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Abstract: Despite being an important topic in practice, estimating the number

of non-noise components in blind source separation has received little attention

in the literature. Recently, two bootstrap-based techniques for estimating the

dimension were proposed; however, although very efficient, they suffer from long

computation times as a result of the resampling. We approach the problem

from a large-sample viewpoint, and develop an asymptotic test and a corre-

sponding consistent estimate for the true dimension. Our test statistic based on

second-order temporal information has a very simple limiting distribution under

the null hypothesis, and requires no parameters to estimate. Comparisons with

resampling-based estimates show that the asymptotic test provides comparable

error rates, with significantly faster computation times. Lastly, we illustrate the

method by applying it to sound recording data.

Key words and phrases: Blind source separation, chi-square distribution, second

order blind identification, second order stationarity, white noise.
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1. Introduction

Given the difficulty of modeling multivariate time series; an increasingly

common option is to use latent variable or factor models (e.g., see Ensor,

2013; Chang et al., 2018, and the references therein). In this study we follow

the blind source separation (BSS) approach as an intermediate step prior

to modeling. In BSS, the observed multivariate time series is bijectively

decomposed into several univariate time series that exhibit some form of

mutual independence, such as second-order uncorrelatedness, or even full

statistical independence. After such a decomposition, the lack of interaction

between the univariate series allows us to model them separately, requiring

far fewer parameters.

A popular choice of BSS model for time series is the second-order source

separation (SOS) model (Comon and Jutten, 2010). The model assumes

that the observed zero-mean p-variate time series x1, . . . ,xT is generated as

xt = Ωzt, t = 1, . . . , T, (1.1)

where the source series z1, . . . , zT is a latent nondegenerate, zero-mean,

second-order stationary p-variate time series with uncorrelated component

series, and Ω ∈ Rp×p is an unknown, invertible matrix-valued parameter.

We assume a zero mean without loss of generality, because we can always
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center our series. The objective in model (1.1) is to estimate an inverse Γ̂

for Ω, giving us an estimate ẑt = Γ̂x̂t for the p sources, which can then be

modeled univariately.

However, because noise is often an inevitable part of a real-world signal,

we incorporate it in model (1.1) through its source vector. That is, we

assume that a source vector consists of two parts: zt = (z>1t, z
>
2t)
>, where

z1t ∈ Rq contains the signals; and z2t ∈ Rp−q, which is a white noise vector.

To avoid overfitting in the modeling phase, a crucial step in BSS is to

identify the noise subvector z2t within the sources, and then to discard it

prior to modeling. This problem, called a signal-dimension estimation, has

only recently been considered in the context of a statistical BSS. Thus, we

propose a novel estimate that relies on asymptotic hypothesis testing. First,

we review two classical SOS methods that serve as the basis for both our

method and two existing methods.

The standard way of estimating the sources in (1.1) is to use second-

order temporal moments. In the algorithm for multiple signals extraction

(AMUSE) (Tong et al., 1990), an estimate Γ̂ is obtained from the general-

ized eigendecomposition

Γ̂Ŝ0Γ̂
>

= Ip and Γ̂R̂τ Γ̂
>

= D̂τ ,

where Ŝ0 = (1/T )
∑T

t=1(xt− x̄)(xt− x̄)> is the marginal covariance matrix,
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R̂τ = (Ŝτ + Ŝ>τ )/2, Ŝτ = [1/(T − τ)]
∑T−τ

t=1 (xt − x̄)(xt+τ − x̄)> is the

τ -lag autocovariance matrix, and D̂τ is a diagonal matrix. If the lag-τ

autocovariances of the latent series are distinct, then Γ̂ is consistent for

Ω−1 up to a permutation and the signs of its rows. For the statistical

properties of AMUSE, see Miettinen et al. (2012).

A usually more efficient estimate, which does not depend as much on

the selection of a single parameter τ , is given by the second-order blind

identification (SOBI) (Belouchrani et al., 1997), an extension of the AMUSE

to multiple autocovariance matrices. In SOBI we choose a set of lags T ,

and estimate the orthogonal matrix Û by maximizing

∑
τ∈T

∥∥∥diag
(
U>Ŝ

−1/2
0 R̂τ Ŝ

−1/2
0 U

)∥∥∥2 (1.2)

over the set of all orthogonal U ∈ Rp×p, where diag(A) denotes a diagonal

matrix with diagonal elements equal to those of A, and Ŝ
−1/2
0 is the unique

symmetric inverse square root of the almost surely positive-definite matrix

Ŝ0. This procedure is called orthogonal (approximate) joint diagonalization

and provides a natural extension of the generalized eigendecomposition to

more than two matrices. Note that this makes AMUSE a special case of

SOBI with |T | = 1. An estimate for Ω−1 is given by Γ̂ = Û>Ŝ
−1/2
0 , and

is consistent (up to permutation and signs of its rows) if, for all pairs of

sources, there exists a lag τ ∈ T , such that the lag-τ autocovariances of
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the two sources differ; see Belouchrani et al. (1997); Miettinen et al. (2014,

2016). For more details about solving the maximization problem in (1.2),

see, for example, Illner et al. (2015), and the references therein.

We now return to the problem at hand, namely, the signal dimension

estimation. Both estimates that have been proposed in the literature rely

on SOBI (with AMUSE as a special case). The first estimate (Matilainen

et al., 2018) bases its approach on the following set of hypotheses, for k =

0, . . . , p− 1:

H0k : zt contains a (p− k)-subvector of white noise. (1.3)

A suitable test statistic for H0k is given, for example, by the mean of the

last p− k squared diagonal elements of Û>Ŝ
−1/2
0 R̂τ Ŝ

−1/2
0 Û over all τ ∈ T ,

where Û is the maximizer of (1.2). This is based on the fact that all

autocovariances of white noise series vanish; see Section 2 for a more detailed

motivation. Matilainen et al. (2018) use bootstrapping to obtain the null

distributions of the test statistics. Then, they sequence several of the tests

together to estimate the signal dimension q; see the end of Section 2 for

various strategies. Similar techniques are used for the dimension estimation

of independent and identically distributed (i.i.d.) data in Nordhausen et al.

(2016, 2017).

An alternative approach is proposed by Nordhausen and Virta (2018),
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who extend the ladle estimate of Luo and Li (2016) to a time series frame-

work. The estimate combines the classical scree plot with the bootstrap

variability (Ye and Weiss, 2003) of the joint diagonalizer, and has the advan-

tage of estimating the dimension directly, without any need for hypothesis

testing.

We complement these approaches by devising an asymptotic test for the

null hypotheses (1.3), operating under semiparametric assumptions on the

source distributions. Sequencing several tests together then allows us to ob-

tain a consistent estimate for the true signal dimension. Using simulations,

we show that the test enjoys the standard properties of asymptotic tests,

that is, computational speed and efficiency under time series of moderate

and large lengths. The first of these properties is especially important and

desirable, considering that the only competitors of the proposed method

are based on computationally costly data-resampling techniques. More-

over, the mathematical form of the proposed asymptotic test is shown to

be particularly simple and elegant.

The remainder of the paper is structured as follows. In Section 2, we

present our main results and discuss the implications and strictness of the

assumptions required for them to hold. Section 3 contains the technical

derivations that lead to the results in Section 2, and can safely be skipped
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by a casual reader. The proofs of the results are collected in the online

Supplementary Material. Section 4 compares the proposed dimension esti-

mate with the bootstrap- and ladle estimates under various settings using

simulated data. In Section 5, we apply the proposed method to estimate

the dimension of a sound recording data set. Lastly, Section 6 concludes

the paper.

2. Main results

In this section, we present our main results and the assumptions they re-

quire. The more technical content is postponed to Section 3 and can be

skipped if the reader is not interested in the theory behind the results.

Let the observed time series xt come from the SOS model (1.1), and

denote by λ∗τ` the τ -lag autocovariance of the `th component of zt. Recall

that SOBI jointly diagonalizes the set of standardized and symmetrized

autocovariance matrices Ĥτ = Ŝ
−1/2
0 R̂τ Ŝ

−1/2
0 , for τ ∈ T , to obtain the

orthogonal matrix Û. Let next diag(A)2 denote a diagonal matrix, with

diagonal elements equal to the squares of the diagonal elements of A. Or-

der the columns of Û such that the sums of the squared pseudo-eigenvalues,∑
τ∈T diag(Û>ĤτÛ)2, are in decreasing order, and partition Û as (V̂k,Ŵk),

where V̂k ∈ Rp×k and Ŵk ∈ Rp×(p−k), for some fixed k. We show in Sec-
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tion 3 that, for large T , this ordering places the noise components after

the signals in the estimated sources. If the null hypothesis H0k is true, the

autocovariance matrices of the last p− k estimated sources,

D̂τk = Ŵ>
k ĤτŴk,

are then expected to be close to zero matrices, owing to the last sources

being (at least, asymptotically) white noise. To accumulate information

over multiple lags, we use as our test statistic for H0k the mean of the

squared elements of the matrices D̂τk over a fixed set of lags τ ∈ T ,

m̂k =
1

|T |(p− k)2

∑
τ∈T

‖D̂τk‖2,

which also measures the departure from the null hypothesis H0k. In the

special case of AMUSE, we have only a single matrix D̂τk, which can, in

practice, be obtained using the easier-to-compute generalized eigendecom-

position rather than using a joint diagonalization. Note that it is possible

for the matrices D̂τk to be small in magnitude, even if the number of white-

noise sources in the model is less than p − k. This situation can arise if

some of the signal series are indistinguishable from white noise based on

autocovariances alone. As such, we need to restrict the set of signal distri-

butions we can consider. The next assumption guarantees that each signal

component exhibits nonzero autocovariance for at least one lag τ ∈ T , and
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is thus distinguishable from white noise.

Assumption 1. For all ` = 1, . . . , d, there exists τ ∈ T such that λ∗τ` 6= 0.

Considering that most signals encountered in practice exhibit autocor-

relation, Assumption 1 is rather nonrestrictive. Moreover, we can always

increase the number of feasible signal processes by incorporating additional

lags in T . However, time series exist that, while not white noise, still have

zero autocorrelation for all finite lags. For example, stochastic volatility

models (e.g., see Mikosch et al., 2009) belong to this class of processes and,

consequently, by Assumption 1, are excluded from our model (however,

Section 6 discusses how to incorporate these distributions in the model).

The second assumption we need is more technical in nature, and re-

quires that the source series come from a specific, wide class of stochastic

processes. A similar assumption is used in Miettinen et al. (2012, 2014,

2016).

Assumption 2. The latent series zt is a linear process, with the MA(∞)-

representation

zt =
∞∑

j=−∞

Ψjεt−j,

where εt ∈ Rp is a second-order standardized series of i.i.d. random vec-

tors with exchangeable, marginally symmetric components that have finite
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fourth-order moments, and Ψj ∈ Rp×p are diagonal matrices satisfying∑∞
j=−∞Ψ2

j = Ip and ‖
∑∞

j=−∞ |Ψj|‖ < ∞, where |Ψj| ∈ Rp×p denotes the

matrix of component-wise absolute values of Ψj. Moreover, the lower-right

(p− q)× (p− q) blocks of Ψj (the noise) are equal to Ψj00 = δj0Ip−q, where

δ·· is the Kronecker delta.

Note that Wold’s decomposition states that all second-order stationary

multivariate time series can be given an MA(∞)-representation. Thus the

most stringent part of Assumption 2 is that it requires that the innova-

tions of the sources have identical, symmetric marginal distributions. The

importance of Assumption 2 is that it enables us to derive the joint limit-

ing distribution of the sample autocovariance matrices. As such, it can be

replaced with any other assumption that guarantees the same property.

We can now present our main results.

Proposition 1. Under Assumptions 1 and 2 and the null hypothesis H0q,

T |T |(p− q)2 · m̂q  χ2
|T |(p−q)(p−q+1)/2,

where χ2
ν denotes a chi-squared distribution with ν degrees of freedom.

Proposition 2. For all k = 0, . . . , p− 1, let (ck,T ) be a sequence such that

ck,T →∞ and ck,T = o(T ). Then, under Assumptions 1 and 2 and the null
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hypothesis H0q,

q̂ = min{k | T |T |(p− k)2 · m̂k < ck,T} →p q.

The limiting distribution in Proposition 1 is remarkably simple, does not

depend on the type of white noise, and requires no parameters to estimate;

thus, it can be implemented quickly and easily in practice. Note that the

number of degrees of freedom of the limiting distribution is equal to the

total number of free elements in the symmetric matrices D̂τq, for τ ∈ T .

Thus, each element asymptotically contributes a single χ2
1 random variable

to the test statistic.

The impact of the number of autocovariance matrices used is visible in

Proposition 1, in that using more lags increases the number of degrees of

freedom of the limiting distribution. This effect is also evident in finite sam-

ples, where using a higher number of lags, which requires a larger number

of parameters to estimate, induces greater variability in the results (e.g.,

see Table 2 in Section 4, where AMUSE with just a single lag beats SOBI in

asymptotic testing). Thus, for smaller sample sizes, it might be advisable

to restrict the number of lags. However, on the other hand, using more lags

equates to using more information to separate the signals from the noise.

Furthermore, if we are not certain of the kinds of autocovariances the sig-

nals might exhibit, incorporating extra lags could help us identify additional
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signals. Thus, as a compromise between these conflicting viewpoints, we

suggest using SOBI with a small or moderate number of lags (e.g., between

one and six). This matter is investigated further in the simulation studies

in Section 4.

Proposition 2 introduces a consistent estimate for the true dimension.

However, the result is asymptotical and gives no indication of the required

time series length T for which the estimate q̂ takes values close enough to

q, for a given set of sequences ck,T . Thus, using Proposition 2 in prac-

tice requires a careful choice of ck,T . As such, in the simulation section,

we approach the estimation in the following, more practical way. That is,

to estimate the signal dimension in the p-dimensional BSS model (1.1),

we sequence together a set of asymptotic tests for the null hypotheses

H00, H01, . . . , H0(p−1). Denote the string of p-values produced by these tests

by (p0, p1, . . . , pp−1), and fix a level of significance α. Different estimates

for q are now obtained by considering the p-values using various strategies.

The forward estimate of q is the smallest k for which pk ≥ α. The backward

estimate of q is k + 1, where k is the largest value for which pk < α. The

divide-and-conquer estimate is obtained by iteratively halving the search

interval until a change point from < α to ≥ α is found.

The proof of Lemma 5 in Section 3 shows that the test statistic is
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monotone in k, in the sense that T |T |(p− k)2 · m̂k is a decreasing function

of k. However, the associated p-values for the null hypotheses H0k need

not be monotone, because the null distributions (and their quantiles) are

also functions of k. As a result, the various estimation strategies can yield

different estimates in practice.

3. Theoretical derivations

Throughout this section, we assume the SOS model (1.1) and a fixed set

of lags T = {τ1, . . . , τ|T |}. Moreover, we assume identity mixing, Ω = Ip,

which is without loss of generality as SOBI is affine equivariant. Thus, the

source estimates do not depend on the value of Ω (Miettinen et al., 2016).

To ensure the identifiability of Ω, we may further set S0 = E(xtx
>
t ) = Ip.

We assume a fixed null hypothesis H0q, and denote the number of white

noise components by r = p− q.

The population autocovariance matrices are denoted by Sτ = E(xtx
>
t+τ )

and Rτ = (Sτ+S>τ )/2. Then, from the identity mixing and uncorrelatedness

of the latent series, we have

Sτ = Rτ = Dτ =

Λτ 0

0 0,

 ,

where Λτ is a q × q diagonal matrix, for τ ∈ T . The lower-right block
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of the matrix Dτ vanishes for all τ ∈ T , because the autocovariances of a

white noise series are zero. Without loss of generality, we assume that the

signals are ordered in z1t such that the diagonal elements of
∑

τ∈T Λ2
τ are in

decreasing order. Moreover, we settle ties by ordering the tied components

in decreasing order with respect to the diagonal elements of Λ2
τ1

. Further

ties are resolved by arranging the tied components in decreasing order with

respect to the diagonal elements of Λ2
τ2

, and so on. If, after all this, we

still have tied components, we set them in arbitrary order and note that

such components have the same autocovariance structure for all lags τ ∈

T , making them indistinguishable to SOBI. However, this just makes the

individual signals unestimable and does not affect the estimation of the

dimension in any way, as long as Assumption 1 holds.

Next, we partition the signals into v groups, such that each group con-

sists solely of signals with matching autocovariance structures on all lags

τ ∈ T , and such that each pair of distinct groups has a differing autoco-

variance for at least one lag τ ∈ T . The size of the jth group is denoted

by pj, implying that p1 + · · · pv = q. By Assumption 1, the white noise

forms its own group, not intersecting with any of the signal groups. In the

following, we refer to the noise group using the index 0, as in p0 = r. If

v = 1, all signal components are indistinguishable by their autocovariances;
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at the other extreme, v = q, no ties occurred when ordering the signals, and

each signal pair has differing autocovariances for at least one lag τ ∈ T .

We introduce yet one more assumption, which is actually implied by

Assumption 2 and, as such, is not strictly necessary. However, some of the

following auxiliary results are interesting on their own, and can be shown

to hold under Assumption 3, without the need for Assumption 2.

Assumption 3. The sample covariance matrix and the sample autocovari-

ance matrices are root-T consistent,
√
T (Ŝτ−Dτ ) = Op(1), for τ ∈ T ∪{0},

where D0 = Ip.

We begin with a simple linearization result for the standardized au-

tocovariance matrices. The notation Ĥτ00, R̂τ00 in Lemma 1 refers to the

lower-right r × r diagonal blocks of the matrices Ĥτ = Ŝ
−1/2
0 R̂τ Ŝ

−1/2
0 and

R̂τ . Under H0q, these sub-matrices gather the autocovariances of the noise

components.

Lemma 1. Under Assumption 3, we have

Ĥτ = R̂τ +Op(1/
√
T ), for all τ ∈ T .

Furthermore, if H0q holds, then

Ĥτ00 = R̂τ00 +Op(1/T ), for all τ ∈ T .
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Our second auxiliary result shows that, under Assumptions 1 and 3, the

SOBI solution is, while not identifiable, of a very specific asymptotic form

(up to permutation). The block division and indexing in Lemma 2 are based

on the division of the sources into v + 1 groups of equal autocovariances.

Lemma 2. Under Assumptions 1 and 3 and the null hypothesis H0q, there

exists a sequence of permutation matrices P̂, such that

ÛP̂ =



Û11 · · · Û1v Û10

...
. . .

...
...

Ûv1 · · · Ûvv Ûv0

Û01 · · · Û0v Û00


,

where the diagonal blocks (shaded) satisfy Ûii = Op(1), and the off-diagonal

blocks satisfy Ûij = Op(1/
√
T ).

Corollary 1. Under the assumptions of Lemma 2, for each j = 0, 1, . . . , v,

we have that

Û
>
jjÛjj − Ipj = Op(1/T ) and ÛjjÛ

>
jj − Ipj = Op(1/T ).

The first v diagonal blocks in the block matrix of Lemma 2 correspond

to the groups of signals that are mutually indistinguishable. The final

diagonal block corresponds to the r noise components (which are also in-

distinguishable from each other). The main implication of Lemma 2 is that
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SOBI cannot separate sources within a single group, but it can separate the

signals coming from two different groups, with the mixing vanishing at the

rate of root-T . In the special case of pj = 1, for all j = 0, 1, . . . , v, Lemma

2 is an instant consequence of (Miettinen et al., 2016, Theorem 1(ii)).

The next lemma states that our test statistic is, under the null, asymp-

totically equivalent to a much simpler quantity that does not depend on

the estimation of the SOBI-solution Û.

Lemma 3. Under Assumptions 1 and 3 and the null hypothesis H0q, we

have

T · m̂q = T · m̂∗q + op(1),

where

m̂∗q =
1

|T |r2
∑
τ∈T

‖R̂τ00‖2,

and R̂τ00 is the lower-right r × r block of R̂τ .

To compute the limiting distribution of the proxy m̂∗q, we next show that

the joint limiting distribution of the blocks R̂τ00 is, under Assumption 2 and

H0q, conveniently a multivariate normal distribution. The result is a slight

modification of (Miettinen et al., 2016, Lemma 1). In the statement of

Lemma 4, Jr denotes the r× r matrix filled with ones, and Eij
r denotes the

r × r matrix with the (i, j)th element equal to one, and all others equal to
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zero.

Lemma 4. Under Assumption 2 and the null hypothesis H0q, the blocks

R̂τ100, . . . , R̂τ|T |00 have a joint limiting normal distribution,

√
Tvec

(
R̂τ100, . . . , R̂τ|T |00

)
 N|T |r2(0,V),

where vec is the column-vectorization operator,

V =



V0 0 · · · 0

0 V0 · · · 0

...
...

. . .
...

0 0 · · · V0


∈ R|T |r2×|T |r2 ,

and V0 = diag(vec(Jr+Ir)/2)(Krr−Drr+Ir2), where Krr =
∑r

i=1

∑r
j=1E

ij
r ⊗

Eji
r and Drr =

∑r
i=1 E

ii
r ⊗Eii

r .

Lemmas 3 and 4 now combine to establish the limiting null distribution

of the test statistic as the remarkably simple chi-squared distribution; see

Proposition 1 in Section 2.

Finally, to prove Proposition 2, we establish the following result for the

asymptotic behavior of the test statistics, for different k, under a fixed null

hypothesis.

Lemma 5. Under Assumptions 1 and 2 and the null hypothesis H0q,
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1. for k < q, T |T |(p− k)2 · m̂k ≥ T (b+ op(1)), for some b > 0,

2. for k ≥ q, T |T |(p− k)2 · m̂k = Op(1).

Lemma 5 shows that the true dimension q is the smallest value of k for

which the test statistic T |T |(p − k)2 · m̂k is bounded in probability. This

idea is formalized in Proposition 2 in Section 2.

4. Simulations

The following results are all obtained in R (R Core Team, 2017), using the

packages JADE (Nordhausen et al., 2017) and tsBSS (Matilainen et al.,

2018).

4.1 Evaluation of the hypothesis testing

In the first set of simulations, we consider the performance of the hypoth-

esis tests. As our competitor, we use the recommended and most general

non-parametric bootstrapping strategy of Matilainen et al. (2018), which

takes bootstrap samples from the hypothetical multivariate noise part. The

number of bootstrap samples used was 200. We also computed the three

other bootstrapping strategies described in Matilainen et al. (2018). How-

ever, the results remain essentially the same; thus, we omit them here for

brevity.
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4.1 Evaluation of the hypothesis testing

We considered three settings for the latent sources:

Setting H1: MA(3), AR(2), and ARMA(1,1) processes, with Gaussian

innovations and two Gaussian white noise components.

Setting H2: MA(10), MA(15), and M(20) processes, with Gaussian inno-

vations and two Gaussian white-noise components.

Setting H3: Three MA(3) processes, with Gaussian innovations and iden-

tical autocovariance functions and two Gaussian white-noise processes.

Hence, in all three settings, the signal dimension is q = 3, and the total

dimension is p = 5. Owing to the affine equivariance of the aforementioned

methods, without loss of generality, we take Ω = I5. In general, setting H1

can be viewed as a short-range dependence model, and H2 can be viewed as

a long range dependence model. H3 is special, in that the methods should

not be able to separate its signals, but should still be able to separate

the noise space from the signal space. We also considered several addi-

tional settings H1t, H2t, and H3t. These are otherwise identical to H1, H2,

and H3, respectively, except that we replace the Gaussian innovations and

white noise series with independent univariate standardized t5-distributed

random variables. Interestingly, the results with the t5-distribution were

almost identical to the Gaussian results for the first two settings. This im-
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4.1 Evaluation of the hypothesis testing

plies that the convergence of the test statistic to its asymptotic distribution

depends very little on the heavy-tailedness of the underlying innovations, if

the signals are identifiable. Owing to this similarity, the results for settings

H1t, H2t, and H3t are presented in the Supplementary Material only.

Based on 2000 repetitions, we give the rejection frequencies of the null

hypothesesH02, H03, andH04 at level α = 0.05 in Tables 1–9. We considered

three BSS estimators: AMUSE, with τ = 1; SOBI, with T = {1, . . . , 6} (de-

noted by SOBI6); and SOBI, with T = {1, . . . , 12} (denoted by SOBI12).

The optimal rejection rates at level α = 0.05 are 1.00 for H02, 0.05 for H03,

and < 0.05 for H04.

Table 1: Rejection frequencies of H02 in Setting H1 at

level α = 0.05.

AMUSE SOBI6 SOBI12

n Asymp Boot Asymp Boot Asymp Boot

200 1.000 1.000 1.000 0.999 0.998 0.998

500 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000

2000 1.000 1.000 1.000 1.000 1.000 1.000

5000 1.000 1.000 1.000 1.000 1.000 1.000
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4.1 Evaluation of the hypothesis testing

Table 2: Rejection frequencies when testing H03 in Set-

ting H1 at level α = 0.05.

AMUSE SOBI6 SOBI12

n Asymp Boot Asymp Boot Asymp Boot

200 0.059 0.050 0.078 0.050 0.102 0.050

500 0.053 0.048 0.064 0.049 0.071 0.052

1000 0.048 0.047 0.059 0.053 0.054 0.050

2000 0.050 0.054 0.048 0.049 0.054 0.046

5000 0.048 0.052 0.052 0.047 0.056 0.053

Table 3: Rejection frequencies when testing H04 in Set-

ting H1 at level α = 0.05.

AMUSE SOBI6 SOBI12

n Asymp Boot Asymp Boot Asymp Boot

200 0.006 0.008 0.015 0.006 0.024 0.004

500 0.006 0.007 0.009 0.004 0.016 0.006
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4.1 Evaluation of the hypothesis testing

1000 0.007 0.010 0.012 0.005 0.012 0.006

2000 0.003 0.006 0.008 0.003 0.009 0.002

5000 0.006 0.006 0.006 0.002 0.008 0.004

Table 4: Rejection frequencies when testing H02 in Set-

ting H2 at level α = 0.05.

AMUSE SOBI6 SOBI12

n Asymp Boot Asymp Boot Asymp Boot

200 0.038 0.043 0.608 0.484 0.911 0.848

500 0.090 0.094 0.988 0.987 1.000 1.000

1000 0.190 0.189 1.000 1.000 1.000 1.000

2000 0.252 0.256 1.000 1.000 1.000 1.000

5000 0.558 0.550 1.000 1.000 1.000 1.000
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4.1 Evaluation of the hypothesis testing

Table 5: Rejection frequencies when testing H03 in Set-

ting H2 at level α = 0.05.

AMUSE SOBI6 SOBI12

n Asymp Boot Asymp Boot Asymp Boot

200 0.002 0.006 0.125 0.050 0.148 0.063

500 0.008 0.014 0.075 0.041 0.074 0.050

1000 0.010 0.014 0.067 0.046 0.068 0.047

2000 0.020 0.024 0.056 0.052 0.066 0.061

5000 0.031 0.039 0.051 0.048 0.054 0.047

Table 6: Rejection frequencies when testing H04 in Set-

ting H2 at level α = 0.05.

AMUSE SOBI6 SOBI12

n Asymp Boot Asymp Boot Asymp Boot

200 0.000 0.001 0.034 0.004 0.039 0.006

500 0.002 0.004 0.010 0.004 0.016 0.007

1000 0.000 0.004 0.012 0.004 0.007 0.001
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4.1 Evaluation of the hypothesis testing

2000 0.002 0.004 0.010 0.004 0.010 0.003

5000 0.004 0.008 0.010 0.005 0.007 0.003

Table 7: Rejection frequencies when testing H02 in Set-

ting H3 at level α = 0.05.

AMUSE SOBI6 SOBI12

n Asymp Boot Asymp Boot Asymp Boot

200 0.036 0.042 0.600 0.479 0.906 0.84

500 0.084 0.092 0.986 0.987 1.000 1.00

1000 0.168 0.175 1.000 1.000 1.000 1.00

2000 0.279 0.272 1.000 1.000 1.000 1.00

5000 0.576 0.568 1.000 1.000 1.000 1.00
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4.1 Evaluation of the hypothesis testing

Table 8: Rejection frequencies when testing H03 in Set-

ting H3 at level α = 0.05.

AMUSE SOBI6 SOBI12

n Asymp Boot Asymp Boot Asymp Boot

200 0.004 0.005 0.122 0.049 0.146 0.047

500 0.006 0.008 0.075 0.043 0.074 0.057

1000 0.010 0.018 0.062 0.050 0.062 0.055

2000 0.016 0.023 0.058 0.044 0.046 0.054

5000 0.034 0.042 0.051 0.050 0.048 0.045

Table 9: Rejection frequencies when testing H04 in Set-

ting H3 at level α = 0.05.

AMUSE SOBI6 SOBI12

n Asymp Boot Asymp Boot Asymp Boot

200 0.000 0.002 0.026 0.005 0.034 0.006

500 0.000 0.002 0.012 0.003 0.012 0.003

1000 0.002 0.002 0.010 0.005 0.010 0.005
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4.1 Evaluation of the hypothesis testing

2000 0.004 0.006 0.008 0.007 0.006 0.004

5000 0.005 0.010 0.008 0.004 0.006 0.003

The results of the simulations can be summarized as follows. First,

there is no significant difference between the limiting theory and the boot-

strap tests. This is a clearly an advantage of the asymptotic test, because

we do not need to select a bootstrapping strategy, and the test is not com-

putationally demanding. The rejection rates of the two types of tests are,

in most cases, within 0.01 of each other already for time series of length

T = 1000, which is a relatively small number of observations in signal

processing applications. Second, the number of matrices to be diagonal-

ized appears to be important. If the dependence structure is of a short

range, AMUSE works well; however, it seems to struggle in the case of

long-range dependence. In the considered settings, SOBI with six matri-

ces seems to be a good compromise. Third, even when the signals cannot

be individually separated, the noise and signal subspaces can be separated

accurately. Additionally, it seems that having heavy-tailed innovations ben-

efits the dimension estimation in this setting, especially for AMUSE; see the

Supplementary Material.

In general, having good power under the alternative hypotheses for
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4.2 Signal-dimension test performance

noise subspaces that are too large is desirable when using successive testing

strategies to estimate the dimension. This was not evaluated in Matilainen

et al. (2018); thus, we do so in the next section.

4.2 Signal-dimension test performance

In this section, we use a simulation study to evaluate the performance of

our test when the goal is to estimate the signal dimension q. Several testing

strategies are possible, as described at the end of Section 2. Here, we use

the divide-and-conquer strategy, because it seems the most practical. For

simplicity, all tests are performed at the level α = 0.05.

As competitors, we again use the bootstrap tests, this time including all

three nonparametric bootstraps and the parametric bootstrap; for further

details, refer to Matilainen et al. (2018). As an additional contender, we

use the ladle estimator of Nordhausen and Virta (2018), for which several

strategies are possible. Here, we consider a fixed block bootstrap with

block lengths of 20 and 40, and a stationary block bootstrap with expected

block lengths 20 and 40; see Nordhausen and Virta (2018) for details. For

all bootstrap-based methods, the number of bootstrapping samples is 200

and, as in the previous section, we consider the three estimators, AMUSE,

SOBI6, and SOBI12.
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4.2 Signal-dimension test performance

The settings considered in this simulation are as follows.

Setting D1: AR(2), AR(3), ARMA(1,1), ARMA(3,2), and MA(3) pro-

cesses with Gaussian innovations and five Gaussian white-noise com-

ponents.

Setting D2: The same processes as in D1, but MA(3) is changed to an

MA(1) process with the parameter equal to 0.1.

Setting D3: Five MA(2) processes with parameters (0.1, 0.1) with Gaus-

sian innovations and five Gaussian white-noise processes.

Hence, in all settings, p = 10 and q = 5. Setting D1 is the basic

setting, and Setting D2 includes one very weak signal. In Setting D3, all five

signals come from identical processes and exhibit weak dependence. We also

considered the additional settings D1t, D2t, and D3t, where the Gaussian

innovations and white-noise series in D1, D2, and D3 were replaced with

independent univariate standardized t5-distributed random variables. The

results with the t5-distribution are again similar to the Gaussian results,

and so are relegated to the Supplementary Material.

As in the previous simulation, the mixing matrix used is Ω = I10. Fig-

ures 1–3 show, based on 2000 repetitions, the frequencies of the estimated

signal dimensions.
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Figure 1: Estimating q by divide-and-conquer in Setting D1.

In Setting D1, the asymptotic test seems not to work as well as the other

methods for small samples do. However, in general, the difference between

this and the bootstrap-based testing procedures is negligible. Furthermore,

the ladle is the most preferable option. In setting D2, on the other hand,

the ladle consistently underestimates the signal dimension, and is not able

to find the weak signal. When using the hypothesis testing-based methods,

the weak signal is identified with increasing sample size. However, the more

scatter matrices we estimate, the more difficult the estimation becomes and,
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Figure 2: Estimating q by divide-and-conquer in Setting D2.

thus, AMUSE works best.

In Setting D3, the ladle fails completely, and keeps getting worse with

increasing sample size. The difference between the bootstrapping and asymp-

totic tests is at its largest in this setting, and the asymptotic test seems

to be the most preferable option. Because two lags are needed to capture

all temporal information, AMUSE is at a disadvantage in this setting, as is

clearly visible in the plots. In addition, SOBI6 seems to exploit the lag in-

formation better than SOBI12 does, possibly because it avoids the inclusion
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Figure 3: Estimating q by divide-and-conquer in Setting D3.

of several unnecessary autocovariance matrices in the estimation.

5. Data example

For our real-data example, we use the recordings of three sounds signals

available in the R-package JADE; these data have been analyzed by, among

others, Miettinen et al. (2017). To the three signal components, we added

17 white-noise components, all with t5-distributions, to determine whether

the methods work for non-Gaussian white noise as well. After standard-
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izing the 20 components to have unit variances, we used a random square

matrix in which each element comes from the uniform distribution on [0, 1].

The original signals have a length of 50000; for convenience, we selected

the first 10000 instances. The 20 mixed components are visualized in the

Supplementary Material, but reveal no clear structure.

We used the divide-and-conquer approach to estimate the signal dimen-

sion using our asymptotic test and the bootstrapping strategy of Matilainen

et al. (2018) used in Section 4.1. Additionally, we considered the ladle es-

timator with stationary bootstrapping and an expected block length of 40.

For each estimator, three versions were computed (AMUSE, SOBI6 and

SOBI12). All nine estimators estimated the signal dimension correctly as

three; the estimated signals based on SOBI6 are shown in Figure 4.

However, the computation times of the nine methods varied signifi-

cantly; see Table 10.

Table 10: Computation times (in seconds) of the nine estimators for the

sound example data.

Asymptotic tests Bootstrap tests Ladle estimator

AMUSE SOBI6 SOBI12 AMUSE SOBI6 SOBI12 AMUSE SOBI6 SOBI12

0.07 0.19 0.49 15.08 47.24 88.08 2.75 9.85 18.17
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Figure 4: The three estimated sound signals based on SOBI6.

Because the approaches all estimated the dimension correctly, those

based on the asymptotic test are clearly favourable, owing to their compu-

tational speed. However, note that the ladle and bootstrap tests can be par-

allelized; in the current comparison, we used only a single-core computer.

The ladle estimator is naturally faster to compute than the divide-and-

conquer hypothesis-testing strategy is. This is because the latter needs to

create separate bootstrap samples for each hypothesis to be tested, whereas
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the ladle estimator conducts bootstrap sampling only once.

6. Discussion

We have proposed an asymptotic test for estimating the signal dimension

in an SOS model, where the sources include both signal series and white

noise. The test does not require that we estimate any parameters, and

makes relatively weak assumptions. Furthermore, its existing competitors

use computer-intensive resampling techniques. For all these reasons, the

asymptotic test is a very attractive option in practice. This conclusion is

supported by the results of our simulations and the real-data example, in

which we estimate the dimension of sound recording data.

A drawback of the proposed method is its inability to distinguish be-

tween non-autocorrelated signals (e.g., stochastic volatility models) and

white noise. One way to get around this limitation is to replace z2t in

(1.1) with a vector of stochastic volatility series, and then reverse the roles

of the signal and the noise. That is, we use hypothesis testing to estimate

the dimension of the “noise” subspace (containing the stochastic volatility

components), and then separate them from the uninteresting “signal” series

that exhibit autocorrelation. For this to work, a limiting result equivalent

to Lemma 4 is needed for the above combination model. A similar idea was
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suggested in the context of the ladle estimator by Nordhausen and Virta

(2018).

In addition to (1.1), noise can be incorporated in a time series model

by using an additive noise model for xt ∈ Rp, as follows:

xt = Ωzt + εt, t = 1, . . . , T, (6.4)

where Ω ∈ Rp×q is a nonsquare mixing matrix, zt ∈ Rq consists of q <

p signal components, and εt ∈ Rp is a noise process. This problem is

considered in the case of i.i.d. data in Virta and Nordhausen (2019) who

use the PCA-transformation to estimate the p − k principal components

with smallest variances. Hypothesis testing can then be used to pinpoint

the correct dimension k = q for which these components consist of pure

noise. It seems likely to us that a version of this idea could be used in the

context of time series data and model (6.4), and will be considered in future

work. Note, however, that in such a model, only the signal dimension and

the mixing matrix can be consistently estimated, not the signals themselves,

in contrast to the model proposed here.

Supplementary Material

The online Supplementary Material contains the proofs of all theoretical

results, additional simulation plots, and additional simulations.
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