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A B S T R A C T   

Mass spectrometry proteomics has become an important part of modern immunology, making major contribu-
tions to understanding protein expression levels, subcellular localizations, posttranslational modifications, and 
interactions in various immune cell populations. New developments in both experimental and computational 
techniques offer increasing opportunities for exploring the immune system and the molecular mechanisms 
involved in immune responses. Here, we focus on current computational approaches to infer relevant informa-
tion from large mass spectrometry based protein profiling datasets, covering the different steps of the analysis 
from protein identification and quantification to further mining and modelling of the protein abundance data. 
Additionally, we provide a summary of the key proteome profiling studies on human CD4+ T cells and their 
different subtypes in health and disease.   

1. Introduction 

Proteomics has become an important field in modern immunology, 
providing information about the identity, abundance, localization, 
modifications and interactions of proteins in different cell populations 
under different conditions [1]. Although system-wide studies of tran-
scriptomes have provided important insights in immune cell type com-
positions and cellular signaling networks [2,3], correlation between 
mRNA and protein levels can vary [4,5]. Proteomics as a field has been 
driven by the fact that the final product of a gene is inherently more 
complex and closer to the functionality than the gene itself [6]. These 
functions are also greatly affected by post-translational modifications, 
which can be determined only through proteomics. Furthermore, most 
diseases manifest themselves at the level of protein activity [7] and, 
therefore, studying proteins holds potential to, for example, help iden-
tify new markers for disease diagnosis or new drug targets for disease 
treatment. 

The rapid developments in high-resolution quantitative mass spec-
trometry have made it a powerful technology to directly study the 
proteomes at the system level, complementing the other molecular 
layers of information. Accordingly, mass spectrometry based high- 
throughput proteome profiling studies have made major contributions 
to understanding the complex molecular mechanisms in immune 

responses in both health and disease and identified candidate markers 
associated with them [8–11]. 

CD4+ T cells perform important immunoregulatory roles, including 
activation of B cells, cytotoxic T cells, and macrophages. After activa-
tion, CD4+ T cells differentiate into distinct subtypes, which play a key 
role in the immune response through secretion of cytokines. They also 
play a critical role in the pathogenesis of many diseases, including in-
fectious, autoimmune and inflammatory diseases, and cancer. Com-
parisons of human and mouse CD4+ T cells have suggested considerable 
differences in the protein expression profiles between the two species 
[12,13], underscoring the importance of human studies [14,15]. 

Interpretation of the high-throughput mass spectrometry proteome 
profiling data requires specialized computational tools. These include 
tools for protein identification and quantification, as well as tools for 
further mining and modelling of the protein abundances, such as finding 
significant differences between sample groups or modelling protein 
regulation and networks. Important steps also include quality control, 
normalization and possible imputation of missing values, which may 
have a significant impact on the final outcome of the analysis [16,17]. 
Here, we provide an overview of the recent developments in the field as 
outlined in Fig. 1. Additionally, we summarise recent applications of 
proteomics to study human CD4+ T cell proteomes in healthy and dis-
ease states (Table 1). 
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2. Quantitative proteome profiling data 

Quantitative mass spectrometry methods enable proteome-wide 
analysis of cellular states [18]. They are used, for instance, to reveal 
information about molecular composition, protein regulation, and 
pathways [19], to discover biomarkers as indicators of biological or 
pathogenic processes [20], and in drug discovery to design compounds 
that interfere with protein functions [21]. After acquiring the estimated 
protein abundances, further analysis typically includes additional 
quality control, normalization, imputation of missing values, differential 
expression analysis, and various pathway and network enrichment an-
alyses. These steps are summarized in Fig. 1. Importantly, today, it has 
become a common practice to publish the mass spectrometry proteomics 
datasets in repositories, such as PeptideAtlas [22] or PRIDE [23]. This 
opens up the possibility of mining and reusing the data in new studies. 

2.1. Quantitative analysis of protein abundances using mass spectrometry 

The most common approach for mass spectrometry based proteomics 
is the so-called bottom-up paradigm, where the proteins are first cleaved 
into peptides before the analysis, for instance, enzymatically using 
trypsin [1]. The peptides are then separated and ionized for measuring 
the masses. Integrated liquid-chromatography (LC-MS) systems that are 
coupled to a mass spectrometer via electrospray ionization are often 
preferred [1]. 

A widely used method for obtaining an overall quantitative proteome 
profile of a sample is label-free shotgun proteomics, where the bottom-up 
proteomics approach is used for identifying proteins from a complex 
mixture [18]. Alternatively, there are various labeled techniques, where 
the samples are labeled using tandem mass tags (TMT) [24], chemical 
labeling (e.g. ICAT [25] or iTRAQ [26]), or metabolically in a cell cul-
ture (SILAC) [27]. While these approaches provide means for relative 
quantification of the proteins, absolute quantification can be achieved, 
for example, using synthetic peptides (e.g. AQUA [28]). 

To identify peptides in complex mixtures, tandem mass spectrometry 
(MS/MS) involving two separate stages of mass analysis is used. In the 
first stage of mass spectrometry (MS1 or survey scan), mass-to-charge 
ratios and intensities of all peptide ions eluting over time are 

recorded. In the second stage of mass spectrometry (MS2), peptide ions 
of interest are further fragmented and analyzed to generate the fragment 
spectra for peptide identification. For this, the mass spectrometry in-
strument is often operated in the data-dependent acquisition (DDA) 
mode, where the machine selects and isolates the most intense precursor 
ions from the MS1 level and fragments them to produce the secondary 
spectra (i.e. tandem mass spectra, MS2) for peptide identification. This 
semi-stochastic nature of the selection procedure results in only a pro-
portion of peptides being identified reliably in all samples [29]. To 
overcome this limitation, the data-independent acquisition (DIA) 
approach collects MS2 scans systematically over time [30]. For valida-
tion, targeted mass spectrometry can be used, including the selected 
reaction monitoring (SRM) [31], where only those molecular ions that 
match the mass of a targeted peptide are selected for fragmentation. This 
allows measuring the specified targets very accurately in all samples. For 
a more thorough introduction to the mass spectrometry technologies, 
the reader is referred to e.g. [1,18,32]. 

2.2. Protein identification and quantification 

In mass spectrometry studies, individual peptides are identified by 
their masses after fragmenting them. A typical approach is to compare 
the acquired masses against theoretical masses produced computation-
ally from a reference protein sequence database. The protein sequences 
in the reference database are digested in silico based on the expected 
cleavage sites (e.g. trypsin-specific cleavage sites) and the theoretical 
masses for the peptides and their fragments are calculated [33,34]. For 
performing the searches, there are many commercial, free, and open 
source tools available, such as SEQUEST [35], Mascot [36], OMSSA 
[37], TANDEM [38], Andromeda [39], Comet [40], and MS-GF+ [41]. 
Alternatively, peptide identifications can be made without relying on 
any database using de novo techniques that predict the peptide based on 
the spectral information, including PEAKS [42], pNovo [43], or Novor 
[44]. Recently, artificial neural networks (e.g. deep learning) have gained 
attraction and they have also been utilized for de novo peptide 
sequencing [45]. While these methods allow the identification of pep-
tides that are not in any database, deriving a sequence solely from a 
fragment mass spectrum remains challenging and it is strongly 

Fig. 1. High-throughput mass spectrometry proteomics workflow to investigate T cell proteome profiles  
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dependent on the overall spectral quality and accuracy of the instrument 
[46]. 

For obtaining the reference protein sequence databases, multiple 
resources are available, such as RefSeq [47], Ensembl [48], or the 
commonly used UniProt [49], which contains manually curated entries 
of SwissProt [50] and automatically added entries of TrEMBL [51]. 
There are also references for specific purposes, such as UniPept [48] 
containing unique tryptic peptides for metaproteomics purposes. 
Beyond the existing databases, proteogenomics can be used to generate 
a reference directly from DNA- or RNA-sequencing data of the same 
samples [52]. 

Quantification of peptide abundances can be done either at precursor 
(MS1) or fragment ion (MS2) level. At MS1 level, the intensities for 
precursor ions are measured over time, and the intensity at a particular 
time corresponds to the peptide abundance [53]. However, the peptides 
must simultaneously be identified at the MS2 level. At MS2 level, the 
number of identified peptide spectra can directly be used to estimate the 
abundances (spectral counting). It is easier to implement, but it typically 
has a poor signal-to-noise ratio [54,55]. Protein abundances are then 
estimated by aggregating the peptide abundance values using various 
roll-up methods, such as mean [56], sum [57], or linear models (e.g. [58, 
59]). Since peptides originating from the same protein can behave 
differently, the use of the peptide-level quantifications have been sug-
gested as a robust alternative for the protein-level values in the down-
stream analysis [60,61]. 

2.3. Importance of data pre-processing: normalization and missing values 

Thanks to the rapid developments of mass spectrometry based pro-
teomics, even thousands of proteins and their modifications can be 
quantified in a mass spectrometry experiment [62]. Despite the ad-
vances, however, the results are still prone to various biases [63], caused 
by, for example, instrument calibration and performance, differences in 
sample preparation or sample temperature [64]. As the underlying 
reasons for the biases are typically unknown, they cannot be 

compensated only by adjusting the experimental settings. Therefore, to 
counter the biases, there are a plethora of different normalization 
techniques that aim to computationally remove the unwanted technical 
variations from the data, such as median normalization, quantile 
normalization [65], linear or local regression normalization [66], and 
variance stabilization normalization [67]. Some of the methods origi-
nate from earlier transcriptomics technologies, while some are more 
tailored towards mass spectrometry proteomics data. There are also 
extensive reviews assessing the performance of the various normaliza-
tion methods [17] and tools to help in decision making [63]. 

Another common challenge with mass spectrometry based prote-
omics data is that they traditionally suffer from missing values, which 
are essentially a result of unrecorded peptides. The missing values can be 
divided into two main categories; they are either abundance-dependent 
(i.e. instrument limitations), or the values are missing completely at 
random (e.g. stemming from the semi-stochastic nature of the acquisi-
tion). For imputation purposes, there are plenty of methods to choose 
from. Besides more simple approaches to replace the missing values with 
zero or the smallest value found from the data, they also include, for 
example, a k-nearest neighbour approach [68], singular value decom-
position imputation [68], local least squares imputation [69], or 
Bayesian principal component analysis imputation [70]. There are 
several general reviews in this area [71,72], as well as practical evalu-
ations of the performance of the different imputation approaches in the 
context of mass spectrometry proteomics data [16,73]. 

3. Computational approaches to analyze proteome profiling 
data 

3.1. Dimensionality reduction and clustering 

After the estimates of peptide or protein abundances are produced, 
various downstream data analysis can be done. This often starts with 
exploration of the overall patterns in the data. For this, principal 
component analysis (PCA) is a commonly used method for 

Table 1 
Recent proteome profiling studies of human CD4+ T cells.  

Table 1A. Proteomic profiles of human CD4+ T cells upon activation 
Dataset Cellular components Mass spec method Disease state Source of sample Accession 

[123] whole cell DDA, label-free healthy peripheral blood Supplementary 
[12] whole cell DDA, label-free healthy peripheral blood PRIDE: PXD015872 
[124] whole cell DIA healthy peripheral blood PRIDE: PXD019446, PXD019542 
Table 1B. Proteomic landscapes of human CD4+ T cell subsets 
Dataset Cellular components Mass spec method Disease state Source of sample Accession 

[8] whole cell DDA, label-free healthy peripheral blood PRIDE: PXD004352 
[9] whole cell DDA, label-free healthy peripheral blood PRIDE: PDX007745, PDX007744, PXD005477 
[129] whole cell DDA, TMT healthy peripheral blood PRIDE: PXD015315 
[130] whole cell DDA, TMT healthy peripheral blood PRIDE: PXD005703 
[13] whole cell DDA, label-free healthy cord blood PRIDE: PXD008973 
[133] whole cell DDA, TMT healthy peripheral blood PRIDE: PXD008563 
Table 1C. Subcellular proteomes of human CD4+ T cells 
Dataset Cellular components Mass spec method Disease state Source of sample Accession 

[135] nucleus DDA, iTRAQ healthy cord blood Tranche 
[136] cytoplasm DDA, label-free healthy Peripheral blood  
[137] cytoplasm DDA, iTRAQ healthy, ageing peripheral blood PRIDE: PXD016039 
[138] membrane DDA, label-free healthy peripheral blood PRIDE: PXD001432 
[139] cytosol, membrane, nucleus DDA, iTRAQ healthy peripheral blood PRIDE: PXD000376 
[134] cytosol, membrane, nucleus DDA, TMT healthy peripheral blood PRIDE: PXD013284 
Table 1D. Proteomic landscapes of CD4+ T cells in disease 
Dataset Cellular components Mass spec method Disease state Source of sample Accession 

[141] whole cell DIA HIV peripheral blood PRIDE: PXD005234 
[10] whole cell DDA, TMT HIV peripheral blood MassIVE: MSV000082229 
[142] whole cell DDA, TMT HIV peripheral blood PRIDE: PXD012263 
[11] whole cell DDA, label-free and DIA type 1 diabetes peripheral blood PRIDE: PXD006223, PXD007184 
[143] whole cell DDA, label-free multiple sclerosis peripheral blood PRIDE: PXD011785 
[144] whole cell DDA, label-free Crohn’s disease intestinal biopsies Supplementary 
[145] whole cell DDA, label-free bladder cancer lymph nodes, peripheral blood PRIDE: PXD009569  
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dimensionality reduction. For visualization purposes, it is used for 
projecting high-dimensional data using only a few principal components 
to obtain lower-dimensional data. The principal components account as 
much of the variability in the data as possible, in descending order. 
Thus, the low-dimensional representation using the first components 
still preserves as much variability in the data as possible. Other popular 
alternatives to reduce the dimensionality of high-dimensional data are t- 
distributed stochastic neighbor embedding (t-SNE), or uniform manifold 
approximation and projection (UMAP), which allow to reveal grouping 
of the data points (e.g. samples or proteins) and their relative proxim-
ities [74]. 

Another widely used approach for exploration is clustering, which 
aims to group the data points into clusters so that the data points within 
a cluster are more similar than those in the other clusters. The clusters 
can then be projected on the lower dimensional space, such as those 
based on t-SNE or UMAP. In the context of proteomics data, perhaps the 
most common technique for clustering is the agglomerative hierarchical 
clustering, which allows grouping of the samples or proteins (or both) 
according to a similarity measure, which is often based on correlation or 
Euclidean distance. Agglomerative clustering is a bottom-up approach, 
which starts from singleton clusters and then recursively joins pairs of 
clusters until all data is in one large cluster. There are different linkage 
options that determine the order of connections, including complete 
linkage, average linkage, single linkage, and the Ward’s method [75]. 
The similarities can then be visualized as a dendrogram; a graph where 
similar samples or proteins are closest to each other. Often, the hierar-
chical clustering is used together with heatmaps, illustrating the abun-
dances of the proteins and samples of interest. 

3.2. Marker discovery 

Differential expression analysis is used to find statistically significant 
differences between sample groups. It is used in search of proteins that 
would act as markers of, for instance, different cell types, or different 
disease states. A traditional method to assess the differences has been the 
Student’s t-test of the protein abundances, although it has been shown to 
be a sub-optimal solution for many high-throughput technologies [76, 
77], including proteomics [78], and many alternative methods have 
been proposed (e.g. [79–81]). Since the bottom-up proteomics produces 
the quantifications at the peptide-level, peptide-centric methods have 
also been proposed [60,61,82,83], which overcome the challenge of 
inferring the protein-level abundances. Especially in clinical studies, 
more complex statistical models may be required to accommodate 
various clinical or confounding factors, such as generalized linear 
models (GLM) or linear mixed effects (LME) models. GLM is a general-
ization of the linear regression to allow the response variable not to be 
normally distributed (e.g. discrete or categorical variables), whereas 
LMEs are extensions of the linear models to allow both fixed and random 
effects to account for dependencies in the data (e.g. longitudinal or hi-
erarchical data). 

While the differential expression analysis typically treats each pep-
tide or protein separately, machine learning allows to discover a set of 
features (e.g. a panel of marker proteins) that together predict the state 
of interest, such as cell type or disease. A number of machine learning 
methods are available with different levels of complexity, including 
gradient boosting [84], support vector machines [85], random forests 
[86], and neural networks [87]. While the more complex methods hold 
potential to capture various underlying non-linear dependencies be-
tween the proteins, they often suffer from lack of interpretability and 
tend to be more prone to overfitting if the number of samples is not large 
enough. Among the simpler models, generalized linear modeling com-
bined with shrinkage methods, such as LASSO [88] or Elastic Net [89], 
have become commonly used for high-dimensional data. Methods are 
also available that refine the feature selection to find as small as 
possible, yet meaningful sets of markers [90]. Common to all the marker 
detection approaches is that, in addition to computational 

cross-validation, it is crucial to evaluate the marker panels in large in-
dependent sample sets to ensure their generalizability. 

3.3. Longitudinal modelling 

With the rapid developments of quantitative mass spectrometry 
proteomics as an established tool, longitudinal and time course experi-
ments have begun to emerge [91,92]. This allows considering individual 
variability over time. For instance, longitudinal studies are considered to 
have more statistical power than cross-sectional designs [93]. Several 
regression based approaches have been applied for longitudinal tran-
scriptomics data, including both linear and non-linear approaches 
[94–99], whereas fewer examples are available for longitudinal prote-
omics data [92]. As proteomics data still remains noisy, has a lot of 
missing values, and often comes with a limited set of replicates, con-
ventional differential expression methods for longitudinal data are 
sub-optimal, calling for specialized tools [100]. 

3.4. Pathways, networks and data integration 

The results of a proteome profiling study are typically further 
interpreted using data available in various publicly available or com-
mercial databases, such as Gene Ontology [101], KEGG [102], Reactome 
[103], ProteinAtlas [104], STRING [105], and MSigDB [106]. Gene set 
enrichment analysis allows researchers to gain further insights from 
filtered or ranked lists of proteins. These protein list-based methods can 
reveal, for instance, biological pathways that are overrepresented in a 
condition more than would be expected by chance. There are many tools 
for performing such enrichment analysis, such as GSEA [106] and g: 
Profiler [107], as well as their visualization, such as Cytoscape [108]. 
Although the methods based on protein lists have remained the most 
common approach, specialized tools are available for pathway enrich-
ment analysis that take into account the pathway structures, such as 
CePa [109], NetGSA [110], and SPIA [111]), which may help determine 
the pathway activities over the protein list-based methods [112]. While 
the most common approach is to investigate the enrichment group-wise, 
techniques are available also for sample-wise enrichment analysis, 
which allow identification of deregulated pathways sample-by-sample 
[113,114]. 

Protein interactions play a central role in biology. Therefore, 
network analysis provides an interesting opportunity to study the pro-
teome profiles [8,115]. There are several databases that contain known 
or predicted protein–protein interactions and associations, including 
one of the earliest and most widely used STRING database [105]. 
Additionally, networks can be constructed on the basis of protein 
co-expression levels using, for instance, the weighted correlation 
network analysis (WGCNA) method [116]. After constructing the net-
works, their topological properties can be investigated to highlight, for 
instance, key hub proteins. 

The proteomic data can also be integrated with complementary 
omics datasets, including genomics, transcriptomics, epigenomics, and 
metabolomics. Excellent reviews exist that discuss the relationship be-
tween proteins and mRNAs [117], the use of genomic or transcriptomic 
data to generate customized protein sequence databases in proteoge-
nomics [118], as well as integrative analysis of proteomics data with 
other omics data types [119]. While proteomics has started to become 
an integral part of multi-omics research and considerable progress has 
been made in the field, the field is still rapidly evolving [120]. Currently, 
a common approach is to focus on associations between proteomics and 
the other data types, instead of their quantitative modeling together in 
an integrative manner, which would hold great potential to provide 
more efficient utilization of the data to reveal the underlying multi-level 
relationships. Such integration techniques include, for instance, 
multi-omics factor analysis [121] and variational autoencoders [122]. In 
the context of clinical studies, other layers of information may also 
include, for instance, data from imaging, electronic medical records, or 
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clinical lab tests. 

4. Human CD4þ T cell proteomes 

4.1. Proteomic profiles of human CD4+ T cells upon activation 

Multiple recent studies have characterized the proteome profiles of 
human CD4+ T cells, with focus on protein expression changes upon 
activation of naive CD4+ T cells (Table 1A). 

[123] used quantitative label-free mass spectrometry to generate 
dynamic proteome profiles of human primary naive CD4+ T cells from 
blood of healthy donors immediately after sorting and at multiple time 
points upon in vitro activation (12, 24, 48, 72 and 96 h). Additionally, 
dynamic metabolome profiles were investigated. The study revealed 
that intracellular L-arginine was a crucial regulator of the metabolic 
fitness of the T cells, as well as their survival capacity and anti-tumor 
activity. 

Similarly, [12] used label-free mass spectrometry to investigate 
proteomic profiles of unactivated and in vitro activated (72 h) primary 
human CD4+ T cells from peripheral blood of two healthy donors. They 
also compared the profiles to those of the human SUP-T1 and Jurkat T 
lymphoblast cell lines, suggesting a substantial overlap between the 
primary CD4+ T cell proteomic profiles and the human lymphoblastic 
cell lines. 

[124] generated a DDA based spectral library of primary human T 
cells, including both in vitro activated and ex vivo CD3+ T cell samples 
from human peripheral blood. The library was then confirmed by 
analyzing DIA and DDA data on three replicate series of CD4+ T cell 
samples, including ex vivo (0 h) and in vitro activated cells (6, 12, 24 and 
72 h, 7 d), supporting the utility of the library and the benefits of the DIA 
approach in protein quantification. The focus of the study was on the 
generation of the spectral library, while no detailed further analysis of 
the activation related signal was provided. 

While all these three studies involved CD4+ T cells from peripheral 
blood of healthy donors before and after in vitro activation, there were 
considerable differences both in the mass spectrometry technologies 
applied as well as in the data analysis methods used, making a direct 
comparison between the studies difficult. The numbers of quantified 
proteins varied from 7815 proteins in [123] to 5237 proteins in [12], 
and 2850 proteins in [124]. Geiger et al. (2016) and Subbannayya et al. 
(2020) also studied differentially expressed proteins between the acti-
vated and unactivated cells and reported 2824 and 1119 proteins after 
72 h of activation, respectively. Notably, however, Subbannayya et al. 
(2020) observed considerable differences in the proteomic profiles of the 
activated cells between the two donors investigated, with only ~20% of 
the reported differentially expressed proteins consistent in both donors. 

4.2. Proteomic landscapes of human CD4+ T cell subsets 

After activation, the naive CD4+ T cells differentiate into various 
subsets of effector and memory cells guided by the cytokine signals 
received. Over the years, multiple distinct subsets have been charac-
terised by their cytokine secretion profiles and master transcriptional 
regulators, including conventional helper T cells Th1, Th2, Th17, reg-
ulatory T cells (Tregs), and follicular helper T cells (Tfh) [12]. The 
memory CD4+ T cells include subsets of central memory, effector 
memory, and tissue-resident memory T cells [125]. It has also been 
shown that a substantial portion of the activated CD4+ T cells remain 
plastic and may be later capable of acquiring other properties [126]. 

The first proteomic study of activated human primary T helper cells, 
published in 2001, identified 91 proteins using metabolic labeling, 2- 
dimensional gel electrophoresis, and MALDI-TOF mass spectrometry 
[127]. Since then the development of the technologies have enabled 
considerable increase in the depth of analysis with up to 10,000 proteins 
identified in a single study (Table 1B). 

[8] applied label-free mass spectrometry to characterize the cellular 

proteomes of 28 primary human hematopoietic cell types from periph-
eral blood of healthy donors, including seven major lineages (gran-
ulocytes, monocytes, dendritic cells, natural killer, B cells, CD4 and CD8 
lymphocytes), as well as erythrocytes, and platelets. The CD4+ T cell 
profiles included naive, central memory, and effector memory cells, 
naive and memory regulatory T cells, and effector T cell subsets Th1, 
Th2, and Th17. Differential expression analysis confirmed known line-
age specific marker proteins. Additionally, Lasso regression was used to 
reveal previously unknown combinations of cell surface receptors for the 
different cell types. To study cell type resolved functions, WGCNA was 
used to identify modules of co-expressed proteins, which were then 
studied for enrichment of functional properties. Intercellular commu-
nication networks were constructed by categorizing proteins as tran-
scription factors, adaptor molecules, receptors, and secreted molecules, 
and defining intercellular connections using protein interaction data 
from the STRING database together with the protein expression values 
to determine pairwise intercellular connection scores. 

[9] used label-free mass spectrometry to profile proteomes of five 
different human CD4+ T cell subsets isolated from peripheral blood of 
healthy donors, including blood-derived naive and memory conven-
tional CD4+ T cells, naive and effector Treg cells, and a previously 
incompletely defined CD4+ T cell population that produces effector 
cytokines despite expressing the Treg specific transcription factor 
FOXP3. To understand mechanisms that prevent production of effector 
cytokines by Treg cells and to identify markers that discriminate them, 
specific protein expression signatures were identified for all and effector 
Treg cells. The stability of the identified patterns was then confirmed in 
additional proteome profiling experiments of in vitro cultured samples 
with (24 h) and without activation. Simultaneous analysis of the tran-
scriptomes of the five CD4+ T cell subsets suggested general correlation 
of the expression levels but also revealed layer specific regulation, 
highlighting the importance of proteomic analysis for the functional 
characterization of cell types. Although the Treg signature could not be 
found from the earlier proteomic dataset of human Tregs with bulk 
populations [128], the authors could trace it back in the proteomic 
dataset of human CD4+ T cell subsets [8]. 

[129] used TMT-labelled mass spectrometry to characterize 
proteome-wide responses of naive and memory CD4+ T cells to five 
different cytokine combinations (Th1, Th2, Th17, iTreg, and IFN-β) at 16 
hours and 5 days after activation, and compared them to unactivated 
cells as well as activated cells cultured without cytokines (Th0). The 
overall profiles showed that the main source of variation was T cell 
activation, while the activated cells clustered by time and cell type 
(naive or memory). Similarly, the early changes in protein expression 
were dominated by T cell activation, compared to the effects of the cy-
tokines. In general, the results suggested that the cytokines acted in a 
cell type specific manner to induce five cell states in naive CD4+ T cells 
(Th1, Th2, Th17, iTreg, and IFN-β) and three in memory CD4+ T cells 
(Th1, Th17/iTreg, and IFN-β, with no detectable Th2 response). In 
addition to proteomics, the responses were profiled using bulk and 
single-cell RNA-sequencing, which suggested high correlation between 
RNA and protein expression. Identification of cell state specific signa-
tures using jointly the protein and RNA expression identified 105 
signature genes/proteins across the five cell states in the naïve CD4+ T 
cells, and 162 signature genes/proteins across the three cell states in the 
memory CD4+ T cells. 

[130] used TMT-labelled mass spectrometry to profile human 
induced Tregs (iTregs) over time. To enable a broad analysis of universal 
FOXP3-inducing pathways, two differentiation protocols were consid-
ered along with control cells activated without Treg-inducing factors at 
four time points of differentiation (6, 24 and 48 h, 6 d). Additional 
controls included unstimulated naive CD4+ T cells (0 h) and naturally 
occurring Treg cells from the same three healthy donors. In general, the 
number of differentially expressed proteins related to both activation 
and iTreg-specific effects increased over time. RNA-sequencing analysis 
of the same samples suggested considerable concordance between the 
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genes and proteins detected as differentially expressed but also several 
differences. This was in line with previous studies showing that RNA 
levels are not always good predictors of the corresponding protein 
abundance [131,132]. Integration of the transcriptome and proteome 
data revealed enrichment of a newly defined iTreg subnetwork for im-
mune disease-associated genes, including many known Treg regulators 
as well as novel candidates. 

[13] used label-free mass spectrometry to study quantitative changes 
in the cellular proteome of naive human CD4+ T cells derived from 
umbilical cord blood before and after activation (Th0), and after po-
larization towards Th17 cells at 24 and 72 hours. Th17 cell specific 
signature of proteins regulated during early Th17 cell differentiation 
was determined using reproducibility-optimized statistical testing. 
Although the majority of the proteome was shared between the acti-
vated and Th17 polarized cells at this early stage of differentiation and 
the temporal changes were dominated by T cell activation, several sig-
nificant lineage specific changes were identified, involving both previ-
ously known and unknown proteins with Th17-related functions. 
Examination of protein-protein interaction networks indicated coordi-
nated regulation of proteins related to distinct biological processes and 
cellular pathways during early Th17 cell differentiation. Comparison of 
the proteomic profiles with corresponding transcriptomic profiles 
revealed overall high concordance between the two molecular layers. A 
comparison with corresponding published mouse Th17 proteome data, 
on the other hand, showed only limited overlap between the two species, 
highlighting the importance of human studies for translational research. 

[133] used TMT-labelled mass spectrometry to explore quantitative 
proteome profiles of human naive CD4+ T cells derived from peripheral 
blood of healthy donors together with in vitro induced follicular helper T 
(iTfh) cells after 5 days of polarization. The results revealed biological 
processes and pathways related to both T cell activation and Tfh cell 
differentiation. 

4.3. Subcellular proteomes of human CD4+ T cells 

In addition to analyses of the whole cell proteomes, multiple studies 
have used mass spectrometry to generate proteome-wide data on sub-
cellular localizations of proteins, which is important for their biological 
function [134] (Table 1C). The studies of subcellular proteomes include, 
for instance, the study of T cell subproteomes in the nucleus of activated 
human cord blood CD4+ T cells after activation and polarization to-
wards Th2 cells (6 and 24 h) [135], the study of proteome alterations in 
the cytoplasmic fraction of human primary CD4+ and CD8+ T cells from 
peripheral blood of healthy donors unactivated and after activation (24 
h) [136], and the study of protein profiles of cytoplasmic extracts of 
human CD4+ T cells from peripheral blood between young (21-34 years) 
and older (68–83 years) participants [137]. Additionally, several studies 
have been conducted to study the surface proteome of human naive 
CD4+ T cells and their changes upon activation [138], as well as more 
global mapping of proteins and their translocations between different 
cellular compartments [134]. 

Cell surface proteins are crucial in response to other cells or envi-
ronmental changes. [138] used label-free mass spectrometry to char-
acterize the expression of cell surface proteins of human naive and 
activated naive CD4+ T cells during the first hours of activation (3, 6, 12, 
24 and 48 h). Unsupervised clustering of the proteins grouped them into 
three clusters according to their dynamic expression profiles, charac-
terized by specific Gene Ontology terms. To extend their ex vivo cell 
surface atlas, the non-targeted mass spectrometry data were com-
plemented with flow cytometry based surface screen of known surface 
markers, as well as a transcriptomic approach with microarrays. Com-
parison to corresponding transcriptomic results suggested that around 
half of the proteins identified with the proteomic approaches could not 
be found in the transcriptional surface expression data, underscoring the 
need for proteomic approaches. [139] complemented the surface atlas 
by [138] with deeper proteomic profiling and by adding comparative 

analysis of naive and resting memory CD4+ T cells, with the aim to 
separate transient protein changes during naive CD4+ T cell activation 
from changes that persist to the resting memory state. In addition to 
proteomics, they also utilized multiple other high-throughput technol-
ogies to derive a comprehensive profile of the two cell types, including 
whole genome sequencing, methylation arrays, RNA-sequencing, miR-
NA-sequencing, and phosphoproteomics. In addition to investigating 
pairwise associations between the different layers of the data, an inte-
grated T cell receptor signaling pathway was constructed by overlaying 
the measurements onto the pathway. 

[134] generated an in-depth subcellular proteomic map of primary 
human CD4+ T cells using high-resolution isoelectric focusing (HiRIEF) 
combined with TMT-labelled mass spectrometry. Conventional CD4+ T 
cells (excluding recently activated and regulatory T cells) from three 
healthy donors were measured in resting state and upon 15 min and 1 h 
of activation, fractionated into cytosolic, membrane (including mem-
branous organelles like mitochondria) and nuclear compartments. The 
study provided a global mapping of the subcellular location of proteins. 
The proteome-wide identification of translocations of proteins in 
response to stimulation revealed both known and novel T cell receptor 
induced translocations. Overall, the study provided wide coverage for 
the subcellular proteome of CD4+ T cells, with the previous studies 
mainly limited to profiling a particular subcellular fraction. 

4.4. Proteomic landscapes of CD4+ T cells in disease 

CD4+ T cells play an important role in the pathogenesis of many 
diseases, including various infectious, autoimmune, and inflammatory 
diseases, as well as cancer. Accordingly, an increasing number of studies 
have been conducted to characterize the proteomes of the different 
CD4+ T cell subsets in these diseases (Table 1D). 

CD4+ T cells have a crucial role in the development of HIV infection 
and the acquired immunodeficiency syndrome (AIDS) pathogenesis, 
where progressive depletion of CD4+ T cell populations is one of the 
hallmarks of the disease [140]. [141] used DIA mass spectrometry 
proteomics to study modulations of the human host cell systems during 
HIV-1 infection both in vitro and in vivo. In the in vitro experiment, the 
proteome of CD4+ T cells was quantified over time (0, 12, 24 and 48 h) 
following HIV-1 infection. In the in vivo experiment, paired samples of 
CD4+ T cells were analyzed from viremic and subsequently successfully 
treated patients with no detectable viral load. The results revealed a 
range of changes in the proteome of HIV-infected human CD4+ T cells. 
Although the overall overlap of the specific changes in the proteome 
between in vivo and in vitro infected CD4+ T cells remained low, per-
turbations in the type 1 interferon signaling pathway were found at both 
levels. [10] employed TMT-labelled mass spectrometry to analyze in 
vitro activated primary CD4+ T cells infected with GFP-encoding HIV-1 
(96 h) from four HIV-1-negative donors. The results suggested that 
HIV-1 infection activated cellular survival and viability programs, while 
the in silico functional network linkage analysis suggested a central role 
of a molecular inhibitor of cell apoptosis BIRC5 and its upstream regu-
lator OX40. Similarly, [142] used TMT-labelled mass spectrometry to 
study protein dynamics of HIV-infected and mock-infected primary 
human CD4+ T cells (24 and 48 h) from peripheral blood to identify 
cellular proteins regulated by HIV in its natural target cell. 

CD4+ T cells also play an important role in various autoimmune 
diseases, such as type 1 diabetes. [11] used label-free mass spectrometry 
to study the proteome profiles of peripheral CD4+ T cells in a pediatric 
cohort of newly diagnosed type 1 diabetes subjects and their age- and 
sex-matched healthy controls to identify cellular signatures associated 
with the onset of the disease. In total, samples from 114 individuals were 
analyzed using either the DDA or the DIA method. In line with previous 
studies, considerable heterogeneity was observed between the in-
dividuals. However, highly overlapping and statistically significant 
differences in protein abundances were observed between the type 1 
diabetes and control children using both the DIA and the DDA 
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approaches. In particular, the results revealed an inflammatory signa-
ture in children with type 1 diabetes, suggesting an important role of the 
activation of the innate immune system in the disease onset. [143] used 
label-free mass spectrometry to analyse proteome profiles of CD4+ and 
CD8+ T cells purified from whole blood of genotyped 13 newly diag-
nosed, treatment-naive patients with relapsing-remitting multiple scle-
rosis (RRMS) and 14 age- and sex-matched healthy controls. The results 
suggested dysregulation in T cells at the protein level, including several 
proteomic differences in CD4+ T cells from RRMS patients compared to 
healthy controls. Additionally, some associations were found between 
protein expression and genotypes of previously identified risk loci, 
suggesting potential novel protein expression quantitative trait loci 
(pQTL). 

In addition to CD4+ T cells derived from blood, studies have also 
been conducted to profile proteomes of CD4+ T cells from other tissues. 
[144] employed label-free mass spectrometry to study proteomes of 
tissue-derived Th cell clones, with focus on human Th1 and Th1/Th17 
clones derived from intestinal biopsies of patients with Crohn’s disease. 
Major differences were observed between the two phenotypes especially 
in cytotoxic proteins, which were overrepresented in the Th1 clones. 
[145] used label-free mass spectrometry to study proteomes of T regu-
latory cells and CD4+ T effector cells derived from sentinel lymph nodes 
(SN), non-SNs, and peripheral blood from two patients with 
muscle-invasive urothelial bladder cancer collected at cystectomy. The 
results revealed upregulation of growth and immune signalling path-
ways in the SN-resident Tregs. Furthermore, centrality analysis of the 
constructed SN-Treg interaction network identified a central role for the 
cytokine IL-16, suggesting altered IL-16 signalling as a candidate tumour 
immune escape mechanism. 

5. Discussion and future perspectives 

Mass spectrometry based proteomics has greatly advanced our un-
derstanding of complex biological systems, including various healthy 
and disease states. Currently, increasingly automated pipelines have 
been developed for the preprocessing of the mass spectrometry data, 
including protein identification and quantification. For example, there is 
an initiative for gathering community-curated bioinformatics pipelines 
for Nextflow, a popular workflow manager, to promote standardization 
and reproducibility [146]. Overall, it currently has the largest curated 
collection of ready-to-use bioinformatics workflows [147]. These 
include many automated analysis workflows for quantitative mass 
spectrometry based proteomics. Furthermore, there are for example 
automated tools for downstream analysis of proteomics data processed 
by the popular MaxQuant software [148,149]. Similarly, there are 
automated tools for more special purposes, such as metaproteomics 
[150,151] or phosphoproteome profiling [152]. However, several issues 
remain challenging, such as quantification of low-abundant proteins and 
missing values. Another major challenge is the ability to analyze an 
adequate number of samples, which is related to the cost and the 
throughput of the mass spectrometry experiments. To this end, the 
current developments hold great potential to considerably speed up the 
analyses and reduce the costs, including sample multiplexing with 
isobaric tags and additional separation techniques, such as ion mobility 
spectrometry [153,154]. 

Statistical and machine learning tools are needed to extract useful 
information from the proteomics datasets, which are complex and noisy 
by nature despite the technological developments, including biological 
noise from individual variation. With the continuous development of the 
mass spectrometry technology, the associated bioinformatics tools also 
need continuous development. An important direction is increasing use 
of artificial intelligence for different tasks from peptide identification to 
biomarker discovery and data integration [155]. The studies on tran-
scriptomics data support the utility of artificial intelligence in predicting 
cellular outcomes [156]. Since proteins are more directly linked to the 
biological functions, they hold great potential to enhance the 

predictions, as time-resolved data and data from systematic perturba-
tions accumulate. A benefit of machine learning techniques over stan-
dard statistical models is the ability to discover unknown patterns from 
the high-dimensional data, which holds great potential, for instance, to 
improve prediction of disease or treatment risks. However, the full 
deployment of machine learning techniques for precision medicine re-
quires further efforts. In terms of the models themselves, interpretability 
is a key issue. In terms of developing reliable models, the major chal-
lenges are the typically limited numbers of individuals considered and 
lack of independent datasets for validation. This increases the risk of 
overfitting and poor generalizability of the results to new datasets. 

Another emerging future direction is integration of the proteome 
data with other omics data, such as genomics, transcriptomics, epi-
genomics and metabolomics. For instance, comparison of proteomics 
with transcriptomics may enable identification of discordant trends due 
to involvement of post-transcriptional regulation mechanisms [157]. In 
addition to identifying associations between the different omics layers, 
multi-omics integration of the data holds potential to identify more 
complex multi-omics patterns and also improve the construction of 
protein signalling networks. For instance, application of the virtual 
inference of protein activity by enriched regulon (VIPER) algorithm 
suggested that protein activity can be predicted from gene expression 
using relationships between transcription factors and their potential 
targets [158]. Moreover, spatial approaches will preserve the informa-
tion about the in vivo context of the cells. Combining spatial and tem-
poral analysis allows elucidation of global reorganization of proteins in 
time and space and the involved molecular processes [159]. 

International and interdisciplinary efforts have facilitated generation 
of diverse proteomics datasets. Mining such resources in comprehensive 
meta-analyses hold potential to extract new biologically relevant in-
formation from the already existing datasets and suggest new hypoth-
eses for further experimental studies. To this end, standardized 
approaches and modern data repositories, such as PRIDE, play an 
important role, including appropriate metadata following controlled 
vocabulary and minimal standards. Another important area of devel-
opment are open source software ecosystems for the developed 
computational tools, such as the R/Bioconductor, supporting repro-
ducibility of research and allowing the research community to utilize the 
tools widely. 

In immunological research, a key question is detailed understanding 
of the immune cells and their molecular networks, and ability to predict 
immune reactions. Here, proteomics provides one important layer of 
information towards precision medicine and new candidate therapies. 

Funding 

Prof. Elo reports grants from the European Research Council ERC 
(677943), European Union’s Horizon 2020 research and innovation 
programme (955321), Academy of Finland (296801, 310561, 314443, 
329278, 335434, 335611 and 341342), and Sigrid Juselius Foundation 
during the conduct of the study. Our research is also supported by 
University of Turku Graduate School (UTUGS), Biocenter Finland, and 
ELIXIR Finland. 

Declaration of Competing Interest 

None of the authors have any conflicts of interest to declare. 

References 

1 R Aebersold, M. Mann, Mass spectrometry-based proteomics, Nature 422 (2003) 
198–207. 

2 N Novershtern, A Subramanian, LN Lawton, RH Mak, WN Haining, ME McConkey, 
et al., Densely interconnected transcriptional circuits control cell states in human 
hematopoiesis, Cell 144 (2011) 296–309. 

T. Suomi and L.L. Elo                                                                                                                                                                                                                          

http://refhub.elsevier.com/S0165-2478(22)00039-6/sbref0001
http://refhub.elsevier.com/S0165-2478(22)00039-6/sbref0001
http://refhub.elsevier.com/S0165-2478(22)00039-6/sbref0002
http://refhub.elsevier.com/S0165-2478(22)00039-6/sbref0002
http://refhub.elsevier.com/S0165-2478(22)00039-6/sbref0002


Immunology Letters 245 (2022) 8–17

15

3 F Paul, Arkin Y ’ara, A Giladi, DA Jaitin, E Kenigsberg, H Keren-Shaul, et al., 
Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors, 
Cell 163 (2015) 1663–1677. 
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147 L Wratten, A Wilm, J. Göke, Reproducible, scalable, and shareable analysis 
pipelines with bioinformatics workflow managers, Nat Methods 18 (2021) 
1161–1168. 

148 JL Gallant, T Heunis, SL Sampson, W. Bitter, ProVision: a web-based platform for 
rapid analysis of proteomics data processed by MaxQuant, Bioinformatics 36 (2020) 
4965–4967. 

149 AD Shah, RJA Goode, C Huang, DR Powell, RB. Schittenhelm, LFQ-Analyst: An 
Easy-To-Use Interactive Web Platform To Analyze and Visualize Label-Free 
Proteomics Data Preprocessed with MaxQuant, J Proteome Res 19 (2020) 204–211. 

150 K Cheng, Z Ning, X Zhang, L Li, B Liao, J Mayne, et al., MetaLab: an automated 
pipeline for metaproteomic data analysis, Microbiome 5 (2017) 157. 
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