurtoses found by

TJADE with the individual images as markers. The three digits clearly form three groups

in the plane. The density plots along with the rugs on the right-hand side imply the same.

The lower rug corresponds to the component with the lowest kurtosis (min kurtosis 1) and

the coloring of the groups in the rugs is the same as in the scatter plot.

6 Discussion

In this paper we proposed TJADE, an extension of the classic JADE suited for tensor-

valued observations. In the course of the paper we first reviewed the theory and the

algorithm behind JADE and then formulated TJADE analogously giving two different,

although asymptotically equivalent, ways of estimating the needed rotations. The asymp-

totic behaviors of the elements of the TJADE-estimates under orthogonal mixing were

next provided allowing theoretical comparison to other methods. Finally, simulation stud-

ies comparing TJADE to TFOBI, and the näıve approaches combining vectorization with

either FOBI or JADE showed that TJADE is superior to all the previous competitors in

tensor independent component analysis.
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Some further research ideas concerning ICA and tensors include: As the number of

matrices to jointly diagonalize in estimating the m-mode rotation in TJADE grows pro-

portional to the square of the corresponding dimension pm, an extension like k-JADE

(Miettinen et al., 2013) is worth considering for TJADE. Also, as a competing alternative

a tensor version of the FastICA algorithm (Hyvärinen et al., 2001) will be investigated,

opening many possibilities via allowing choosing both the non-linearity function g and the

norm used in the maximization problem, see Miettinen et al. (2015).
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A Simulation details and theorem proofs

The distributions used in the first simulation of Section 5 are, starting from the upper left

corner of the matrix and moving down and right, Uniform(−
√

3,
√

3), Triangular(−
√

6,
√

6, 0),

N (0, 1), t10, Gamma(3,
√

3), Laplace(0, 1/
√

2), χ2
3, Gamma(1.2,

√
1.2), Exp(1), χ2

1.5, χ
2
1.2

and InverseGaussian(1, 1). The distributions were further standardized to have zero means

and unit variances.

The proof of Theorem 1. Consider first the case c = 1 and the four terms in (11) separately

fixing the choice ofm. Denoting the first term of (11) by Bij
1,m(X), then according to Lemma

5.4.1 in Virta et al. (2016) we have

Bij
1,m(Xst) =

τ 4

ρm
UmE

[
(u

(m)
i )TZ(m)Z

T
(m)u

(m)
j · Z(m)Z

T
(m)

]
UT
m,

where Z(m) is the flattened matrix defined in Section 4 and (u
(m)
i )T is the ith row of Um.

Using the standard properties of expected value and independent random variables the

(k, k′) element of the inner expectation can be shown to be for k 6= k′ equal to u
(m)
ik u

(m)
jk′ +

u
(m)
jk u

(m)
ik′ and for k = k′ equal to δijρm + u

(m)
ik u

(m)
jk (κ̄

(m)
k + 2). Using these to construct a
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matrix form for the expectation we have

Bij
1,m(Xst) = τ 4Um

(
p∑

k=1

u
(m)
ik u

(m)
jk κ̄

(m)
k Ekk

)
UT
m + τ 4δijρmI + τ 4Eij + τ 4Eji.

The second, third and fourth terms in (11) then serve to remove the extra constant terms

above. That they indeed cancel one-by-one the final terms can easily be shown by examining

them in the above manner using the independence of X and X∗. This concludes the proof

for c = 1 and the corresponding result for c = 2 can be proven in precisely the same

manner.

The proof of Theorem 2. The consistency of the TJADE estimator is proven similarly as

the consistency of the TFOBI estimator in the proof of Theorem 5.2.1 in Virta et al. (2016).

In the following we assume that r = 2 and we are interested in the asymptotical behavior

of the 1-mode unmixing matrix. As discussed in Section 4, for the general case of arbitrary

r and m-mode unmixing matrix, it suffices to m-flatten the tensor and replace in the

following Σ̂
−1/2
1 with Σ̂

−1/2
m , Σ̂

−1/2
2 with Σ̂

−1/2
m+1 ⊗ · · ·⊗ Σ̂

−1/2
r ⊗ Σ̂

−1/2
1 ⊗ · · ·⊗ Σ̂

−1/2
m−1 , p2 with

ρm and use the corresponding row mean quantities.

For the asymptotic expressions of the diagonal elements of
√
n(Φ̂− I) it suffices to use

the same arguments as in the proof of Theorem 5.2.1 in Virta et al. (2016) and for the

off-diagonal elements we aim to use Lemma 2 from Miettinen et al. (2015).

But first, define the symmetric standardization functionals L̂ = (l̂kk′) := Σ̂
−1/2
1 and

R̂ = (r̂ll′) := Σ̂
−1/2
2 giving the standardized identity-mixed observations as Xst,i = L̂Z̃iR̂

T ,

where Z̃i = Zi − Z̄. We then have

√
n(l̂kk′ − δkk′) = −(1/2)

√
n(ŝkk′ − δkk′) + oP (1),

see Virta et al. (2016), and as simple moment-based estimators we have both
√
n(L̂− I) =

OP (1) and
√
n(R̂− I) = OP (1), regardless of whether we really have r = 2 or use flattened

tensors of higher order.

Assume then first that c = 1. The matrices Ĉkk′
1,1 , k, k′ = 1, . . . , p, in (13) to be simulta-

neously diagonalized satisfy Ĉkk′ := Ĉkk′
1,1 →P Ckk′

1,1 (Zi) = δkk′κ̄
(1)
k Ekk. In the view of Lemma

2 in Miettinen et al. (2015) this means that the only matrices Crs
1,1(Zi), r, s = 1, . . . , p, hav-

ing non-zero kth or k′th diagonal elements are Ckk
1,1(Zi) and Ck′k′

1,1 (Zi), respectively, yielding
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the following form for the (k, k′), k 6= k′, element of Û := ÛT
1 estimated by (15).

√
nûkk′ =

κ̄
(1)
k

√
nĈkk

kk′ − κ̄
(1)
k′
√
nĈk′k′

kk′

(κ̄
(1)
k )2 + (κ̄

(1)
k′ )2

+ oP (1),

where Ĉkk
rs is the (r, s) element of Ĉkk. The above expression then together with the (k, k′),

k 6= k′, element of the left standardization matrix L̂ gives an asymptotic expression for the

off-diagonal elements of the estimated left TJADE matrix, see Virta et al. (2016):

√
nφ̂kk′ =

√
nûkk′ +

√
nl̂kk′ + oP (1), (18)

reducing the problem of finding the asymptotics of TJADE into the task of finding the

asymptotic behaviors of
√
nĈkk

kk′ and
√
nĈk′k′

kk′ . Dropping the subscripts for clarity, note

that Ĉaa = B̂aa − Ξ̂(p2I + 2Eaa)Ξ̂T and starting from B̂aa write it out as

B̂aa =
1

p2n

n∑
i=1

(L̂T
a Z̃iR̂

∗Z̃T
i L̂a) · L̂Z̃iR̂

∗Z̃T
i L̂T ,

where L̂T
a is the ath row of L̂ and R̂∗ := R̂T R̂. An arbitrary off-diagonal element of

√
n(B̂aa −Baa(Zi)) then has after the matrix multiplication the form

√
nB̂aa

kk′ =
1

p2n

∑
defgstuv

√
nr̂∗ef r̂

∗
tul̂adl̂ag l̂ksl̂k′vĤde,gf,st,vu, (19)

where Ĥde,gf,st,vu = (1/n)
∑n

i=1 z̃i,dez̃i,gf z̃i,stz̃i,vu →P E(zi,dezi,gfzi,stzi,vu). Next we expand

the multiplicands r̂∗·· and l̂·· in (19) one-by-one such as l̂ab = (l̂ab − δab) + δab, the first term

of which is OP (1) when combined with
√
n allowing the use of Slutsky’s theorem to the

whole multiple sum and the second term of which produces an expression like (19) only

with one summation index less.

Starting from left this process then produces the terms oP (1); oP (1); δak
√
nl̂kk′ +

δak′
√
nl̂k′k+oP (1); δak

√
nl̂kk′+δak′

√
nl̂k′k+oP (1); δak′(κ̄

(1)
k′ +p2+2)

√
nl̂kk′+(1−δak′)p2

√
nl̂kk′+

oP (1) and δak(κ̄
(1)
k + p2 + 2)

√
nl̂k′k + (1 − δak)p2

√
nl̂k′k + oP (1) finally leaving us with the

expression

1

p2

∑
et

1√
n

n∑
i=1

z̃2i,aez̃i,ktz̃i,k′t + oP (1). (20)
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Substituting now either a = k or a = k′, expanding z̃i,ab = zi,ab−z̄ab and using the quantities

defined in Section 4 the expression in (20) gets the forms
√
nr̂kk′ +

√
nq̂kk′ + oP (1) and

√
nr̂k′k +

√
nq̂k′k + oP (1), respectively.

Using the above, e.g.
√
nB̂kk

kk′ gets the form

(p2 + 2)
√
nl̂kk′ + (κ̄

(1)
k + p2 + 2)

√
nl̂k′k +

√
nr̂kk′ +

√
nq̂kk′ + oP (1).

For the asymptotic behavior of the remaining term Ξ̂(p2I + 2Eaa)Ξ̂T one can first use

techniques similar to the above to show for Ξ̂ = (ξ̂kk′) that
√
n(ξ̂kk′−δkk′) = oP (1) for k 6= k′.

Consequently an arbitrary off-diagonal element of
√
n(Ξ̂(p2I + 2Eaa)Ξ̂T − p2I − 2Eaa) is

also oP (1) implying that the term actually contributes nothing to the asymptotic variances

of the estimator. Thus
√
nĈaa

kk′ =
√
nB̂aa

kk′ + oP (1) and the result of Theorem 2 is obtained

by plugging everything in into (18) and using the fact that the standardization functionals

are symmetric. The asymptotic variances of Corollary 1 are then straightforward to obtain,

e.g. using the table of covariances in the proof of Theorem 5.2.1 in Virta et al. (2016).

Although the starting expressions for c = 1 and c = 2 are different the final expressions

for both
√
nĈkk

kk′ and
√
nĈk′k′

kk′ actually match exactly. The corresponding proof for c = 2

is obtained in exactly likewise manner, expanding the terms suitably and using Slustky’s

theorem and is thus omitted here.
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