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Abstract: Fatigue is a multidimensional and subjective concept 
and is a complex phenomenon including various causes, 
mechanisms and forms of manifestation. Thus, it is crucial to 
delineate the different levels and to quantify self- perceived 
fatigue. The aim of this study was to discriminate between 
fatigue and nonfatigue stages using support vector machine 
(SVM) approach. Thus, electromyographic (EMG) signals 
collected in the department of biomedical engineering of 
Islamic Azad university of Mashhad, were used. 10 features in 
time, frequency and time- scale domains were extracted from 
sEMG signals and the effect of different objective functions for 
dimensionality reduction and different σ values in RBF kernel 
SVM were evaluated for fatigue detection. The best accuracy 
(89.45%) was achieved through RBF kernel with σ=0.5 and 
ROC criterion while the best accuracy through linear SVM was 
54.42%. These results suggest that the selected features 
contained some information that could be used by the nonlinear 
SVM with RBF kernel to best discriminate between fatigue and 
nonfatigue stages.   
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1. Introduction 

Fatigue is a multidimensional and subjective concept 

and is a complex phenomenon including various causes, 

mechanisms and forms of manifestation, hence poses a 

complex problem for the physician [1,3,6]. Since fatigue 

has physiological and psychological dimensions, 

delineation of its different levels and quantification of 

self- perceived fatigue is crucial [1]. 

Fatigue definition is very complex, not unique and 

controversial [13] but in physiology, fatigue is usually 

defined as the loss of voluntary force- producing capacity 

during exercise. This can be due to both central and 

peripheral mechanisms [1]. Fatigue has mostly been 

studied at peripheral level, i.e. in the muscle tissue. 

During peripheral fatigue, the accumulation of lactate and 

extracellular potassium, together with a lowering of pH, 

affects membrane excitability [1]. Surface EMG signals 

provide useful information about the underlying 

mechanisms of fatigue [1,6]. In spite of the limitations of 

the application of sEMG method to muscles positioned 

directly below the skin and the problem of cross talk from 

neighbouring muscles, this method due to its non- 

invasiveness, applicability in situ, real- time monitoring 

of fatigue and correlation with biochemical and 

physiological changes of muscle during fatigue, is widely 

used to determine local muscle fatigue [6]. To reduce the 

difficulty of the problem and the number of factors 

affecting the EMG signal, most past researches focused 

on myoelectric manifestation of muscle fatigue during 

isometric, constant force conditions. It is clear that such 

easy to study conditions do not reflect the muscle 

function in daily life [13]. The myoelectric signal in 

dynamic conditions, in which the muscle force, length 

and position of body segments change, is a nonstationary 

signal [2,3,4]. Since fatigue itself is not a physical 

variable, its assessment requires the definition of indices 

based on physical variables that can be measured, such as 

force, power, or variables associated to the EMG signal, 

such as amplitude and spectral estimates [13]. The most 

widely used method for estimating the spectrum of the 

EMG signal is Fourier transform. Fourier methods suffer 

from several limitations. One of them is the stationarity 

assumption, otherwise information about spectral changes 

will be lost [3,4,5,6,13]. Therefore, the parameters 

commonly used as indicators of spectral changes (i.e. 

median and mean frequency) during dynamic contraction 

may not accurately reflect muscle fatigue [14]. Recent 

developments in time- scale analysis methods, have been 

suggested new EMG parameters to assess muscle fatigue 

and overcome the nonstationary condition [5,6]. 

During dynamic contraction, amplitude, timing and 

frequency of muscle events within EMG signals change. 

So, one should be able to use extracted features, specially 

time- scale features of sEMG signals as a vector to 
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discriminate between fatigue and nonfatigue stages. A 

support vector machine (SVM) classifier is a powerful 

vector- based method that can be used for fatigue 

classification. In this study, the possibility of detecting 

two stages of muscle fatigue (nonfatigue and fatigue) 

during dynamic contraction was investigated. Thus, 10 

features in time, frequency and time- scale domains were 

extracted from sEMG signals and then linear and 

nonlinear SVM were used to discriminate between 

different phases.  

2. Methods 

2.1 Data 

Surface EMG data used in this study was taken from 

[7]. These signals were collected in the department of 

biomedical engineering of Islamic Azad university of 

Mashhad. In [7], sEMG signals from flexor digitorum 

profondus and trapezius muscles were recorded during 

typing with Power Lab 4/25T system (ADInstruments Pty 

Ltd. Australia) under the supervision of a physiotherapist. 

The subjects were 9 healthy girl students that all of them 

type with both hands and none of them feel weakness or 

fatigue in mentioned muscles before recording. In order 

to cover EMG frequency range and eliminate the low- 

frequency and high- frequency noise, the Power Lab 

filters were adjusted to 500 Hz and 8 Hz, respectively. 

Furthermore, in order to remove power line noise, notch 

filter centred at 50 Hz frequency was used. The raw EMG 

signals were passed through a 16- bit AD converter with 

a sampling frequency of 1000 Hz. This sampling rate is 

chosen regarding the largest frequency of EMG 

frequency content and Nyquist rate to avoid interference. 

Because all subjects report their fatigue in trapezius 

muscle, analyses for quantification of fatigue performed 

in this muscle [7]. 

2.2 Feature Extraction 

In order to quantify muscle fatigue and discriminate 

between fatigue and nonfatigue classes using linear and 

nonlinear SVM, first sEMG signal was split into one 

second epochs and then 10 features in time, frequency 

and time- scale domains were extracted from each epoch. 

Then features were normalized to come into a suitable 

scale. Since the recorded signals were too long (minimum 

recording duration was 15 min), after extracting features 

from each epoch, the average value of features in each 

five epoch, considered as one sample. It should be noted 

that all analyses of sEMG data were performed with 

MATLAB R2010a software (Mathworks Inc, USA). 

2.2.1 Time Domain Features   

Root Mean Square (RMS) and Zero Crossing Rate 

(ZCR) are the features that can be extracted from EMG 

signal in time domain.  

RMS: RMS of sEMG signal is indicative of firing 

frequency, duration and velocity of the myoelectric 

signal. The increment of this feature shows the 

recruitment of extra motor units to produce constant force 

and is an index of fatigue development.  
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Where xi is the ith sample of a signal and N is the 

number of samples in each epoch [6]. 

ZCR: The Zero Crossing Rate (ZCR) or zero crossing 

frequency fz of the signal x(t) is defined as half the 

number of zero crossings of x(t) per second. This feature 

indicates the number of baseline crossings of EMG 

signal. When the muscle activity increases, the more 

action potential will produce. But when fatigue started, 

this feature decreases because of the decrease in muscle 

fiber conduction.  
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Where X(f) is the power spectral density (PSD) of 

signal and fs is the sampling frequency [6]. 

2.2.2 Frequency Domain Features 

Median frequency (MDF), mean frequency (MNF) and 

dominant frequency (DF) are the features that extracted 

from sEMG signal in frequency domain.  

MDF and MNF: These two features are the most 

commonly used frequency variables in EMG studies and 

have been extensively used to provide basic information 

about changes of power spectrum during time. MNF is 

the average frequency of the power spectrum and is 

defined as its first- order moment. MDF is the frequency 

at which the spectrum is divided into two parts of equal 

power and is defined as zero- order moments of PSD. 

These two variables, described by the following 

equations: 
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In both “Equation (3)” and “Equation (4)”, P(ω) is the 

PSD of EMG signal and ω is the frequency variable [8].  

DF: This feature finds dominant frequency within a 

band of the selected frequency band (usually estimated 

using Welch’s method). For this feature a frequency band 

of 15 Hz to 45 Hz has been selected (since they repeated 

most frequently) [9]. 

2.2.3 Time- Scale Domain Features 

During isometric contraction, EMG signal can be 

assumed stationary for short time intervals (0.5- 2 s). 

With this assumption, spectral analysis based on Fourier 

transform can be used. But for dynamic contractions, like 

the situation of the present study, this assumption is not 

true. Recently, time- scale methods (Wavelet transform) 

were proposed to overcome the limitations of the time-



frequency methods. The time- scale methods do not 

require any stationarity assumption [3]. In this study, 5 

different indices were calculated using discrete wavelet 

transform (DWT). 

(a) Wavelet index of ratios between moment -1 at 

scale 5 and moment 5 at scale 1 (w1) that can be 

described by “Equation (5)”: 
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Where D5(f) and D1(f) are the power spectra calculated 

using Fourier transform of the fifth and first scales of the 

DWT using the wavelet sym5, respectively, and f1= 8 Hz 

and f2= 500 Hz [5]. 

(b) Wavelet index of ratio between moment -1 at 

maximum energy scale and moment 5 at scale 1 

(w2) that can be described by “Equation (6)”: 
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Where Dmax(f) and D1(f) are the power spectra 

calculated using Fourier transform of the maximum 

energy and first scales of the DWT using the wavelet 

sym5, respectively, and f1= 8 Hz and f2= 500 Hz [5]. 

(c) Wavelet index ratio between moment -1 at scale 

5 and moment 2 at scale 2 (w3) that can be 

described by “Equation (7)”: 
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Where D5(f) and D2(f) are the power spectra calculated 

using Fourier transform of the fifth and second scales, 

respectively of the DWT using the wavelet db5, and f1= 8 

Hz and f2= 500 Hz [5]. 

(d) Wavelet index of ratios of energies at scale 5 

and 1 (w4) that can be described by “Equation 

(8)”: 
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Where D5(f) and D1(f) are the details at scales five and 

one, respectively of the DWT calculated using wavelet 

sym5 [5]. 

(e) Wavelet index ratio between square waveform 

length at different scales (w5): 
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Where D5(f) and D1(f) are the details at scales five and 

one, respectively of the DWT calculated using wavelet 

sym5 [5]. 

2.3 Classification Using SVM 

Application of support vector machine (SVM) for 

classification problems is a new approach which became 

popular in recent years. The SVM approach is that in the 

training phase, it tries to select the decision boundary so 

that its minimum distance from each of the classes 

become maximum. This selection caused decision to bear 

the noisy situations in practice and to have a good 

response. This boundary selection method is based on the 

points called support vectors [10]. 

The linear SVM problem is a two- class classification 

problem using linear models of the form g(x)= w
T
. x + b. 

In practice, however, the class conditional distributions 

may overlap, in which case exact separation of the 

training data can lead to poor generalization [11]. Thus 

there is a need to modify SVM because the solution for 

linearly separable data is not applicable for nonlinearly 

separable case. One solution is to allow some of the 

training points to be misclassified. To do this, the slack 

variables, ξi≥0, are assigned to each training data point. 

Another solution is the use of nonlinear SVM. Nonlinear 

SVM operates in two stages: (1) nonlinear mapping of 

the feature vector onto a high dimensional space and (2) 

construct an optimal separating hyperplane in the high 

dimensional space. Since SVM is a supervised learning 

method, so it is necessary to label each epoch before the 

processing started. Labelling epochs into (1) fatigue and 

(2) nonfatigue classes performed based on self- report of 

subjects. In this study, linear and nonlinear SVM is used 

for EMG signal classification. To implement nonlinear 

SVM, the kernel function should be introduced. In this 

paper, radial basis function (RBF) kernel is used. RBF 

kernel can be defined as “Equation (10)”:  
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3. Results 

Since the dimensionality were high (10 features), first, 

it was tried to reduce the dimensions using feature 

selection method with filter strategy using different 

objective functions included t- test, entropy, receiver 

operating characteristic (ROC) and wilcoxon. TABLE I, 

shows the key features that selected through each 

criterion. 

  

TABLE I: Key Features Selected by Different Objective Functions. 

Wilcoxon ROC  entropy  t-test  Criterion  

W2 

W4  

RMS 

W2  

DF 

ZCR  

DF 

W2 

Key 

features  

 



After training SVM classifier using training dataset, 

the performance of the classifier is evaluated for test set 

and different criteria. TABLE II, shows the accuracy 

achieved by linear SVM and different criteria and Fig. 1 

indicates the result of separation using entropy criterion 

and linear SVM. 

  

TABLE II: The Accuracy Achieved by Linear SVM. 

wilcoxon  ROC  entropy  t- test Criterion  

51.41% 50.76% 54.42% 50.14% Accuracy  
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Fig. 1: Result of classification using linear kernel and entropy criterion.  

 

TABLE III, indicates the accuracy achieved by RBF 

kernel with different criteria and different σ values and 

Fig. 2 shows the results of discrimination via RBF kernel 

and ROC criterion and σ= 0.5. As can be seen in TABLE 

II and TABLE III, the best accuracy for linear SVM was 

54.42% with entropy criterion and the best accuracy for 

nonlinear SVM with RBF kernel was 89.45% with ROC 

criterion and σ= 0.5. Fig. 3 shows the effect of σ in 

decision surface and boundary and number of support 

vectors. 

 

TABLE III: Accuracy Achieved by RBF Kernel for Different σ Values 

And Different Criteria.  

1.5 1  0.5  0.2  
      Sigma              

 criteria  

55.81%  56.54%  58.53%  59.46%  t- test  

71.26%  71.85%  72.78%  71.71%  Entropy  

66.65%  72.64%  89.45%  -  ROC  

61.49%  66.20%  68.38%  70.89%  wilcoxon  

 

4. Conclusion 

Fatigue is a subjective concept and its definition is 

very complex, not unique and controversial. The 

detection and classification  of  muscle  fatigue,  provides  
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Fig. 2: Result of classification using RBF kernel and ROC criterion and 

σ= 0.5.  

 

useful information in many research areas. For example, 

in the branch of ergonomics which deals with 

musculoskeletal disorders, muscle fatigue may be 

considered as a major risk factor. Fatigue detection and 

classification through biofeedback system, may 

contribute to an awareness of a sustained muscle 

activation patterns. Fatigue classification also can be 

applied to the fields of human- computer interactions, 

sport injuries and performance.   

This study used linear and nonlinear SVM with RBF 

kernel to classify sEMG signal into fatigue and non 

fatigue classes. The kernel function or nonlinear mapping 

results in different kinds of support vector classifiers 

(SVCs) with different performance levels. But the choice 

of the appropriate kernel for a specific application is often 

a difficult task. If the data is known to be nonlinearly 

separable, we would expect that a nonlinear kernel based 

SVC would perform better than the one based on a linear 

kernel. Since the data in this study was nonlinearly 

separable, so it is reasonable to expect that the nonlinear 

SVM with RBF kernel have better performance than the 

linear one. The results of the classification accuracy 

shown in TABLE II and III, approve this claim (54.42% 

for linear SVM versus 89.45% for RBF kernel). In 

general, the RBF kernel is a reasonable first choice. 

Because, first, this kernel nonlinearly maps samples into 

a higher dimensional space so it, unlike the linear kernel, 

can handle the case when the relation between class 

labels and attributes is nonlinear. Furthermore, the linear 

kernel is a special case of RBF, because the linear kernel 

with a penalty parameter C, has the same performance as 

the RBF kernel with some parameters (C,γ). The second 

reason is the less number of hyperparameters which 

reduces the complexity of model selection. Finally, the 

RBF kernel has fewer numerical difficulties. However, 

this kernel is  difficult to design, in the sense that it is 

difficult to arrive an optimum σ. The fact that certain σ 

value make the SVM highly sensitive to training data also 

contributes to the error rate of the RBF- based SVM. A 

larger value of σ will give a smoother decision surface 

and more regular decision boundary. This is because an



Fig. 3: The result of classification with RBF kernel and entropy criterion. (a) σ=0.2, (b) σ=0.5, (c) σ=1, (d) σ=1.5.

 

RBF with large σ will allow a support vector to have a 

strong influence over a larger area. A larger σ value 

also increases the α value (the Lagrange multiplier) for 

the classifier. In this study, the best accuracy achieved 

with σ= 0.5. One of the advantages of the RBF kernel 

is that given the kernel, the αi (the Lagrange 

multipliers), the number of support vectors and the 

support vectors are all automatically obtained as a part 

of the training procedure, i.e. they need not be 

specified by the training mechanism. At the end, we 

can summarize the advantages of SVM and the reasons 

for using it as a classifier as follow: (1) There are no 

problems with local minima, because the solution is a 

quadratic programming (QP) problem. (2) There are 

few model parameters to select. 

(3) The final results are stable and repeatable.  

(4) SVM represents a general methodology for many 

pattern recognition (PR) problems: classification, 

regression, feature extraction, clustering, ....  

(5) SVM is a minimum memory space approach.  

(6) SVM provides a method to control complexity 

independently of dimensionality.  

(7) SVM have been shown (theoretically and 

empirically) to have excellent generalization capability. 
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