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Background: Evidence on height and prostate cancer risk is mixed, however, recent studies with large data sets support a
possible role for its association with the risk of aggressive prostate cancer.

Methods: We analysed data from the PRACTICAL consortium consisting of 6207 prostate cancer cases and 6016 controls and a
subset of high grade cases (2480 cases). We explored height, polymorphisms in genes related to growth processes as main effects
and their possible interactions.

Results: The results suggest that height is associated with high-grade prostate cancer risk. Men with height 4180 cm are at a 22%
increased risk as compared to men with height o173 cm (OR 1.22, 95% CI 1.01–1.48). Genetic variants in the growth pathway gene
showed an association with prostate cancer risk. The aggregate scores of the selected variants identified a significantly increased
risk of overall prostate cancer and high-grade prostate cancer by 13% and 15%, respectively, in the highest score group as
compared to lowest score group.

Conclusions: There was no evidence of gene-environment interaction between height and the selected candidate SNPs. Our
findings suggest a role of height in high-grade prostate cancer. The effect of genetic variants in the genes related to growth is
seen in all cases and high-grade prostate cancer. There is no interaction between these two exposures.

Prostate cancer is the second most common cancer in men
worldwide. Approximately 1.1 million men were diagnosed with
prostate cancer in 2012 and almost 70% of the cases occur in more
developed regions (IARC, 2014). The established risk factors
include are age, ethnicity, family history, and over 100 common
genetic variants. There are however other risk factors with less
conclusive evidence including height (Key et al, 1997; Hayes et al,
1999; Villeneuve et al, 1999; Hsing et al, 2000; Norrish et al, 2000;
Stattin et al, 2000). Height is a phenotypic trait determined

by a combination of genetics and environmental factors. The
relationship between height and prostate cancer risk has been
proposed to act through possible factors including pre-adult
nutritional status, androgen and insulin-like growth factor-I
(IGF-I; Giovannucci et al, 1997; Calle, 2000; Willett, 2000;
Freeman et al, 2001; Emerging Risk Factors Collaboration, 2012;
Travis et al, 2016).

Height per se is not a cause of cancer but it is a marker for other
exposures. It has also been suggested that taller stature may
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indicate increased risk of a number of cancers. The most consistent
evidence has been found in relation to breast cancer (Willett, 2000;
Gunnell et al, 2001).

In 2008, findings from a large nested case–control study
(ProtecT) and meta-analysis (58 studies) suggested a positive
association of height with high-grade prostate cancer (OR: 1.23;
95% CI: 1.06–1.43; Zuccolo et al, 2008). In this article, we present
results from the international collaboration, the Prostate Cancer
Association Group to Investigate Cancer Associated Alterations in
the Genome consortium (PRACTCAL; http://practical.ccge.-
medschl.cam.ac.uk/). The aim was to explore the effects of height
on prostate cancer risk. We were also interested to see if selected
candidate SNPs related to height were associated with prostate
cancer risk. Finally, we explored possible interactions between the
selected SNPs and height.

MATERIALS AND METHODS

PRACTICAL consortium. The PRACTICAL consortium
consists of 78 study groups around the world. The consortium
was established in September 2008. The co-ordination of
PRACTICAL is funded by Cancer Research UK and data
have been contributed to the Collaborative Oncology Gene-
environment Study (COGS), a project funded by the European
Commission and 7th Framework Programme and the NIH grant.
Each study with relevant data contributed an epidemiological data
set and blood samples. Data on epidemiological factors for each
study were provided in accordance with an assembled data
dictionary. We performed quality control checks for each study
before merging the data into one combined database. The majority
of the samples are of European ancestry (95%). Since we
investigated height as our main exposure we only analysed studies
that contained subjects with European ancestry in order to
minimise variation of height potentially influenced by different
ethnic groups.

Blood derived DNA samples were genotyped for 211,155 SNPs
on a custom Illumina array (iCOGS) in 25 074 prostate cancer
cases and 24 272 controls. Details of genotyping and quality control
analysis can be found in previous publication (Eeles et al, 2013).

Analysis of height exposure. During the QC process, any
subjects with outlier values were checked directly with the
individual study group and subsequently either corrected or
excluded. Height data were available in 10 out of 15 studies that
submitted data on epidemiological factors. The inclusion
criterion for this particular analysis is subjects with European
ancestry. The total number of prostate cancer cases and controls
were 6207 cases and 6016 controls. The list of studies included in
the height exposure analyses are listed in Supplementary Table 1.
Meta-analysis was performed using Meta-Analyst software
(Wallace et al, 2009). We performed analysis in all PCA cases
and high grade cases as compared to controls. The latter is
defined by Gleason grade X7. Out of 6207 cases, 2480 cases are
high grade cases. Meta-analysis was carried out in 9 studies as
one of the studies had no controls. Height was fitted as a
continuous variable and study heterogeneity was explored. We
also performed analysis whereby height was categorised into
quartiles using control height values to determine the ranges.
Results suggest study homogeneity hence results from a fixed
effect model are reported. Pooled analysis was also performed.
Tests for trend were carried out to assess possible dose-response
relationships. Analyses were performed using IBM SPSS
Statistics version 20.0. All analyses were adjusted for age, family
history of prostate cancer, and study sites. As the data were
derived from various studies with differing sample sizes, the

analyses were therefore adjusted for study site to avoid possible
confounding effects.

SNPs analyses. We explored the effects of candidate SNPs related
to growth factors on prostate cancer risk. We identified 168
candidate SNPs in IGF-I, GH-1, SHOX, FMR1, GHITM, and
GHRHR genes related to human growth based on evidence from
the literature and these SNPs were genotyped within a custom
Illumina array (iCOGS). The full list of 168 candidate SNPs and
associated relative risk estimates are shown in Supplementary
Table 2. To evaluate effect sizes of these SNPs, we created a data set
consisting of individual subjects whose IDs appeared in both the
genotype and epidemiological data sets by matching the IDs
between the two sets. We included only Caucasian subjects. This
resulted in 13 123 controls and 9424 cases. PLINK software was
used to explore minor allele frequency (MAF) and Hardy-
Weinberg equilibrium (HWE; Purcell et al, 2007). MAF ranges
were from 0.017 to 0.496. Out of 155 SNPs, 168 SNPs met HWE
(P40.05). STATA (version14) was used to obtain risk estimates
and R-square (LDscore; Cheng et al, 2006). To quantify risk, the
log-additive model was used by including a single variable coded as
0, 1, or 2 based additively on the number of minor alleles. Multiple
logistic regression analyses were carried out to obtain the odd
ratios of all 168 SNPs. Variables included in the model were age,
family history of prostate cancer, study sites, principal components
for European ancestry, and SNPs. Twelve SNPs showed significant
associations (P-value o0.05). We then computed the R-square
value for these 12 SNPs (Table 1). The results showed that
these SNPs fell into 4 regions. SNPs were excluded if r2 value was
40.8 among them and we kept the most informative SNP based
on association and P-value in each region. R-squared values for
these 8 SNPs were less than 0.26. After this process, eight SNPs
were selected for further analysis. Among these significant SNPs,
only two yielded odds ratios (ORs) above 1.15.

Gene and environment interaction analyses. We carried out gene
and environment (GE) analyses in 6207 cases and 6016 controls.
These are subjects with data on genotype and height. We applied
two type of analyses based on the effect sizes of the SNP analyses.

1. For the 8 SNPs that were significantly associated with prostate
cancer risk, individual standardised genetic score was com-
puted. First, we multiplied coefficient for each SNP derived
from multiple logistic regression (as explained above) with
individual risk allele of that particular SNPs. To obtain total
genetic risk score, we summed results from each SNP. To
compute standardised score, the total score was divided with s.d.
value from control group. First, genetic risk scores were
analysed as for main effect by comparing subjects in the second
and third tertile to the referent category. For GE analysis, both
height and genetic risk score were then compared as binary
variables. We classified both variables into tertiles with lowest
tertile as reference group and highest tertiles as exposed group.
We applied empirical-Bayes (EB) method proposed by
Mukherjee et al (Mukherjee et al, 2008). Results for all PCA
and high grade cases are presented.

2. We also employed the general multifactor dimensionality
reduction (GMDR) method (Chen et al, 2011). For this we
included the top 2 SNPs with effect sizes 41.15 and fitted these
into the model at the same time. This procedure is not possible
in the conventional GE methods. Height was fitted as a binary
variable. We included subjects with height in the reference
(lowest tertile) and top third tertile. Analyses were carried out
for all PCA and high grade cases. Age and family history of PCA
were fitted as covariates.
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RESULTS

Subject characteristics are displayed in Table 2. Family history of
prostate cancer is associated with prostate cancer risk. Subjects
with a positive family history of prostate cancer had a 12% increase
in prostate cancer risk. Mean height for cases and controls was
176.3 and 176.8 cms, respectively. The Student’s t-test suggests a
significant difference in the means between the two groups
(P-value o0.05). Results from a meta-analysis of height are
presented in Figures 1 and 2. ORs were adjusted for age, family
history of prostate cancer, and study site. In all cases and high
grade cases, point risk estimates of each study are very similar and
are close to 1. None of the estimated relative risks is statistically
significant. The heterogeneity P-value of 0.467 in all cases and
0.634 in high grade cases suggests that studies are homogenous.
ORs of fixed effect model in all cases and high grade cases are 1.002
(95% CI 0.996–1.009) and 1.003 (95% CI 0.996–1.011) respectively.

Results from pooled analysis yielded similar risk estimates with OR
1.004, 95% CI 0.996–1.012 in all cases and OR 1.007, 95% CI 0.999–
1.015 in high grade cases. We also analysed height as a categorical
variable. Results are presented in Table 3. Results also suggest no overall
association between height and prostate cancer risk comparing all cases
with controls. In the high-grade case group, however, significant results
were observed in the fourth quartile as compared to the first quartile
(OR 1.22, 95% CI 1.014–1.477).

Table 4 shows the ORs of candidate SNPs with statistically significant
results. ORs range from 0.90 to 1.32 with P-value from 10� 2 to 10� 3.
One SNPs in the IGF-I gene had the highest ORs (1.32).

Table 5 shows the ORs of genetic risk scores and prostate cancer
risk. A significant result was observed in the third tertile as compared
to reference tertile (OR 1.13 with 95% CI 1.03–1.23) when all prostate
cancer cases were included. The P-value for trend is also statistically
significant. In the high grade cases, similar results were observed.
There is also a trend of increasing risk with increasing genetic risk
scores in all prostate cancer cases and in high grade cases.

The interaction results between height and genetic risk scores
suggest that there is no GE interaction between height and genetic
risk score (Table 6) regardless of type of cases.

Results of the GE analyses by GMDR method are depicted in
Table 7. We fitted 2 SNPs with effect sizes 41.15 into the model
and adjusted for covariates (age and family history of PCA). None
of the models yield significant ORs regardless of case type. This is
confirmed by cross-validation consistency. Both all and high grade
cases, the extended models show consistency across testing sets.

DISCUSSION

This study investigated the effect of height and its possible
interaction with selected SNPs from the PRACTICAL consortium

in 6207 cases and 6016 controls. The consortium is an
international collaboration on PCA and it has had notable
successes for example in identifying 100 new genetic loci (Eeles
et al, 2008, 2009, 2013; Al Olama et al, 2009, 2012, 2014). These
loci confer small to medium risks with highly significant P-values
of p10� 7 (GWAS significance).

There are, however, many polymorphisms with estimated risks
less statistically significant which could still play an important role,
particularly in the presence of environmental exposure. We
therefore created a data set (subjects with epidemiological data
and genotype data) which allowed us to investigate such a
hypothesis.

Out of the 6207 cases, 2480 cases (40%) are high grade cases
defined by Gleason grade X7. One of the limitations of defining
high grade cases is that we did not have data on Gleason grade
breakdown hence we have to use combined score data of 7 rather
than (4þ 3 or 3þ 4). Age and family history of PCA are confirmed
risk factors in our study (Table 2). We investigated height in 3
ways. First, we explored height phenotype as a main exposure.
Second, we investigated genetic profile (candidate SNPs) related to
height, and third, we determined if there are any potential
interactions between the selected SNPs and height. SNPs were
deemed ‘related to height’ because they are found in candidate
genes for height but they have not necessarily been identified in
GWAS as underlying the variability of the height phenotype. We
present results for all PCA cases and high grade cases as compared
to controls. Although mean height values were very similar
between cases and controls the mean difference was statistically
significant and is in the opposite direction to that expected. In a
multivariate analysis adjusted for age, family history of PCA and

Table 1. R-square for 8 SNPs

SNPs rs11630647 rs11831436 rs13317803 rs2229765 rs2871864 rs35767 rs5742612 rs6503691
rs11630647 1

rs11831436 0.0000 1

rs13317803 0.0001 0.0000 1

rs2229765 0.0000 0.0001 0.0000 1

rs2871864 0.2013 0.0001 0.0000 0.0030 1

rs35767 0.0000 0.0484 0.0000 0.0000 0.0001 1

rs5742612 0.0000 0.2629 0.0000 0.0000 0.0001 0.2080 1

rs6503691 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0001 1

Abbreviation: SNP¼ single-nucleotide polymorphism.

Table 2. Demographic data

95% CI

Variables Case Control OR Lower Upper P-value

Age (years)
Number 6207 6016
Mean±s.d. 63±7 60±7 o0.001a

Family history of PCAb

No 4051 3594 1.00
Yes 904 831 1.12 1.00 1.24 o0.05

Height (cm)- all cases
Mean±s.d. 176.3±7.0 176.8±7.1 o0.001a

Number 2480 6016

Height (cm)- aggressive cases
Mean±s.d. 176.3±7.0 176.8±7.1 o0.05a

Abbreviations: CI¼ confidence interval; OR¼odds ratio; PCA=prostate cancer.
aP-value of Student t-test.
bAdjusted for age.
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study sites, height as a continuous variable did not show
associations with PCA risk in either all PCA cases or high grade
PCA cases. However, height categorised in quartiles did show
significantly increased risk in high grade cases. Subjects with a
height 4180 cm are at 22% increased risk compared with subjects
with height o173 cm. We did not observe any association between
height and low grade cases ((Gleason grade o7) results are not
presented in the paper). Our findings suggest taller subjects are at

increased risk of high grade PCA risk. A previous report from a
large nested case–control study (ProtecT) reported the OR of
prostate-specific antigen–detected high-grade PCA per 10 cm
increase in height was 1.23; 95% CI: 1.06–1.43. In a meta-analysis
of 58 studies, a smaller effect was reported (random-effects OR:
1.12; 95% CI: 1.05–1.19) (Zuccolo et al, 2008). Findings from The
Early Stage Prostate Cancer Cohort Study which looked at the
relationship between height and prostate cancer grade in various
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Figure 1. Forest plot (all prostate cancer cases).
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Figure 2. Forest plot (high grade cases).

Table 3. Height as quartiles and prostate cancer risk

All cases High grade cases

95% CI 95% CI

Height (cm)

Number of
subjects

(all
casesþ controls) ORa Lower Upper P-value

Number of
subjects

(High grade
casesþ controls) ORa Lower Upper P-value

Q1 (p173.0) 2949 1.00 2000 1.00

Q2 (173.1–177.9) 3210 1.16 0.99 1.35 0.064 2196 1.20 0.99 1.46 0.069

Q3 (178.0–180.0) 1865 1.07 0.89 1.28 0.467 1331 1.19 0.94 1.49 0.150

Q4 (4180.0) 4199 1.11 0.96 1.28 0.173 2969 1.22 1.01 1.48 0.035

Abbreviations: CI¼ confidence interval; OR¼odds ratio. All cases P for trend 0.407. High-grade cases P for trend 0.075.
aAdjusted for age, family history and study sites.
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subpopulations of men with potentially different risk of high-grade
PCA also suggested that participants in the highest quartile of
height were more than twice as likely to have a Gleason score X7
(4þ 3) at biopsy than participants in the lowest quartile of height
(OR 2.14 (95% CI 1.11, 4.14); Farwell et al, 2011). Two other
studies presented results exclusively on cases with advanced stage

PCA and both supported a positive association between height and
PCA risk (Hayes et al, 1999; Norrish et al, 2000). Hayes and
colleagues observed a two-fold increased risk in white men with
height41.75 metres compared to heighto1.67 metres. The asso-
ciation was absent among black men (Hayes et al, 1999). Norrish
and colleagues investigated the role of height and PCA risk in both

Table 4. Candidate SNPs with significant associations

95% CI

SNP Minor allele Genes Odds ratiosa Lower Upper P-value
rs6503691 A GHDC:STAT5B:STAT5A 0.90 0.82 0.99 0.036

rs13317803 G GHSR:TNFSF10 1.08 1.01 1.14 0.016

rs11831436 A IGF1 1.19 1.01 1.41 0.040

rs35767 A IGF1 1.12 1.03 1.22 0.006

rs5742612 G IGF1 1.32 1.13 1.55 0.001

rs11630647 A IGF1R 1.08 1.01 1.15 0.035

rs2871864 C IGF1R 1.11 1.01 1.22 0.031

rs2229765 A IGF1R:PGPEP1L 1.08 1.02 1.15 0.013

Abbreviations: CI¼ confidence interval; SNP¼ single-nucleotide polymorphism.
aMultiple logistic regression adjusted for age, family history of prostate cancer, study site and Principal Components of EU ancestry.

Table 5. Estimated risk of genetic risk scores (standardised score) and prostate cancer risk

All PCA High grade PCA

95% CI 95% CI

Genetic risk score Odds ratioa Lower Upper P-value Odds ratioa Lower Upper P-value
Reference 1.00 1.00

2nd tertile 1.06 0.97 1.16 0.186 1.03 0.92 1.16 40.05

3rd tertile 1.13 1.04 1.23 0.006 1.55 1.03 1.29 o0.05

Abbreviations: CI¼ confidence interval; PCA=prostate cancer. All cases P for trend 0.006, high-grade cases P for trend 0.014.
aAdjusted for height.

Table 6. GE interaction result (Bayesian method)–interaction between Height and genetic risk scores

G¼0 G¼1 95% CI

Group E¼0 E¼1 E¼0 E¼1 Total
Estimated

interaction OR
Lower Upper

Control 666 743 670 725 2804

All PCA case 738 629 766 743 2876 1.14 0.98 1.33

High-grade PCA case 293 248 305 305 1151 1.18 0.94 1.49

Abbreviations: CI¼ confidence interval; PCA=prostate cancer. G¼ 0-subjects with genetic risk score in the first tertile, G¼ 1-subjects with genetic risk score in the third tertile. E¼ 0-subjects
with height in the first tertile, E¼ 1-subjects with height in the third tertile.

Table 7. GE with 2 IGF-I pathway SNPs by GMDR method

Group Best model
Testing
accuracy

Testing
sensitivity

Testing odds ratioa Testing v2 Cross-validation
consistency

All PCA cases Height 0.51 0.51 1.07 (95% CI 0.72–1.59) 0.69 (P¼ 0.408) 10/10

Height, rs5742612 0.51 0.51 1.12 (95% CI 0.75–1.66) 0.84 (P¼ 0.358) 10/10

Height, rs5742612, rs11831436 0.51 0.51 1.09 (95% CI 0.73–1.61) 0.75 (P¼ 0.387) 10/10

High grade cases Height 0.51 0.54 1.16 (95% CI 0.63–2.11) 0.63 (P¼ 0.429) 10/10

Height, rs11831436 0.51 0.52 1.06 (95% CI 0.58–1.94) 0.22 (P¼ 0.636) 10/10

Height, rs5742612, rs11831436 0.51 0.53 1.12 (95% CI 0.62–2.05) 0.44 (P¼ 0.507) 10/10

Abbreviations: GE¼gene and environment; GMDR¼general multifactor dimensionality reduction; IGF¼ insulin-like growth factor; PCA=prostate cancer; SNP¼ single-nucleotide
polymorphism.
aTesting odds ratios adjusted for age and family history of prostate cancer.
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sporadic cancer cases and familial cancer cases. The study used the
Gleason grading score to characterise the cases. Advanced PCA
cases were defined by combined Gleason score X7 and localised
PCA cases by combined Gleason score p6. Results on sporadic
advanced cancer showed an indication of risk increasing across the
quintiles (p for trend¼ 0.07) which is similar to our high grade
cases. Moreover the risk was greater among those with a positive
family history of PCA (OR for height 4179 cm compared to
o170 cm¼ 7.41, 95% CI 1.68–32.67, p for trend¼ 0.02). A null
association was reported in localised cases. Not only is height
potentially associated with PCA risk but it also shows association
with PCA mortality. A recent publication including more than 1
million subjects investigated adult height and the risk of cause-
specific death and vascular morbidity suggested that hazard ratios
per 6.5 cm greater height were 1.04 (1.03–1.06) for death from
cancers and 1.07 (1.02–1.11) for death from PCA (Emerging Risk
Factors Collaboration, 2012). In contrast, the results form a large
cohort of 10 501 PCA cases and 10 831 controls within the NCI
Breast and Prostate Cancer Cohort Consortium (BPC3) suggested
that height was not associated with PCA risk both as a continuous
variable (OR: 1.001, 95% CI: 1.000–1.002 per cm increase,
P¼ 0.12) or as in tertiles (OR: 1.02, 95% CI: 0.99–1.06, P¼ 0.24)
(Lindstrom et al, 2011). A null association was reported in the
study also using PRACTICAL genotype data set and investigated
the effect of height and prostate cancer incidence and mortality
using Mendelian randomisation approach (Davies et al, 2015). The
authors analysed genetic variants associated with height from
published genome-wide association studies and reported that these
genetic variants are strong instrument for the variable. There are
some limitations in that GWA studies will not explain a majority of
the estimated 80% contribution of genetic factors to variation in
height (Lango Allen et al, 2010).

Human height is well known as a polygenic trait with a number
of genes that contribute to height (Chial, 2008). Recent GWAS
studies have identified strong and moderate effects of genes related
to human height (Weedon and Frayling, 2008; McEvoy and
Visscher, 2009). Single SNPs with small effects in aggregate form
can be applied to assign individuals to their height distribution
(Lettre, 2009). We applied a candidate SNPs approach and
identified SNPs in genes that had been genotyped in our
consortium that were related to growth processes. These SNPs
were in the genes IGF-I, GH-1, SHOX, FMR1, GHITM, and
GHRHR (Gunnell, 2000; Ellis et al, 2001; Gunnell et al, 2001).
Twelve SNPs in these genes show significant associations. We
computed r2 and kept the 8 SNP based on association and P-value
in each region. Only one SNP (rs6503691) showed a small
protective effect. This SNP is reported to associate with
significantly decreased risk of breast cancer (Johansson et al,
2007; Zhao et al, 2015). Polymorphisms in the IGF signalling
pathway have been shown to associate with PCA mortality (Cao
et al, 2014). Other studies reported null associations (Gu et al,
2010; Tsilidis et al, 2013). We also explored association between
aggregated SNPs score as main effect; results support that
individuals with genetic risk scores in the third tertiles are at
increased risk of high grade PCA at 15% and of all PCA cases at
13% as compared with the lowest tertile. A test for trend also
supports a dose-response relationship (P-value o0.05 in both case
groups). These findings support that a genetic risk score in the
growth pathway are associated with high grade PCA. IGF genes
have been previously linked with PCA (Cheng et al, 2006;
Johansson et al, 2007; Cao et al, 2014; Gan et al, 2014; Qian
et al, 2014; Takeuchi et al, 2014; Travis et al, 2016). GHSR genes
are also previously reported to associate with prostate cancer risk
(Dressen, 2007). We also investigated possible gene-environment
interactions using two approaches. The first approach uses
combined genetic risk scores and a binary variable of height with
the first tertile as the reference group and the third tertile as the

‘exposed’ group. Analyses were done in both PCA and high grade
case group using the Bayesian method proposed by (Mukherjee
et al, 2008). Results of the GE analyses however suggested no
interaction between genetic risk scores and height. In the second
approach, we selected the top 2 SNPs with the strongest effect sizes
and fitted a model using the GMDR method (Chen et al, 2011).
The GMDR method allows adjustment for discrete and quantita-
tive covariates and is applicable to both dichotomous and
continuous phenotypes. The GMDR with covariate adjustment
had a power of 480% in a case–control design with a sample size
of X2000. We applied the GMDR method because it differs from
the traditional GE method in that it allows more than 1 SNP in the
model (traditional method-based on the concept of single-factor–
based approaches; Lou et al, 2007). The results also showed no
interactions. None of the main effect (height) and extended models
showed any significant results.

In summary, our findings suggest that height and
genetic variants related to the human growth pathway are
associated with high grade PCA risk. Taller men of 41.80 m are
at increased risk of high grade PCA. Genetic variants in genes that
relate to growth pathways are associated with prostate cancer risk.
The estimated risk is evident amongst subjects in the highest score
group when combined genetic risk scores were used. There is,
however, no GE interaction between selected genetic variants and
height.
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