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ABSTRACT: 
Fatigue is a multidimensional and subjective concept and is a complex phenomenon including various causes, 
mechanisms and forms of manifestation. Thus, it is crucial to delineate the different levels and to quantify self- 
perceived fatigue. The aim of this study was to introduce a method for automatic quantification and detection of 
muscle fatigue using surface EMG signals. Thus, sEMG signals from right sternocleidomastoid muscle of 9 healthy 
female subjects were recorded during neck flexion endurance test in Quaem hospital. Then six features in time, 
frequency and time- scale domains were extracted from signals. After dimensionality estimation and reduction, the 
SVM classifier was applied to the resulted feature vector. Then, the performance of linear SVM and nonlinear SVM 
with RBF kernel and the effect of σ value in RBF kernel, on the accuracy of classification were evaluated. The results 
show that the best accuracy is achieved using RBF kernel SVM with σ equal to 0.5 (91.16%) and also the selected 
features using LLE criterion, were RMS, ZC and AIF. These results suggest that the selected features contained some 
information that could be used by nonlinear SVM with RBF kernel to best discriminate between fatigue and 
nonfatigue stages.   
 
KEYWORDS: Surface Electromyography (sEMG), SternoCleidoMastoid muscle (SCM), muscle fatigue, 
classification, Radial Basis Function (RBF) kernel, Support Vector Machines (SVM). 
  
1.  INTRODUCTION 

Fatigue is a multidimensional and subjective 
concept and is a complex phenomenon including 
various causes, mechanisms and forms of 
manifestation, hence poses a complex problem for the 
physician [1]. Since fatigue has physiological and 
psychological dimensions, delineation of its different 
levels and quantification of self- perceived fatigue is 
crucial [1]. 

Fatigue definition is very complex, not unique and 
controversial but physiological fatigue is usually 
defined as the loss of voluntary force- producing 
capacity during exercise. This can be due to both 
central and peripheral mechanisms [1]. Fatigue has 
mostly been studied at peripheral level, i.e. in the 
muscle tissue. During peripheral fatigue, the 
accumulation of lactate and extracellular potassium, 
together with a lowering of pH, affects membrane 
excitability [1,2]. Surface EMG signals provide useful 
information about the underlying mechanisms of 

fatigue. In spite of the limitations of the application of 
sEMG method to muscles positioned directly below the 
skin and the problem of cross talk from neighbouring 
muscles, this method due to its non- invasiveness, 
applicability in situ, real- time monitoring of fatigue 
and correlation with biochemical and physiological 
changes of muscle during fatigue, is widely used to 
determine local muscle fatigue [2]. To reduce the 
difficulty of the problem and the number of factors 
affecting the EMG signal, most past researches focused 
on myoelectric manifestation of muscle fatigue during 
isometric, constant force conditions [3]. Since fatigue 
itself is not a physical variable, its assessment requires 
the definition of indices based on physical variables 
that can be measured, such as force, power, or variables 
associated to the EMG signal, such as amplitude and 
spectral estimates [3]. The most widely used method 
for estimating the spectrum of the EMG signal is 
Fourier transform. Fourier methods suffer from several 
limitations. One of them is the stationarity assumption, 
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otherwise information about spectral changes will be 
lost [2,4,5]. Z.G. Zhang et al. [6] have used the time-
dependent power spectral density (PSD) estimation of 
nonstationary surface electromyography signals for 
fatigue analysis during isometric muscle contraction. 
They have used time-varying autoregressive (TVAR) 
model for power spectral estimation. The need for a 
PSD estimation unavoidably introduces a number of 
factors (method for PSD estimation, implementation 
algorithm, order of parametric model, shape and size of 
the analysis window), which directly affect the 
estimates of the spectral variables. In our research, we 
have used frequency variables which do not require 
spectral estimation. In addition, most of the pervious 
researches have presented methods for muscle fatigue 
quantification and only a few of them have introduced 
methods for automated classification and prediction of 
muscle fatigue. M.R. Mulla et al. [7] have applied 
wavelet transform and genetic algorithm for 
classification of muscle fatigue during isometric 
contraction and have reached average correct 
classification of 88.14%. A. Subasi et al. [8], have used 
time- frequency, neural network and ICA methods for 
muscle fatigue detection and have achieved accuracy 
percentage of 89%. L.M. Stirling et al. [3], also have 
used wavelet transform and linear SVM for fatigue 
detection. In order to train SVM classifier, they have 
labeled training dataset using perceived exertion 
reported by subjects (Borg scale) and achieved 
recognition rate of more than 80% across all muscles.  

In this paper, we have used new EMG variables for 
quantification of muscle fatigue in time, frequency and 
time- scale (wavelet) domains. These features not only 
overcome Fourier based methods limitations, but are 
inherently suitable for nonstationary signals. Then, 
since our data were nonlinearly separable, SVM 
classifier with RBF kernel was used for automated 
classification of EMG signals into fatigue and 
nonfatigue stages. Then, the effect of σ value in RBF 
kernel, was evaluated on the accuracy of classification. 
 
2.  METHODS AND MATERIALS 

 
2.1.  Subjects 

Nine healthy female volunteers (age 29.77±5.58 
years, mass 62.22±6.64 kg, BMI 23.53±2.32 kg/m2) 
with right hand dominant participated in this study. The 
subjects had not specifically trained their neck and 
shoulder muscles, and none of them was a competing 
athlete. Prior to their inclusion, all subjects were aware 
of recording protocol and the aim of study by examiner 
and information on examination forms. The 
measurements were carried out in the department of 
neurology, Quaem hospital. Before participation, all 
subjects were evaluated by a neurologist in order to 
ensure the absence of neurological or musculoskeletal 

disorders. The measurements were done between 4 to 7 
P.M. The subjects were not allowed to take any 
analgesics or muscle relaxants 24 hours before the 
examination. All volunteers signed informed consent 
prior to their inclusion.  
 
2.2.  Protocol 

Surface EMG signals were recorded (using 
PowerLab/4SP-SP5638 (ADInstruments Pty Ltd. 
Australia), bandpass: 10-500 Hz, notch: 50Hz, 
sampling frequency: 2kHz) bipolarly with Ag/AgCl 
circular disposable surface electrodes of diameter 
15mm, from sternocleidomastoid muscle during neck 
flexion endurance test. The electrodes were placed 
slightly posteriorly over the middle part of the muscle 
in the direction of muscle fibers, attached onto muscle 
at 2cm interelectrode spacing. The reference electrode 
was placed on the medial part of the clavicle. The leads 
were fixed by medical tape in order to minimize motion 
artifacts. To keep the interelectrode resistance low, the 
skin was cleaned with 70% isopropyl alcohol. 

For neck flexion endurance test, the subjects lain in 
a supine position on the examination bed while their 
knees were at 60° angle. After 1 minute adaptation 
period, volunteers were asked to flex their neck and 
hold it at 20° with the aid of examiner and in this 
position, jut out the chin as far as possible and maintain 
this condition until exhaustion. During the examination, 
the subjects were asked to announce the time, when 
they have felt fatigue for the first time, i.e. when the 
subjects felt fatigue but still able to continue recording. 
This moment was marked by comment which is one of 
the LabChart 7.3 software facilities. Thus, primary and 
manually labeling of data into fatigue and nonfatigue 
classes became possible.  
 
2.3.  Feature Extraction 

Since fatigue itself is not a physical variable, its 
assessment requires the definition of indices based on 
physical variables that can be measured, such as force, 
power, or variables associated to the EMG signal, such 
as amplitude and spectral estimates [4,9]. In order to 
quantify muscle fatigue, first sEMG signals were split 
into one second frames with 50% overlap. Then 6 
features in time, frequency and time- scale domains 
were extracted from each frame. The features were 
normalized to come into a suitable scale. It should be 
noted that all analyses of sEMG data were performed 
by MATLAB R2010a software (Mathworks Inc, USA). 
Table 1, shows the extracted features for muscle fatigue 
quantification.  

ZCR: The Zero Crossing Rate (ZCR) is defined as 
half the number of zero crossings of x(t) per second. 
This feature indicates the number of baseline crossings 
of EMG signal.  
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Where x(k) is the time series of signal, N is the number 
of samples in one frame and sgn is the sign function 
[2,12,13]. 

RMS: Root Mean Square (RMS) of sEMG signal is 
indicative of firing frequency, duration and velocity of 
the myoelectric signal. The increment of this feature 
shows the recruitment of extra motor units to produce 
constant force and is an index of fatigue development.  
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Where xi is the ith sample of a signal and N is the 
number of samples in each frame [2,12,13]. 

AIF: Averaged Instantaneous Frequency (AIF) is a 
new frequency variable for monitoring the frequency 
decrement of surface EMG signals during sustained 
isometric contractions. AIF is based on the concept of 
the instantaneous frequency and overcomes the 
shortcomings of mean and median frequency features 
by avoiding the problem of spectral estimation. In 
addition, it does not require any quasistationarity 
assumptions, since it is inherently suitable for 
nonstationary signals. This index can be calculated by 
the following equation: 
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Where ωi(t) is the instantaneous frequency of the 
signal and [ta, tb] is the frame length (1 second) [5]. 

DF: Dominant Frequency (DF) finds dominant 
frequency within the selected frequency band (usually 
estimated using Welch’s method). In this paper, a 
frequency band of 15 Hz to 45 Hz has been selected 
(since they have repeated most frequently) [10,13]. 

WIRM1M51: Wavelet Index of Ratios between 
Moment -1 at Maximum energy scale and Moment 5 at 
scale 1 (WIRMIM51) that can be described by (4): 
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Where Dmax(f) and D1(f) are the power spectra 
calculated using Fourier transform of the maximum 
energy and first scales of the DWT (Discrete Wavelet 
Transform) using the wavelet sym5, respectively, and 
f1= 10 Hz and f2= 500 Hz [4,13]. Here, maximum 
energy scale was 4.  

WIRE51: Wavelet Index of Ratios of Energies at 
scale 5 and 1 (WIRE51) that can be described by (5): 
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Where D5(f) and D1(f) are the details at scales five 
and one, respectively of the DWT calculated using 
wavelet sym5 [4,13]. 

 
Table 1. Extracted features from sEMG signals.  

Time 
Domain 

Frequency 
Domain 

Time- Scale 
Domain 

ZCR AIF WIRM1M51 
RMS DF WIRE51 

 
2.4.  Classification Using SVM 

Application of support vector machine (SVM) for 
classification problems is a new approach which 
became popular in recent years. The SVM approach is 
that in the training phase, it tries to select the decision 
boundary so that its minimum distance from each of the 
classes becomes maximum. This selection caused 
decision to bear the noisy situations in practice and to 
have a good response. This boundary selection method 
is based on the points called support vectors [11]. 

The linear SVM problem is a two- class 
classification problem using linear models. In practice, 
however, the class conditional distributions may 
overlap, in which case the exact separation of the 
training data can lead to poor generalization. Thus there 
is a need to modify SVM because the solution for 
linearly separable data is not applicable for nonlinearly 
separable case [3]. One solution is to allow some of the 
training points to be misclassified. To do this, the slack 
variables, ξi≥0, are assigned to each training data point. 
Another solution is the use of nonlinear SVM. 
Nonlinear SVM operates in two stages: (1) nonlinear 
mapping of the feature vector onto a high dimensional 
space and (2) construct an optimal separating 
hyperplane in the high dimensional space [11].  

Since SVM is a supervised learning method, it is 
necessary to label each frame before processing. Signal 
labelling into (0) fatigue and (1) nonfatigue classes is 
performed based on self- report of subjects.  
2.4.1. RBF Kernel 

In this study, linear and nonlinear SVM are used for 
EMG signal classification. To implement nonlinear 
SVM, the kernel function should be introduced. Here, 
we have used radial basis function (RBF) kernel. RBF 
kernel can be defined as (6):  
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This kernel function is basically useful for data 
which their class conditional probability distribution 
function is Gaussian. RBF kernel maps such data into 
another space where the data become linearly separable 
[11]. 
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3.  RESULTS 
 
3.1.  Changes in sEMG Indices over the Time 

Manifestations of muscle fatigue in EMG signals 
were analyzed by monitoring the time course of the 
features. In order to monitor the change of features 
during neck flexion endurance test, as mentioned 
before, we performed signal framing. Feature values 
were calculated for each frame of data and for each 
subject, using equations in section 2.3 and were plotted 
according to the number of frames. Figure 1, 2 and 3 
shows time course of ZC, RMS and AIF for subject 4. 
Initial value and the rise or fall rate of these variables 
during sustained contraction are usually calculated, 
since they are of physiological importance [5]. These 
parameters are estimated by fitting a least-square 
regression line to the data points (the intercept and 
slope of a linear regression). 
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Fig. 1. Time course of ZC during neck flexion 

endurance test for subject 4. The frame length was 1 
second. The values of the slope and intercept of the 

linear regression is also shown. 
 

When muscle activity increases, the more action 
potential will produce which leads to the increase in the 
number of zero crossings. But when fatigue starts, this 
feature decreases because of the decrease in muscle 
fiber conduction. Thus, it is expected that the slope of 
regression line in Figure 1, be descending.  

RMS of EMG signal, usually increases considerably 
during submaximal contractions due to the recruitment 
of extra motor units and an increase in firing frequency. 
Both are the mechanisms to cope with the declining 
force output. Positive slope of the regression line in 
Figure 2, also confirms this claim.  

In this paper, we introduced a new frequency 
variable (AIF) for monitoring the frequency decrement 
of surface EMG signals during isometric contractions. 
This new variable, in addition to overcome the 
shortcomings of conventional frequency variables 

(mean and median frequency) by avoiding the problem 
of spectral estimation, also does not require any 
quasistationarity assumptions, since it is inherently 
suitable for nonstationary signals. 
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Fig. 2. Time course of RMS during neck flexion 

endurance test for subject 4. The frame length was 1 
second. The values of the slope and intercept of the 

linear regression is also shown. 
 
During isometric contractions, sEMG signals can be 

assumed to be locally stationary for a period of 0.5- 1.5 
second. Thus, frame lengths are chosen to be 1 second, 
in this study. Figure 3, shows the time course of AIF 
index. As it was expected, the slope of linear regression 
line is descending.  

 

0 20 40 60 80 100 120 140 160 180 200
0.065

0.07

0.075

0.08

0.085

0.09

Frames

A
IF

 V
ar

ia
tio

ns

 

  
y = - 2.5e-005*x + 0.077

 
Fig. 3. Time course of AIF during neck flexion 

endurance test for subject 4. The frame length was 1 
second. The values of the slope and intercept of the 

linear regression is also shown. 
 
Figure 4, compares the values of the slope of 

regression lines obtained by mean frequency, median 
frequency and AIF methods for eight different frame 
lengths (from 250ms to 2000 ms). Results show that the 
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frame length does not affect the time evolution curve of 
AIF, at least in the case of isometric contractions. 
Indeed, its effect is negligible in comparison with mean 
and median frequency. This figure is indicative of the 
stability and robustness of the estimations of the slope 
over different frame length when using AIF method. 
Similar results were obtained for all subjects.  
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Fig. 4. The slopes of regression line for calculated AIF, 

mean (MNF) and median (MDF) frequency for 
different frame lengths for subject 4. 

 
3.2.  Dimensionality Reduction and Classification 

For many learning domains, like the situation in this 
article, some features are defined which are potentially 
useful for training and classification. However, not all 
of these features may be relevant. In such a case, 
choosing a subset of the original features will often 
lead to better performance. For supervised learning, 
feature selection algorithms maximize some function of 
predictive accuracy. In this study, MATLAB 
dimensionality reduction (DR) toolbox is used for 
feature selection. DR is a toolbox with MATLAB 
implementations of 27 techniques for dimensionality 
reduction and 6 techniques for intrinsic dimensionality 
estimation. Dimensionality reduction is the 
transformation of high-dimensional data into a 
meaningful representation of reduced dimensionality. 
Ideally, the reduced representation has a dimensionality 
that corresponds to the intrinsic dimensionality of the 
data. The intrinsic dimensionality of data is the 
minimum number of parameters needed to account for 
the observed properties of the data. Thus, first, we used 
a global intrinsic dimensionality estimator named 
Geodesic Minimum Spanning Tree (GMST). The 
estimated dimensionality by this estimator, was 3. 
Then, Local Linear Embedding (LLE) method was 
used to choose appropriate features from six extracted 
features. Selected features using this criterion were ZC, 
RMS and AIF. Then this feature vector was applied to 

SVM classifier, in order to classify data into fatigue 
and nonfatigue classes. After training SVM classifier 
using training dataset, the performance of the classifier 
was evaluated for test set with linear SVM and SVM 
with RBF kernel. Table 2, shows the accuracy achieved 
by linear SVM and SVM with RBF kernel and Figure 5 
indicates the result of separation using linear SVM in 2 
dimensions.  

 
Table 2. The accuracy achieved by linear and RBF 

kernel SVM. 
Kernel Type Linear RBF 

Test Accuracy 56.7% 91.16% 
 
As can be seen in (6), RBF kernel function has the 

parameter named σ which should be defined by user. 
Sigma should be positive. The value of this parameter 
affects the accuracy of SVM classifier, considerably. 
The number and the value of support vectors are 
determined automatically. In order to evaluate the 
effect of sigma on the performance of SVM classifier, 
different σ values were used. The best accuracy was 
achieved with σ equal to 0.5.  
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Fig. 5. The result of the classification of EMG signals 
into fatigue and nonfatigue stages using linear SVM. 

 
Table 3, indicates the accuracy achieved by RBF 

kernel with different σ values in 3 dimensions and 
Figure 6 shows the effect of σ in decision surface and 
boundary and number of support vectors in 2 
dimensions. As can be seen in Table 2 and 3, the best 
accuracy is achieved for σ=0.5 in RBF kernel function. 

 
Table 3. The accuracy achieved by RBF kernel SVM 

for different sigma values. 
Sigma 0.2 0.5 1 1.5 
Test 

Accuracy 56.7% 91.16% 89.73% 85.74% 
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Fig. 6. The results of classification with RBF kernel and different σ values (a) σ=0.2, (b) σ=0.5, (c) σ=1, (d) σ=1.5. 

 
4.  CONCLUSION 

Fatigue is a subjective concept and its definition is 
very complex, not unique and controversial. The 
detection and classification of muscle fatigue, 
provides useful information in many research areas. 
For example, in the branch of ergonomics which deals 
with musculoskeletal disorders, muscle fatigue may be 
considered as a major risk factor. Fatigue detection 
and classification through biofeedback system, may 
contribute to an awareness of a sustained muscle 
activation patterns. Fatigue classification also can be 
applied to the fields of human- computer interactions, 
sport injuries and performance. 

During a sustained voluntary contraction, even 
when there is no voluntary change of muscle state, the 
EMG signal can be considered to be nonstationary; 
simply due to the inherent physiology of the organ. 
With the development of computer technology, 
spectral analysis of EMG signals has been widely used 
to estimate localized muscular fatigue. As a muscle 
fatigues, there is a concomitant change in the power 
spectrum derived from surface EMG signals where 
there is an increase in the amplitude of the low 
frequency band and a relative decrease in the higher  

 
frequencies. Physiologically, the frequency shift has 
been attributed to changes in conduction velocity, 
changes in intra-muscular pH, modification in the 
recruitment and synchronization of the motor units 
and the fiber type. The most commonly used 
frequency variables in EMG studies are central 
tendency measures (mean and median) and ratios of 
the power of high and low frequency bands. But, these 
features are not compatible with nonstationary nature 
of EMG signals. In this paper, different features in 
time, frequency and time- scale domain were used. 
Among these features, it was expected that ZC and 
AIF had better performance as a feature vector 
delivered to SVM classifier. This hypothesis was 
approved by selecting these features by wrapper 
feature selection algorithm introduced in section 3.2. 
Then, linear and nonlinear SVM with RBF kernel 
were used to classify sEMG signals into fatigue and 
nonfatigue classes. The kernel function or nonlinear 
mapping results in different kinds of support vector 
classifiers (SVCs) with different performance levels. 
But the choice of the appropriate kernel for a specific 
application is often a difficult task. A necessary and 
sufficient condition for a Kernel to be valid is that it 

(a) (b) 

(c) (d) 
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must satisfy Mercer’s Theorem, but other than that, 
there is really no mathematically structured approach 
to prefer one kernel over the other. But, if the data is 
known to be nonlinearly separable, we would expect 
that a nonlinear kernel based SVC would perform 
better than the one based on a linear kernel. Since the 
data in this study was nonlinearly separable, so it is 
reasonable to expect that the nonlinear SVM with RBF 
kernel has better performance than the linear one. The 
results of the classification accuracy shown in Table 2 
approve this claim (56.7% for linear SVM versus 
91.16% for RBF kernel). In general, the RBF kernel is 
a reasonable first choice. Because, first, this kernel 
nonlinearly maps samples into a higher dimensional 
space so it, unlike the linear kernel, can handle the 
case when the relation between class labels and 
attributes is nonlinear. Furthermore, the linear kernel 
is a special case of RBF. The second reason is the less 
number of hyperparameters which reduces the 
complexity of model selection. Finally, the RBF 
kernel has fewer numerical difficulties. However, this 
kernel is difficult to design, in the sense that it is 
difficult to reach an optimum σ. The fact that certain σ 
value makes the SVM highly sensitive to training data 
also contributes to the error rate of the RBF- based 
SVM. A larger value of σ will give a smoother 
decision surface and more regular decision boundary. 
This is because an RBF with large σ will allow a 
support vector to have a strong influence over a larger 
area. A larger σ value also increases the α value (the 
Lagrange multiplier) for the classifier. In this study, 
the best accuracy achieved with σ= 0.5. One of the 
advantages of the RBF kernel is that given the kernel, 
the αi (the Lagrange multipliers), the number of 
support vectors and the support vectors are all 
automatically obtained as a part of the training 
procedure, i.e. they need not be specified by the 
training mechanism. At the end, we can summarize the 
advantages of SVM and the reasons for using it as a 
classifier in comparison with other classifiers as 
follow: (1) There are no problems with local minima, 
because the solution is a quadratic programming (QP) 
problem. (2) There are few model parameters to select. 
(3) The final results are stable and repeatable. (4) 
SVM is a minimum memory space approach. (5) SVM 
provides a method to control complexity 
independently of dimensionality. (6) SVM have been 
shown (theoretically and empirically) to have 
excellent generalization capability. 
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