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Abstract

Autonomous systems are becoming inherently ubiquitous with the advancements of computing and communication solutions
enabling low-latency offloading and real-time collaboration of distributed devices. Decentralized technologies with blockchain and
distributed ledger technologies (DLTs) are playing a key role. At the same time, advances in deep learning (DL) have significantly
raised the degree of autonomy and level of intelligence of robotic and autonomous systems. While these technological revolutions
were taking place, raising concerns in terms of data security and end-user privacy has become an inescapable research consider-
ation. Federated learning (FL) is a promising solution to privacy-preserving DL at the edge, with an inherently distributed nature
by learning on isolated data islands and communicating only model updates. However, FL by itself does not provide the levels
of security and robustness required by today’s standards in distributed autonomous systems. This survey covers applications of
FL to autonomous robots, analyzes the role of DLT and FL for these systems, and introduces the key background concepts and
considerations in current research.
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1. Introduction

With a staggering increase in the number of connected devices being deployed worldwide within the Internet of
Things (IoT), the amount of data that is generated and transmitted has grown at exponential rates. The inefficiency
of processing all this data in a centralized manner at the cloud has brought forward new computing and networking
paradigms in recent years [1]. Computing at the edge nearby the data sources has evident benefits in terms of latency
and bandwidth savings. Another key advantage is the inherent benefits to data privacy, as raw data does not travel
too far. At the same time, the data is being fed to increasingly complex artificial intelligence (AI) models, with deep
learning (DL) in particular becoming pervasive across multiple fields and application domains. Recent years have also
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Fig. 1: Conceptual illustration showing potential application areas and connectivity topologies in federated learning systems.

brought an increasing awareness of the risks and drawbacks of sharing personal data over the internet. The solution
to computing at the edge while preserving the privacy of data and leveraging DL solutions is federated learning [2].
Federated learning (FL) enables distributed training of complex models over isolated data islands from remote nodes
(data sources). The local training results (updates to local models) are then aggregated, for example, in a cloud server,
and a global generalized model is shared back to the nodes. All this with zero raw data transmission [3].

From the perspective of robotic and autonomous systems, which are becoming increasingly ubiquitous, cloud so-
lutions have enabled higher degrees of intelligence by eliminating constraints of onboard computational and storage
resources [4]. Cloud robotics and AI robotics are now an essential part of state-of-the-art robotic systems. Further-
more, as mobile connectivity evolves, 5G and beyond networks are set to further bring the integration of AI, robotics,
and distributed networking solutions.Applications of AI in robotics include, e.g., the deployment of DL for natural
language processing (NLP) [5], computer vision [6], or in navigation and mapping [7]. In control, Reinforcement
learning (RL) has been successfully applied in complex games [8] and its relevance for dexterous manipulation ex-
tensively demonstrated [9]. Deep reinforcement learning (DRL) is particularly relevant to autonomous robots.

Multiple reviews and survey papers in the literature have been devoted to studying design approaches, implemen-
tation details, and application possibilities of FL. Compared to current works focused on security and privacy [10],
personalized FL [11], or communication at the edge [12], the present work aims to provide a comprehensive view
of how FL can be leveraged to raise the level of autonomy and degree of intelligence of robotic systems. We look
at different application opportunities at the edge and within autonomous mobile robots. We provide an overview of
the most important concepts and pay particular attention to synergies between FL and distributed ledger technolo-
gies (DLTs), among which blockchain technology has gained significant attention in recent years [13]. A conceptual
illustration of FL applications and approaches to connectivity is shown in Figure 1.

2. Background

The adoption and development of FL frameworks have been directly or indirectly influenced by other technological
and paradigm trends in robotics and autonomous systems. Since the invention of FL, there has been a lot of research
carried out on the optimization of FL itself. Different research directions include increasing the adaptiveness, enhanc-
ing the privacy-preserving properties, or building towards more efficient collaboration for distributed robot learning,
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among others. In this section, we briefly introduce the different identifiable research directions from the literature, and
the concepts that underpin the popularity of FL in robotics and autonomous systems.

2.1. Cloud Robotics and Automation

Cloud robotics is a field of robotics that capitalizes on cloud technologies. The cloud infrastructure can provide
robots and autonomous systems with extensive resources and potential benefits including big data, cloud computing,
collective robot learning, and human learning [4]. Under cloud infrastructures, robotic systems have access to more
collaborative approaches to autonomy, faster processing of deep learning models, and more powerful computational
capabilities in general. A collection of robots in different areas or states can cooperate in a variety of tasks such as
disaster management identifying several critical challenges [14] and manufacturing environment [15].

2.2. Distributed DL

With the increasing amount of data and complexity of DL models, the process of training models becomes in-
herently costly, computation-intensive, and time-consuming. Distributed DL was proposed to utilize the multiple
processors to accelerate the DL training process by parallel the computation and the data [16, 17]. There is a signifi-
cant amount of work in the literature dedicated to distributed DL in the pursuit of closer collaboration between cloud
and edge computing [18, 19]. This balance between the two paradigms is set to become increasingly pervasive with
a well-established IoT era. Immediate concerns that raise with the deployment of distributed DL across cloud and
edge are the security of data and privacy of users. In consequence, multiple research directions have emerged to make
distributed learning processes more scalable, secure, and privacy-preserving through [20, 21, 22]. Additionally, other
research efforts are directed towards utilizing distributed DL for processing and learning from sensitive data such as
health data [23] or medical data from multiple private or public institutions [24].

2.3. Privacy and Security In DL and FL

With the wider adoption of DL over the past decade, issues regarding data security and privacy of data sources be-
came increasingly studied. Some of the main types of security-related issues in DL appear with evasion attacks during
model inference and poisoning attacks during model training [25]. Adversarial attacks to the algorithms, and model
reconstruction attacks are other examples. Multiple solutions have been proposed to deal with these and other attack
vectors, including differential privacy, homomorphic encryption, data anonymization, pseudonymization, algorithm
encryption, or hardware security implementations, among others [26]. Despite the efforts, new attack vectors have
appeared such as re-identification attacks (identification of individual data sources despite data anonymization tech-
niques based on other information in the datasets), dataset reconstruction attacks, or tracing attacks (also referred to
as membership inference, though which the inclusion of a specific individual in a dataset is inferred). While FL itself
offers privacy-preserving attributes, the security robustness depends largely on the implementation and deployment
methodologies. A recent survey on the topic [10] presents a comprehensive study on the current security and privacy
concerning aspects with the conclusion that fewer privacy-specific threats than security-specific ones exist. Among
these are, e.g., communication bottlenecks, poisoning, and backdoor attacks, especially inference-based ones.

2.4. Federated and Distributed Reinforcement Learning

Multi-agent RL is regarded as essential to realize general intelligence and cooperative environment learning. The
main objective of a multi-agent RL is to obtain the localized policies and maximize the global reward for knowledge
sharing on the premise of increased system complexity and computation [27]. In multi-robot systems, distributed RL
can be leveraged to expose different robots to different environments or to learn more robust policies in the presence
of disturbances [28].

While the literature in distributed RL is extensive, most works rely on sharing raw experiences or training in a
centralized manner. Federated RL (FRL) [29] has been proposed as an efficient solution for achieving high-quality
policy transfer with the protection of both data and model privacy. FRL can be applied, e.g., to understand user
behavior and adapt to it [30]. In [12], FRL was proposed to allow multiple RL agents to learn optimal control policies
for a series of IoT devices with slightly different dynamics. In another direction, FRL is regarded as an efficient method
for resource allocation among networked devices [31, 32].
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2.5. Recent Developments of FL

Federated learning has arguably raised the possibilities for collaborative learning across multiple independent
agents. In this section, we give an overview of works that have focused on improving specific aspects of FL.

With a focus on scalability, a high-level designed FL system based on TensorFlow has been developed that draws
significant conclusions on existing challenges and future research directions [33]. From the perspective of system
security, a systematic study of Byzantine-robust federated learning in [34] shows different approaches to secure FL
systems and make them more robust against local model poisoning attacks. A similar approach in [35], instead con-
siders a solution to detect the malicious model updates in every round of training process before aggregating the local
models in the centralized cloud server. Owing to a wide range of approaches relying on a centralized cloud server for
aggregation of local model updates, FL frameworks may fail if a malicious aggregation server takes over the central
FL node. To cope with this problem, dispersed FL [36] has been proposed, where a global model is yielded in either a
centralized or distributed manner through the aggregation of sub-global models, which are iteratively computed based
on different groups similar to traditional FL approaches.

Machine learning itself can also play a role in improving the performance of FL systems. In [37], deep rein-
forcement learning is used to select the optimized edge nodes, and the learned model parameters are integrated into
a blockchain-based FL scheme for enhanced security and reliability. Furthermore, combining with other privacy-
preserving machine learning methods such as differential privacy [38] and modern cryptography techniques such as
homomorphic encryption [39], FL can achieve high-level privacy-preserving and security capabilities.

It is also worth noting that FL solutions are specialized in aggregating local models to a global model for knowledge
sharing. Nonetheless, in terms of the characterization of heterogeneous data collected across large-scale deployments
of edge devices, it is often essential to the application to make the models discriminative in each device. In this
direction, personalized FL was proposed to tackle the aforementioned problem by further performing a series of
learning steps locally after receiving the global model from the cloud server, based mostly on locally available data
for which the model needs to be tailored [40, 41].

3. Federated Learning at the Edge

Federated learning has emerged within the wider edge computing paradigm. Deploying FL at the edge has gained
significant attention from the research community owing to the availability of rapidly increasing amounts of data
and computational resources at the edge. Research directions include the deployment FL in resource-constrained
embedded systems, communication-efficient FL, energy-efficient FL, and privacy-preserving federated edge learning
with the aim to improve the learning performance in networks where the general assumption is that resources are
inherently at the edge [42]. For instance, an early work explored how to capitalize on FL to optimize the caching
scheme in the edge computing process [43].

3.1. Task Allocation

A general problem in distributed systems is task allocation. Learning more efficient task allocation at the edge
can produce more effective strategies for worker selection and load distribution. Doing so through a distributed FL
framework is a natural fit for such systems. In [44], a matching-theoretic approach was proposed for task assignments
schemes in federated edge learning framework to solve the task assignment problem between the workers and multiple
task publishers with efficient performance. In another work, an asynchronous task allocation method was introduced
to realize equal task allocation within the FL system itself, i.e., minimizing the maximum difference between the
number of model updates done by every worker in an FL edge network [45].

3.2. Communication and Energy Efficiency

Multiple studies in the literature focus on mitigating the bottleneck that communication latency can become in
FL systems. Some of the proposed solutions involve the aggregation over the air of multiple updates from an analog
perspective, rather than relying on conventional orthogonal network access [46]. In a similar direction, and to mitigate
the communication overhead, authors in [47] introduced an asynchronous communication model for digital twin edge
networks. In their work, FL is formulated as an optimization problem that aims at reducing the communication cost by
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decomposing it and using DNN for communication resource allocation. In [48], compression techniques were utilized
to realize a more communication-efficient FL solution.

Regarding the energy efficiency of FL, authors in [49] tackled the problem of improving the energy efficiency
of FL by developing a convergence-guaranteed algorithm with flexible communication compression. In [50], two
transmission protocols based on the non-orthogonal multiple access and time division multiple access were considered
to jointly optimizing the transmission power and rate at edge devices in a federated edge learning system. Other authors
showed that learning an optimal resource-management policy substantial energy can be reduced in an FL system [51].

3.3. Client Selection

Client selection is a process to choose model updates from certain clients to be aggregated, especially when com-
putational resources are constrained and complex aggregation processes are not possible. In [52], a framework named
FedCS (Federated Client Selection) was introduced to dynamically select and maximize the number of clients (train-
ing agents) in heterogeneous edge networks. The dynamic approach was based on an online estimation of actively
available resources. The results show that such an approach can provide significantly better training performance with
heterogeneity of resources across clients, with overall significantly shorter training times than traditional FL meth-
ods. In another work, an optimization algorithm is designed to jointly optimize the data sampling and user selection
strategies, which is shown to approach the stationary optimal solution efficiently [53].

3.4. Privacy-Preserving and Secure Mechanism

While FL is flexible in nature and inherently deals with issues related to data ownership and governance, it does
guarantee privacy and security by itself. Integration of other techniques and approaches to data security and user
privacy needs to be considered to achieve a robust FL framework. For instance, an asynchronous FL system [54] with
the incorporation of local differential privacy for enhanced privacy of local modes updates has been proposed in the
literature [55]. To tackle the problem of active poisoning attacks, which FL is vulnerable to, authors in [56] generated
a model for different poisoning attacks based on generative adversarial networks (GANs). Utilizing GANs, which is a
well-established approach in DL research, opens the door to more robust FL systems.

4. Synergies between Federated Learning and Distributed Ledger Technologies

Distributed ledger technologies have multiple applications in multi-robot systems and distributed autonomous sys-
tems. Blockchain technology, in particular, has been applied to robot swarms able to deal with byzantine agents [57],
for sharing computational and communication resources [58], but also for privacy-critical applications [59, 60]. The
distributed consensus algorithms in DLTs, the auditability of operations, and the built-in encryption, among others,
aid in designing more secure and privacy-preserving systems at the edge [13]. Blockchain technology and subsequent
DLT solutions can be thus leveraged as the basis for trust and credibility in a distributed system.

Traditional FL approaches rely on a centralized cloud server for model aggregation, therefore assuming such a
central node has full trust from the rest of the system. In practice, the reliance on the cloud server and the transmission
to the local clients can be threatened by various types of malicious attacks. Additionally, the scalability of the system
is inherently limited by the existence of a single processing node. Even if it is replicated in the cloud, there is still a
strong reliance on trusted cloud servers. Therefore, being able to deploy trustable FL frameworks in a distributed and
decentralized manner can take FL to new application domains [61, 62, 63].

The literature on applications of DLTs and FL for robotic systems is sparse. At present, studies on applications
of blockchain-enhanced FL mainly focus on autonomous vehicles and the Internet of Vehicles (IoVs). The core ob-
jective of these studies is to build a trustworthy vehicular network without any centralized training process or trusted
third party. In this direction, blockchain-supported FL has been proposed to build a trustworthy vehicular network.
with performance metrics including accuracy, energy consumption, and lifetime rate, along with throughput and la-
tency evaluated by simulation [64]. It is worth mentioning as well that a hierarchical blockchain-based FL has also
proved to be efficient in building towards large-scale vehicular networks and shown potential resilience against cer-
tain malicious attacks [65]. In another work, an autonomous blockchain-enabled FL has been proposed to add further
privacy-preserving properties and efficient local on-vehicle machine learning model aggregation in a decentralized
manner [66]. The authors indicate some key challenges of the proposed framework in the autonomous vehicles field
including sophisticated mobility models, mobility-aware and efficient verification, or privacy leakage risk analysis.
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Other examples of blockchain-enhanced FL include drones in 6G networks and control in railway systems. In [67],
the objective is to replace the manual fraction and braking operations with automatic operations in a heavy haul
railway system. They utilized blockchain-based FL to obtain a novel ML model for intelligent control under the
circumstance of the imbalanced fraction and braking data. One approach to build the foundations for the upcoming
6G era, a blockchain-based empowered FL with the applications of mobile miners at drones has been proposed for a
disaster response system [68]. In this work, the authors mainly focused on the definition of frameworks and analysis
of blockchain latency and energy consumption.

5. Applications of FL In Robotic and Autonomous System

Networked robotic and autonomous systems are becoming ubiquitous. These agents are in turn increasingly hetero-
geneous in terms of their computational capabilities but also the type of data they produce. With the wider availability
of unprecedented amounts of data, deep learning has been broadly employed across autonomous robots of all types.
Cloud robotics unlocks for robotic and autonomous systems access to potentially unlimited computational, memory or
storage resources, partially avoiding the limitations of onboard resources. Cloud robotics also offers the use of the in-
ternet for massive parallel computing and resource sharing [69]. At the same time, autonomous robotic solutions have
been adopted across a growing number of industries and application domains. These include data-sensitive scenarios
such as hospitals, military bases, or hotels. On account of features ranging from privacy preservation, decentralized
reliability, minimal communication and focus on onboard computation, it is arguable that federated learning has the
potential to be a secure and efficient robot learning framework in and it will be further adopted across different types
of autonomous systems [70].

From a system-level perspective, different nomenclatures are used to define the paradigm of shared computation
across and between cloud and edge. In this area, fog robotics has been introduced as the paradigm of deploying
robot deep learning across shared computational, storage, and networking resources between cloud and edge in a
federated way. In [71], the authors evaluated the performance of the designed fog robotics system through a surface
decluttering application with object recognition approaches. They trained the deep models in the cloud server based
on the non-private images, adapted and deployed the model based on the real-world images on the edge side to reduce
the round-trip communication cost. In another application of fog robotics, blockchain-based FL has been proposed for
autonomous vehicles which enables a communication network where on-vehicle machine learning models are verified
and exchanged in a distributed and privacy-aware fashion [68]. The authors evaluate the performance of generation
delay, block propagation, and upload-download delay, showing promising applications of such frameworks.

Federated learning has potential within multiple specific autonomy problems and robotic subsystems. In [72],
cooperative SLAM based on visual-Lidar has been proposed by deploying a federated deep learning algorithm for
feature extraction and dynamic map fusion without transferring original images among the robots. In the area of
dynamic map fusion, authors in [73] developed a novel fusion scheme among the networked vehicles supported by
FL. Superior performance and robustness were then demonstrated in the Car Learning to Act (CARLA) simulation
platform. In [74], trajectories forecasting (Spatio-temporal predictions) has been performed in a multi-robot system
through different FL variants: traditional FL approach where a cloud server aggregates the local models and serverless
version. In the paper, the authors found that in a trajectories forecasting task, the results of the above methods are not
notably different and they provided the first federated learning dataset obtained from multi-robot behaviors. FL has
also proven to be an efficient and novel framework in heterogeneous sensor data fusion for imitation learning [75]. In
terms of situational awareness, continuous learning has been demonstrated to be feasible through FL as a framework
across computationally limited edge devices while enabling the post-deployment of learned models in inference-only
mode [76]. In [12], FRL was applied to learn an optimal control policy among multiple IoT autonomous devices of the
same type. In [77], the authors introduced an FL-based online reinforcement transfer learning process for real-time
perception, with a demonstration through a collision-avoidance system simulated in Airsim. From a more general
autonomous navigation perspective, planning modules in cloud robotic systems can utilize federated reinforcement
learning as a learning architecture for fusing prior knowledge and quickly adapting to new environments [7].

In the area of human-robot collaborative learning, a novel cognitive architecture based on FL was introduced for
multi-agent learning from demonstration (LfD) with multiple humans incorporated in the self robot learning loop [78].
In a subsequent study, the authors integrated the short- and long-term analysis of human behavior within their cognitive
robot learning architecture to show that it can adaptively enhance large-scale multi-agent LfD [79].
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6. Conclusion

FL offers advantageous solutions to collaborative learning in decentralized multi-robot systems and distributed
autonomous systems. FL will play a key role in networked ubiquitous robots and autonomous intelligent systems at
the edge. The vast and rapidly growing amount of research in the area is revealing the efficiency and applicability of FL
in various solutions.The key advantages of FL solutions include the optimization of networking resources, resilience
through decentralization, and inherent privacy-preserving properties by processing data directly at the edge.

We also reviewed DLT-empowered FL with DLTs that has drawn significant attention in the robotics domain in
recent years. DLT solutions, and blockchain technology, in particular, can be the backbone of decentralized local
model aggregation in a more privacy-preserving, secure, and distributed manner. Some of the most prominent results
are being shown in the era of the internet of vehicles, set to become increasingly important with the wider adoption of
5G and beyond mobile connectivity solutions.

In summary, FL has multiple application possibilities in autonomous systems either from a system-level perspec-
tive or within specific subsystems like in autonomous robots. Key research directions that need further exploration
include optimization of communication, energy efficiency at the edge, personalized FL, and further privacy and se-
curity enhancements. Research efforts are currently capitalizing on multidisciplinary approaches including modern
encryption, novel connectivity topologies, or new learning paradigms.
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