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Abstract: The emergence of the COVID-19 outbreak at the end of 2019, caused by the novel coronavirus
SARS-CoV-2, has, to date, led to over 13.6 million infections and nearly 600,000 deaths. Consequently,
there is an urgent need to better understand the molecular factors triggering immune defense against
the virus and to develop countermeasures to hinder its spread. Using in silico analyses, we showed
that human major histocompatibility complex (MHC) class I cell-surface molecules vary in their
capacity for binding different SARS-CoV-2-derived epitopes, i.e., short sequences of 8-11 amino
acids, and pinpointed five specific SARS-CoV-2 epitopes that are likely to be presented to cytotoxic
T-cells and hence activate immune responses. The identified epitopes, each one of nine amino acids,
have high sequence similarity to the equivalent epitopes of SARS-CoV virus, which are known to
elicit an effective T cell response in vitro. Moreover, we give a structural explanation for the binding
of SARS-CoV-2-epitopes to MHC molecules. Our data can help us to better understand the differences
in outcomes of COVID-19 patients and may aid the development of vaccines against SARS-CoV-2
and possible future outbreaks of novel coronaviruses.

Keywords: SARS-CoV-2; COVID-19; SARS-CoV; in silico analysis; MHC class I epitopes; HLA; viral
peptides; antigen presentation; vaccine development; immunoinformatics; homology modeling;
molecular dynamics simulations; structural biology

1. Introduction

The ongoing pandemic outbreak of COVID-19 has resulted in the declaration of a global health
emergency around the world on 30 January 2020 by the World Health Organization (WHO) [1]. The first
reported case was on 31 December 2019 from the Chinese city of Wuhan, from which the virus quickly
spread to 213 other countries and territories and, as of 17 July 2020, resulted in at least 13.6 million
infections and over 585,000 deaths [2]. Based on the early epidemiology of the COVID-19 disease
statistics, the WHO estimated that the fatality rate of the novel coronavirus is around 4%, significantly
higher than the mortality rate caused by common human coronaviruses [3]. There are currently
numerous scientific, clinical, and socio-economical efforts aimed at combating the COVID-19 disease
and its ramifications around the world [4,5].
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COVID-19 is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which is
a positive-sense single-stranded RNA virus belonging to the family Coronaviridae. Coronaviruses
usually infect animals, and in humans they generally cause mild respiratory infections with similar
symptoms observed in the common cold [6]. However, in the case of the newly recognized SARS-CoV-2
virus, older patients are especially at risk of developing moderate to severe acute respiratory distress
syndrome (ARDS), which often requires mechanical ventilation for several weeks [7]. More recently,
an increased risk for children for an extremely rare Kawasaki-like disease, acute pediatric vasculitis,
has also been observed [8]. In 2003, a coronavirus (SARS-CoV) originating from Southern China
caused an epidemic with an estimated case-fatality rate of around 14% [3]. In 2012, in Saudi Arabia,
another coronavirus was responsible for Middle East Respiratory Syndrome (MERS), having an even
higher estimated case-fatality rate of 35% [9]. However, no new cases of SARS-CoV have been reported
since 2004 and MERS-CoV has only caused sporadic outbreaks in a few countries, whereas the recent
SARS-CoV-2 has spread around the world, causing a global pandemic [3].

SARS-CoV, MERS-CoV and SARS-CoV-2 all belong to the betacoronavirus genus with a genome size
of approximate 30 kilobases that encodes many structural and non-structural proteins, the former coded
by their own open reading frames (ORFs) and the latter by two overlapping replicase genes—ORF
1a and 1b—that encode polyproteins 1a (450 kDa) and 1 ab (750 kDa) [10,11]; processing of the
polyproteins must take place before the virus can replicate and re-infect other cells and other humans.
Two non-homologous, virally encoded cysteine proteinases are involved in processing the polyproteins:
the main protease (Mpro), also known as the chymotrypsin-like protease (3CLpro) (see Denesyuk
2020 [12], comparison of the family active sites), and the papain-like protease (PLpro), both of which first
autocatalytically release themselves before cleaving out the individual proteins from the polyproteins.
The structural proteins include the spike (S) glycoprotein, the envelope (E) protein, the membrane (M)
protein and the nucleocapsid (N) protein [10,11].

The coronavirus entry into its host cells is mediated by the S protein, a homotrimeric transmembrane
protein, each 180 kDa monomer comprising two functional subunits S1 and S2 [13]. The S1 subunit
has two domains, the N-terminal domain (NTD) and C-terminal domain (CTD) and, depending
on the virus, either NTD or CTD is used as the receptor binding domain (RBD) recognizing host
cells. SARS-CoV-2, like most other coronaviruses including SARS-CoV, uses CTD as its RBD for
host cell attachment—the RBD of SARS-CoV-2 interacts with the angiotensin-converting enzyme 2
(ACE2) receptor on the host cell [13,14], with about 4X higher affinity in comparison to SARS-CoV [15].
The RBD of bat coronavirus RaTG13 has also been shown to bind human ACE2 and gain cell entry,
and the CoV-pangolin/GD RBD shares features consistent with ACE2 binding [15]. The S2 subunit is
needed for fusion with the cellular membrane and the fusion is activated by proteolytic cleavage by the
human transmembrane serine protease 2 (TMPRSS2), which leads to the internalization of SARS-CoV-2
and replication inside its host cell [13,16]. Thus, infection proceeds but the human host responds by
mounting a defense against the onslaught of newly formed virus particles.

The human leukocyte antigen (HLA) system refers to a group of human proteins that are encoded
by the major histocompatibility complex (MHC) genes and are critical components of the viral antigen
presentation pathway of the immune system [17]. Based on previous reports related to SARS-CoV,
there is an increased risk for a severe disease among individuals with the HLA-B*46:01 genotype [18].
Furthermore, epitopes from the S, N and M proteins originating from SARS-CoV have been shown to
stimulate immune responses in which CD8+ cytotoxic T cells are vital for eliminating virus-infected
cells [19–22]. Hence, it is of extreme importance to understand this elimination process in order to
understand COVID-19 disease progression. The immunological cascade relies on the presentation
of viral fragments of infected host cells by the MHC class I cell-surface molecules, which enables
recognition by the T-cell receptors (TCR) of the cytotoxic or killer T cells, ultimately leading to the
destruction of the infected cells [23]. The viral peptide fragments are created in the cytosol of the host
cells mainly by the ubiquitin–proteasome system and the viral fragments are translocated into the
lumen of the ER, with the aid of the transporter associated with antigen processing (TAP). In the ER,
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peptides are loaded on MHC receptors using a peptide loading complex consisting of TAP and several
other proteins [23].

In order to narrow down the specific epitopes that could elicit an effective MHC class-I-mediated
T cell response, we predicted linear 9-mer immunogenic SARS-CoV-2 peptides and their prominent
interacting HLA allotypes using the Immune Epitope Database and Analysis Resource (IEDB) and
NetCTL1.2 web servers. The identified peptides were then analyzed in conjunction with the available
experimental data for SARS-CoV-derived linear T-cell epitopes. The three-dimensional structural
models of selected ternary complexes of SARS-CoV-2 epitope—HLA allotype—T cell receptor were
created to assess interactions at the structural level. Our results can at least partially explain
individual differences in the COVID-19 severity and could potentially be used for vaccine development
against SARS-CoV-2.

2. Materials and Methods

2.1. Source of Sequences

All 26 protein sequences encoded by the most up-to-date SARS-CoV-2 genomic sequence (RefSeq:
NC_045512.2) were retrieved from NCBI RefSeq database [24] on 27 March 2020 (full accession
identifiers in Table 1).

Table 1. SARS-CoV-2 proteins analyzed to predict major histocompatibility complex (MHC) class I
binding epitopes.

Protein Name Length (aa) NCBI RefSeq Accession ID

nsp1 180 YP_009725297.1
nsp2 638 YP_009725298.1
nsp3 1945 YP_009725299.1
nsp4 500 YP_009725300.1
3C-like proteinase (3CLpro) 306 YP_009725301.1
nsp6 290 YP_009725302.1
nsp7 83 YP_009725303.1
nsp8 198 YP_009725304.1
nsp9 113 YP_009725305.1
nsp10 139 YP_009725306.1
nsp11 13 YP_009725312.1
RNA-dependent RNA polymerase (RdRp) 932 YP_009725307.1
Helicase 601 YP_009725308.1
3′-to-5′ exonuclease (35EXO) 527 YP_009725309.1
Endo RNAse (EndoR) 346 YP_009725310.1
2′-O-ribose methyltransferase 298 YP_009725311.1
Surface glycoprotein (S) 1273 YP_009724390.1
ORF3a 275 YP_009724391.1
Envelope protein (E) 75 YP_009724392.1
Membrane glycoprotein (M) 222 YP_009724393.1
ORF6 61 YP_009724394.1
ORF7a 121 YP_009724395.1
ORF7b 43 YP_009725318.1
ORF8 121 YP_009724396.1
Nucleocapsid phosphoprotein (N) 419 YP_009724397.2
ORF10 38 YP_009725255.1

2.2. MHC Class I Epitope Prediction

The IEDB (http://tools.iedb.org/mhci/) [25] and NetCTL1.2 (http://www.cbs.dtu.dk/services/
NetCTL/) [26] web servers were used with default parameters to predict SARS-CoV-2 epitopes
and their binding affinities (expressed as IC50) to different HLA allotypes. The IEDB server sorts
the predicted MHC-I-binding viral epitopes based on the percentile score, which is calculated by

http://tools.iedb.org/mhci/
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comparing the predicted binding affinities of SARS-CoV-2 peptides and affinities calculated for a large
set of peptides, randomly selected from the SWISSPROT database [25]; the IEDB server integrates an
artificial neural network (ANN), stabilized matrix method (SMM) and Combinatorial library (CombLib).
The IEDB method is highly accurate in classifying MHC class I epitopes, having an AUC for the
ROC curve greater than 0.9 [27]. The NetCTL1.2 server integrates prediction of proteasomal cleavage,
TAP transport and peptide-binding to 12 MHC-I supertypes (see Table S1A for a list of HLA-A and
HLA-B allotypes that belong to these 12 supertypes, with data extracted from the published scientific
literature [28,29]). The NetCTL1.2 method allows for the identification of class I MHC epitopes with
a sensitivity of 0.80 and specificity of 0.97 based on the default filtering threshold score of 0.75 [26].
Since the NetCTL1.2 and IEDB servers use different multistep approaches to predict the binding of
SARS-CoV-2 peptides to HLAs, we used both servers.

MHC-I allotypes are known to bind epitopes with lengths of 8 to 11 amino acids. The optimal
epitope length was determined by potting the IC50 values of the predicted (IEDB) top 1 percentile
epitopes against 8- to 11-mers. Moreover, the immunogenicity of the top 1 percentile epitopes were
predicted using the MHC-I immunogenicity server of IEDB (http://tools.iedb.org/immunogenicity/) [25].
The epitopes with an immunogenicity score greater than 0.25 were considered for comparison with
epitopes predicted using the NetCTL1.2 server.

2.3. Comparison of Predicted and Experimentally Known Epitopes

In order to identify experimental epitopes matching the predicted SARS-CoV-2 epitopes, the data
of experimentally known SARS-CoV epitopes and their interacting MHC allotypes (validated using
T-cell assays and MHC ligand assays) were downloaded from the IEDB database on 15 April 2020
(https://www.iedb.org/database_export_v3.php) [25]. The characteristics of each “match” (protein
name, sequence, mapped start-end, MHC-I allotype, etc.) were tabulated and are presented in Table S8.

2.4. Epitopes Physicochemical Properties and eMHC-I Complex Stability

The grand average of hydropathicity index (GRAVY) was calculated using the Kyte–Doolittle
hydropathy index scale [30]. TMHMM2.0 was used to search potential transmembrane helices [31].
The Jpred4 web server was used to predict secondary structures in non-transmembrane proteins [32].
The half-lives of the predicted eMHC-I complexes was predicted using the NetMHCstabpan1.0
web server [33]. Data were plotted using GraphPad Prism (GraphPad software, version 8.0.0;
https://www.graphpad.com).

2.5. Docking and Structural Analyses

The crystal structures of an influenza A virus epitope in complex with the HLA-A*02:01 allotype
(PDB ID: 5TEZ, chain A and C; 1.7 Å) [34] and hepatitis B core antigen with HLA-A*02:06 (PDB ID:
3OXR, chain A and C; 1.7 Å) [35] were downloaded from the Protein Data Bank (PDB) [36] (see Table S1B
for the PDB codes of MHC-I allotype structures indicated in Table S1A). For docking to HLA allotypes,
the Rosetta FlexPepDock web server [37] was used, after the 9-mer influenza A epitope was mutated
to match selected SARS-CoV-2 epitopes using PyMOL (The PyMOL Molecular Graphics System,
Schrödinger, LLC). For ternary complex analysis, the T-cell receptor (TCR)-HLA-influenza A epitope
complex (PDB ID:5TEZ) was used as a template. Coordinates of the TCR α and β chains (PDB ID:
5TEZ; chain I and J, respectively) and the docked epitope–HLA-A*02:01 complex were saved using
PyMOL, and interacting residues visually inspected at the interface.

2.6. Molecular Dynamics Simulations

Molecular dynamics (MD) simulations followed the general protocol detailed in [38].
Briefly, the ternary composite structure of HLA-A*02:01 in complex with the SARS-CoV-2 S protein
epitope 1220FIAGLIAIV1228 and TCR was used as a starting structure to perform molecular dynamics
simulation. The structure was initially prepared using Maestro (Schrödinger Release 2019–1: Maestro,

http://tools.iedb.org/immunogenicity/
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version, Schrödinger, LLC) by adding hydrogen atoms, determining the protonation states of ionizable
side-chains and energy minimizing the structure to remove bad contacts. Three independent simulations
were carried out using the Amber program (version 2018) [39] and the ff14SB protein forcefield [40].
The ternary structure was solvated with TIP3P water molecules [41] in an octahedral box, keeping a
12 Å distance between solute atoms and the surface of the box. The simulation system was neutralized
by adding Na+ ions, with additional Na+/Cl− ions incorporated to bring the system salt concentration
to 0.15 M. The system was then energy-minimized for 5000 cycles using the steepest descent and
conjugate gradient methods. The minimization was carried out in six-stages, where a restraint on
solute atoms was gradually lowered from 25 to 0 kcal mol−1 Å−2. Subsequently, the system was heated
to 300 K during 100 ps with a 10 kcal mol−1 Å−2 restraint on solute atoms. Next, equilibration was
performed for 6 ns in four steps by systematically reducing the restraint force to 0 kcal mol−1 Å−2.
Finally, a restraint-free 100 ns production simulation was carried out at constant temperature (300 K)
and pressure (1 bar). Coordinates were saved every 20 ps and the sampled conformations were
analyzed using VMD [42], Cpptraj [43] and Chimera [44] programs. Root–mean–square fluctuation
(RMSF) calculation was computed using the Cα atoms of the initial structure as a reference. Hydrogen
bonds were defined with a bond length ≤3.5 Å and a bond angle ≥135◦.

3. Results

3.1. Prediction of Binding of SARS-CoV-2-Derived Peptides to MHC Class I Receptors

In order to estimate the potential antiviral cytotoxic T-cell response linked to specific HLA
allotypes, we predicted the binding affinity of all possible linear 8- to 11-mer peptides derived from the
26 proteins (Table 1) of the SARS-CoV-2 proteome (N8 = 375, N9 = 2105, N10 = 1556 and N11 = 2377) to
HLA-A and HLA-B supertypes using the IEDB web server [25]. The HLA-C supertype—an extremely
good ligand for killer-cell immunoglobulin-like receptor (KIR) on natural killer (NK) cells—was not
selected for this analysis because it is known to be less effective in presenting antigens to cytotoxic
T-cells than either HLA-A or HLA-B [45]. The class I MHC-epitope (eMHC-I) complexes were classified
into three different groups based on the predicted epitope-to-MHC binding affinity scores [46]: strong
binders (IC50 ≤ 50 nM), weak binders (50 nM < IC50 ≤ 500 nM) and non-binders (IC50 > 500 nM).

Out of the highest scoring SARS-CoV-2 epitopes (top 1 percentile), the 9- and 10-mers had,
on average, a higher binding affinity to MHC class I supertypes than either the 8- or 11-mer epitopes
(Figure 1A). Moreover, there were 52% more 9-mer peptides (3187) predicted to bind to class I MHC
receptors (IC50 ≤ 500 nM) in comparison with 10-mer peptides (2096) (Figure 1B). Consequently, the top
one percentile 9-mer peptides were selected for further analysis.

The predicted (IEDB) SARS-CoV-2 9-mer epitopes (top one percentile) for 50 different HLA
allotypes (Table S1A) with an immunogenicity score ≥ 0.25 were compared to those predicted using the
NetCTL1.2 server [26]. The MHC class I epitopes identified from this consensus/combined approach
were classified using the binding affinity values from IEDB prediction method as strong MHC binders
(Table S2), weak binders (Table S3) or non-binders (Table S4). Based on this analysis, many peptides
derived from nonstructural proteins (nsp), surface glycoproteins (S) and membrane proteins (M) of
SARS-CoV-2 are likely to be presented by MHC class I receptors (Figure 1C, Table S5), and hence have
a high potential to activate an immune response or the destruction of infected host cells, with many
epitopes being derived from the S, E, 3C-like proteinase (3CLpro) and 3′-to-5′ exonuclease (35EXO)
proteins. In order to predict the most potent epitopes, including those without experimental data,
we screened in silico the proteins of SARS-CoV-2. We ranked the epitopes based on predicted binding
to MHC-I molecules (affinity values; IEDB) and “combined score” (NetCTL1.2), predicting the potency
of an epitope to be presented by MHC-I (Tables S6 and S7). The top-ranked, common epitopes from
both prediction methods (Table 2) were selected for further analysis; all five of these predicted epitopes
are unique to SARS-CoV-2 and not identical in SARS-CoV.
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Figure 1. Prediction of binding of antiviral peptides to MHC-I allotypes. (A) Distributions of the
predicted affinities (IC50, log scale) to HLA-A and HLA-B supertypes of all possible linear 8- to 11-mer
peptides derived from the 26 proteins of the SARS-CoV-2 proteome. The predicted MHC class I binding
epitopes were classified as strong MHC binders (IC50 ≤ 50 nM), weak binders (50 nM < IC50 ≤ 500 nM)
and non-binders (IC50 > 500 nM); (B) Number of MHC-I–binding 9- and 10-mers categorized as
strong, weak and non-binders; (C) Number of 9-mer epitopes with an immunogenicity score ≥ 0.25 in
SARS-CoV-2 proteins identified with the IEDB and NetCTL1.2 prediction methods.

Table 2. Most potent SARS-CoV-2–derived MHC class I binding epitopes identified with both the IEDB
(lowest IC50) and NetCTL1.2 (highest combined score) in silico prediction methods.

Epitopes Protein Allotype Supertype Combined Score Predicted IC50 (nM)
738DTDFVNEFY746 RdRp A*01:01 A01 3.619 2.83
1505LVAEWFLAY1513 nsp3 A*29:02 A01 2.748 3.02
289SHFAIGLAL297 Helicase B*39:01 B39 2.168 4.55
1507AEWFLAYIL1515 nsp3 B*40:01 B44 2.036 4.88
1505LVAEWFLAY1513 nsp3 B*35:01 A01 2.748 5.66
1507AEWFLAYIL1515 nsp3 B*40:02 B44 2.036 7.64
217AMDEFIERY225 EndoR A*01:01 A01 3.138 10.47
1505LVAEWFLAY1513 nsp3 B*15:01 A01 2.748 11.16
1505LVAEWFLAY1513 nsp3 A*26:01 A01 2.748 18.88

3.2. Analysis of Correlation between in Silico Identified SARS-CoV-2 (This Study) and Experimentally
Validated SARS-CoV (from IEDB) Epitopes

In order to obtain experimental proof that the MHC-I—Binding SARS-CoV-2 epitopes predicted
in this study are presented by the MHC class I antigen processing pathway in vivo, we compared
the in-silico-identified 9-mer epitopes (n = 166, Table S5) to the equivalent, experimentally identified
epitopes of SARS-CoV strains (n = 3760; MHC ligand assays data from the IEDB database) [25].
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In this comparison, we identified 29 common epitopes of SARS-CoV/SARS-CoV-2 (Table S8) and HLA
allotypes HLA-A*02:01 and HLA-A*02:06 molecules as the top antigen presenters; both allotypes having
strong binding affinities (IC50 ≤ 50 nM) to six peptide epitopes (Table 3): residues 1220FIAGLIAIV1228

from the S protein, 17VLLFLAFVV25 and 20FLAFVVFLL28 to the E protein, 204VLAWLYAAV212 to
3CLpro, 330LLSAGIFGA338 to nsp3 and 184VLWAHGFEL192 to 35EXO of SARS-CoV-2.

Table 3. SARS-CoV-2–derived HLA-A*02 supertype-binding epitopes that are identical to the epitopes
of SARS-CoV strains experimentally known to activate cytotoxic T-cells.

Epitopes Protein Epitope
Mutation

Combined
Score Allotypes Predicted

IC50 (nM)
Experimental

IC50 (nM)

1220FIAGLIAIV1228 S No 1.212
A*02:01
A*02:06
A*68:02

10.29
11.13
8.32

1.48
2.8
0.54

17VLLFLAFVV25 E No 1.213 A*02:01
A*02:06

21.72
107.83

5.62
12.6

20FLAFVVFLL28 E No 1.440 A*02:01
A*02:06

5.26
51.99

0.23
2.57

204VLAWLYAAV212 3CLpro No 1.173 A*02:01
A*02:06

13.40
29.50

0.435
8.79

184VLWAHGFEL192 35EXO No 1.360 A*02:01
A*02:06

5.78
34.55

0.40
20.3

330LLSAGIFGA338 nsp3 I335V 1.217 A*02:01
A*02:06

10.09
14.54

8.1
24.6

To examine the evolutionary conservation or ”sequence stability” of the six common epitopes
of SARS-CoV/SARS-CoV-2 binding strongly to HLA-A*02:01 and HLA-A*02:06, we performed
a blastp (NCBI) search against the non-redundant database of SARS-CoV-2 [47]. Only one
epitope—330LLSAGIFGA338 from nsp3—was found to have heterogeneity in its sequence (Table 3),
whereas the other five epitopes were fully conserved, i.e., not yet having changed during the evolution
of SARS-CoV-2, suggesting an important role for these peptide sequences for the virus and, at the
same time, making these peptides top-candidate antigens for activating the cytotoxic T-cell response
against SARS-CoV-2 itself. The five conserved and experimentally proven epitopes we selected for
further analyses.

3.3. Efficiency of Epitope Presentation to Stimulate an Immune Response

Since MHC class I molecules must retain bound epitopes long enough at the cell surface to
successfully induce T-cell-specific immune responses [48], we estimated the half-life in hours for each
of the experimentally identified epitope-HLA complexes (Table 3) using the NetMHCstabpan1.0 web
server [33]. This analysis revealed that the HLA-A*02:01 and HLA-A*02:06 allotypes have longer
predicted half-lives than HLA-A*68:02 when in complex with the immunogenic epitopes (Table 4):
all five HLA-A*02:01-epitope complexes and three out of five HLA-A*02:06-epitope complexes had a
predicted half-life longer than 4 h, whereas the single HLA-A*68:02-epitope complex had the lowest
half-life of less than one hour.
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Table 4. Predicted half-lives of complexes of the conserved SARS-CoV-2-derived most immunogenic
experimentally identified epitopes and HLA-A*02 allotypes shown in Table 3. Secondary structures,
localization within SARS-CoV-2 and GRAVY (grand average of hydropathicity index) scores of
the epitopes.

Epitopes Allotypes Half-Life (in
Hours)

Secondary
Structure Localization GRAVY Score

1220FIAGLIAIV1228
A*02:01
A*02:06
A*68:02

5.11
5.42
0.63

helix transmembrane 3.056

17VLLFLAFVV25 A*02:01
A*02:06

4.13
1.90 helix transmembrane 3.489

20FLAFVVFLL28 A*02:01
A*02:06

11
5.48 helix transmembrane 3.333

204VLAWLYAAV212 A*02:01
A*02:06

8.13
4.42 helix intravirion 2.133

184VLWAHGFEL192 A*02:01
A*02:06

6.51
2.26 strand-coil-helix intravirion 0.933

In order to examine the distribution of the HLA-A*02-antigen complex half-lives in general,
we analyzed more than 6500 experimentally known complexes of HLA-A*02 supertypes (see Table S1A
for a list of allotypes) bound to bacterial- and viral-pathogen-derived epitopes, which were extracted
from the IEDB database [25]. This revealed that immunogenic (IC50 ≤ 50 nM) HLA-A*02:01-epitope
complexes with predicted half-lives of more than three hours were almost double in number in
comparison to the HLA-A*02:06-epitope complexes, whereas no immunogenic HLA-A*68:02-epitope
complexes were found that would have a similar half-life (Figure S1A). Interestingly, the amino acid
sequences of the α chains of HLA-A*02:01 and HLA-A*02:06 are 99.6% identical; the only difference in
the sequences—a phenylalanine to tyrosine substitution—is located at the epitope-binding site and is
the likely reason for the difference in the epitope binding affinities and half-lives.

Out of the five most stable epitopes (Table 4), three—1220FIAGLIAIV1228 (S protein),
17VLLFLAFVV25 (E protein) and 20FLAFVVFLL28 (E protein)—were derived from transmembrane
proteins and were, as expected, more hydrophobic (GRAVY score > 3) than the 204VLAWLYAAV212

(3CLpro) and 184VLWAHGFEL192 (35EXO) epitopes originating from intravirion proteins (Table 4).
The epitopes derived from the S and E proteins respectively map to transmembrane helical segments
1214WYIWLGFIAGLIAIVMVTIMLCC1236 and 12LIVNSVLLFLAFVVFLLVTLAIL34 that, based on
analysis using the TMHMM2.0 web server [31], are bitopic in nature, i.e., the predicted transmembrane
helices span the lipid bilayer only once. In fact, our predicted epitopes share features, such as
being membrane associated, with the well-studied and clinically important epitopes in HIV [49] and
tuberculosis [50]. This supports the idea that the transmembrane helical epitopes of SARS-CoV-2 could
potentially stimulate cytotoxic T-cell-mediated immune responses.

In order to assess whether hydrophobic residues are enriched in the immunogenic epitopes,
we compared the GRAVY score distribution of the immunogenic (n = 1678, IC50 ≤ 50 nM) and
non-immunogenic (n = 2228; IC50 > 500 nM) HLA-A*02-bound epitopes of bacterial and viral pathogens
(retrieved from the IEDB database) (Figure S1B). We found that, for epitopes with a GRAVY score greater
than one (having at least seven non-charged residues in a 9-mer epitope), the immunogenic epitopes
were more enriched in hydrophobic residues (55%) in comparison to the non-immunogenic epitopes
(19%). Thus, our analysis suggests that HLA-A*02 supertype molecules prefer binding to hydrophobic
epitopes (IC50 ≤ 50 nM), and this agrees with published results [51]. Moreover, we obtained similar
results from our in-silico-identified SARS-CoV-2-derived novel epitope—MHC-I complexes (Table 2):
the most potent identified epitopes had long half-lives and were derived from either hydrophobic,
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transmembrane regions of SARS-CoV-2 or from intravirion proteins that were also found to be mutated
among SARS-CoV-2 sequences (Table 5).

Table 5. Predicted half-lives of the novel SARS-CoV-2-derived, most immunogenic in-silico-identified
epitopes in complex with the allotypes shown in Table 2. Secondary structures, localization within
SARS-CoV-2, GRAVY scores and known mutations in the epitopes.

Epitopes Allotype Epitope Mutation Half-Life (in Hours) Localization GRAVY Score

738DTDFVNEFY746 A*01:01 E744D
T739I 2.84 intravirion −0.689

1505LVAEWFLAY1513 A*29:02 No 3.64 transmembrane 1.389

289SHFAIGLAL297 B*39:01
H290Y
A296S
L297F

2.02 intravirion 1.567

1507AEWFLAYIL1515 B*40:01 No 2.04 transmembrane 1.422
1505LVAEWFLAY1513 B*35:01 No 1.69 transmembrane 1.389
1507AEWFLAYIL1515 B*40:02 No 3.81 transmembrane 1.422

217AMDEFIERY225 A*01:01
A217V
F221L
R224Q

1.26 intravirion −0.589

1505LVAEWFLAY1513 B*15:01 No 7.51 transmembrane 1.389
1505LVAEWFLAY1513 A*26:01 No 1.33 transmembrane 1.389

3.4. Structural Properties of the Peptide-HLA-A*02:01-Complexes Defining T Cell Receptor (TCR) Recognition

In order to compare the interaction patterns adopted by the predicted top five immunogenic
epitopes (Table 4) of MHC-I molecules, we docked the epitopes to the cleft between the α1 and
α2 helices of HLA-A*02:01 (PDB ID: 5TEZ, chain A) and HLA-A*02:06 (PDB ID: 3OXR, chain A).
This docking analysis agrees with our other prediction data and suggests that the immunogenic
epitopes bind to both the HLA-A*02:01 and HLA-A*02:06 allotypes by adopting a similar backbone
conformation, as has been observed for the canonical epitope 1GILGFVFTL9 of the influenza A virus
(PDB ID: 5TEZ, chain C) (Figure S1C,D). In more detail, we observed that the residues at position (Pos)
1, 2, 3 and 9 are fully buried within the antigen-binding cleft of HLAs and act as anchoring residues,
providing steric constraints to the N- and C-terminus of the epitopes (Figure 2A,B). Comparison of the
root–mean–square deviation (rmsd) of the superposed Cα atoms of the epitopes revealed a maximum
deviation for the 184VLWAHGFEL192 epitope (35EXO), possibly due to the bulky, aromatic side chain
of W186 buried at Pos3 and two charged residues: H188 at Pos5 and E191 at Pos8 (Table 6).

Interactions between the partially solvent-exposed hydrophobic residues at Pos4-Pos8 of the
docked epitope 1220FIAGLIAIV1228 (S protein) and the solvent-exposed residues A69, K66, V76, T80,
K146, V152 and Q155 of the α1 and α2 helices of HLA-A*02:01, complement what is seen in the X-ray
crystal structure of the influenza A virus epitope-HLA-A*02:01 complex (PDB ID: 5TEZ, chain A and C),
and suggest that the SARS-CoV-2 epitope-HLA complex interacts with TCR (Figure 2C).
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Figure 2. 3D structural models of MHC-I in complex with selected epitopes (Table 4) and ternary
complex of MHC-I–epitope—T cell receptor (TCR). (A) and (B) Five immunogenic epitopes (Table 4)
were docked into the cleft between the α1 and α2 helices of HLA-A*02:01 (PDB ID: 5TEZ, chain A)
and HLA-A*02:06 (PDB ID: 3OXR, chain A) (surface presentation). The epitopes 1220FIAGLIAIV1228,
17VLLFLAFVV25, 20FLAFVVFLL28, 204VLAWLYAAV212 and 184VLWAHGFEL192 are respectively
colored cyan, yellow, blue, salmon and green, and are shown as ribbons; residues at Pos1-3 and Pos9 as
sticks; (C) Structure of the epitope 1220FIAGLIAIV1228 (cyan sticks) docked into the cleft of HLA-A*02:01
(PDB ID: 5TEZ, chain A; gray cartoon and sticks). Residues G1223 to I1227 of the epitope and A69,
K66, V76, T80, K146, V152 and Q155 of HLA-A*02:01 have solvent-exposed side chains; (D) Ternary
complex structure of HLA-A*02:01 (gray cartoon), epitope 1220FIAGLIAIV1228 (cyan loop and sticks)
and TCR. Conformations of the CDR1α, CDR2α and CDR3α loops of the TCR-α chain (orange) and
CDR1β, CDR2β and CDR3β of the TCR-β chain (blue) are shown; (E) Side chains of residues of CDR3α
(orange sticks) and CDR3β (blue sticks) loops making hydrophobic interactions (dotted yellow line;
distances in Ångströms) with both the epitope 1220FIAGLIAIV1228 (cyan sticks) and the HLA-A*02:01
molecule (residues located at the α1 and α2 helices; gray sticks) are shown; (F) Structure of the epitope
1507AEWFLAYIL1515 (green loop and sticks) docked into the cleft of HLA-B*40:01 (PDB ID: 6IEX,
chain A; gray cartoon and sticks).
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Table 6. Comparison of the Cα atom positions of the five most immunogenic SARS-CoV-2 epitopes.
Upper and lower triangular data show root–mean–square deviations in Ångströms for the epitopes in
complex with HLA-A*02:01 and HLA-A*02:06, respectively.

A*02:06
A*02:01 Fiagliaiv Vllflafvv Flafvvfll Vlawlyaav Vlwahgfel

Fiagliaiv 0 0.685 0.566 0.554 0.852

Vllflafvv 0.940 0 0.65 0.881 0.699

Flafvvfll 1.002 0.636 0 0.518 0.888

Vlawlyaav 0.599 0.669 0.501 0 1.039

Vlwahgfel 1.296 1.250 1.470 1.432 0

To understand the molecular basis of TCR binding to the SARS-CoV-2 antigen-loaded MHC-I
cell surface molecules, HLA-A*02:01, in complex with the S protein epitope 1220FIAGLIAIV1228,
was superimposed with the HLA-A*02:01 allotype of the influenza A virus ternary complex structure
(PDB ID: 5TEZ, chain A), and the atomic coordinates of TCR (TCR-α and TCR-β chain; PDB ID:
5TEZ, chain I and J, respectively) were then utilized for visual analysis of binding. This visualization
suggests that the loops CDR2α, CDR1α and CDR3α of the TCR-α chain, and loops CDR2β, CDR1β
and CDR3β of the TCR-β chain, recognize the HLA-A*02:01–SARS-CoV-2 1220FIAGLIAIV1228 epitope
(Figure 2D); the cooperative interacting nature of residues in these loops could provide specificity
towards class I MHC molecules. Moreover, the residues L96 and W99 within the CDR3β loop and I96
within the CDR3α loop could be important for antigen–HLA complex recognition due to their likely
direct contacts with residues L1224, I1225 and I1227 of the 1220FIAGLIAIV1228 epitope and residues
A69, V152 and Q155 of HLA-A*02:01 (Figure 2E).

To assess the conformational and intermolecular interaction dynamics of the
HLA-A*02:01-1220FIAGLIAIV1228 S protein epitope–TCR complex, a 100 ns simulation was
carried out on the ternary structure in triplicate. The global conformational dynamics was assessed by
computing the RMSF over the Cα atoms (Figure 3A), which shows a stable TCR and epitope, with an
average RMSF of 1.86 ± 0.47 Å and 2.36 ± 0.18 Å, respectively. The α1 and α2 domains of HLA-A*02:01
were also stable (3.16 ± 0.48 Å, 3.19 ± 0.46 Å), unlike the α3 domain, which exhibits a higher fluctuation
(6.4 ± 2.57 Å) likely arising from the flexibility of the loop between domains α2 and α3 and the lack
of stabilizing β2-microglobulin. Figure 3B compares the complex at 0, 50 and 100 ns during the
simulation. These observations were consistent among the three independent simulations (Figure S2).

The intermolecular interactions taking place in the complex structure were also examined by
visually inspecting the trajectory and calculating the number of hydrogen bonds formed during the
simulation (Table S9). For example, in simulation 1, the highest number of hydrogen bond interactions
recorded were between HLA-A*02:01 and backbone atoms of the epitope peptide, with T143-V1228
and W147-I1227 interactions topping the list, as they were respectively formed during 98% and 97% of
the simulation time. On the other hand, hydrogen bond interactions between the TCR and the epitope
were almost exclusively from interactions between W99 (β chain)-I1225 (63%) and Q101 (α chain)-I1225
(10%). The HLA-A*02:01-TCR hydrogen-bonding interactions were mostly between residues from
the CDR1α, CDR2α, CDR3α, CDR1β and CDR2β loops of the TCR and the α1 and α2 helices of
HLA-A*02:01. Visual analysis also revealed that hydrophobic interactions are integral to the interaction
the epitope is making, both with HLA-A*02:01 and the TCR, as the hydrophobic epitope peptide
was tightly enclosed by hydrophobic clusters from the proteins throughout the simulation, reflecting
observations made on the basis of the original docked complex. Thus, our structural analysis suggests
that the S protein epitope 1220FIAGLIAIV1228 of SARS-CoV-2 (and SARS-CoV), and the other epitopes
listed in Table 4, could form strong complexes with HLA-A*02:01 and HLA-A*02:06 allotypes, and that
the epitope-HLA complexes can also be recognized by TCRs to initiate cytotoxic T-cell-mediated
immune responses.
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Figure 3. Structural dynamics of the HLA-A*02:01-1220FIAGLIAIV1228 S protein epitope–T cell receptor
(TCR) complex during a 100 ns simulation. (A) Cα atom root–mean–square fluctuation (RMSF) of the
ternary complex. (B) Superimposed conformations of the complex sampled at 0 ns (blue), 50 ns (yellow)
and 100 ns (pink) of the simulation. Results from the first of three independent MD simulations are
illustrated here.

Similar to the docking results obtained from the experimentally known epitopes with the HLA-A*02
supertype, we observed that residues at Pos1-3 and Pos9 (A1507, E1508, W1509 and L1515) of the
novel epitope 1507AEWFLAYIL1515—derived from a transmembrane segment of the nsp3 protein of
SARS-CoV-2—are fully buried within the antigen-binding cleft of HLA-B*40:01 (PDB ID: 6IEX, chain A).
Moreover, the location of the partially solvent-exposed residues at Pos4-Pos8 (L1511, A1512, Y1513
and I1514) of the docked epitope along with solvent-exposed residues R62, T69, T73, E76, Q155, Y159,
E163 and W167 of the α1 and α2 helices suggest an interaction of the 1507AEWFLAYIL1515–HLA-B*40:01
complex with TCR (Figure 2F).
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4. Discussion

In order to tackle the current COVID-19 pandemic, it is critically important to better understand
the underlying mechanism that gives rise to the individual differences in disease severity as well
as to aid the vaccine development against the causative virus, SARS-CoV-2. Effective vaccinations
are needed to eradicate the virus from populations all over the world and knowledge regarding the
immunological response should have a significant impact on understanding disease progression.
However, due to the limited experimental and clinical data currently available on the specific immune
responses against SARS-CoV-2, the development of an effective vaccine against COVID-19 will be
a challenge. This study sought to better understand the individual differences in the viral antigen
presentation pathway and to aid the development of vaccines against COVID-19 by predicting in silico
SARS-CoV-2 immunogenic epitopes.

Based solely on in silico predictions, the most potent SARS-CoV-2-derived MHC class I binding
epitopes are 1507AEWFLAYIL1515 and 1505LVAEWFLAY1513 in terms of binding affinity, hydrophobicity
and stability. However, for these “in silico epitopes”, only limited experimental data are available to
correlate with. Therefore, in this study we mainly focused on potential SARS-CoV-2 epitopes that were
conserved with SARS-CoV epitopes experimentally known to activate cytotoxic T-cells, and hence
could be used in vaccine development.

The S glycoprotein-derived epitope 1220FIAGLIAIV1228 binds to the HLA-A*02:01 and
HLA-A*02:06 allotypes with experimental IC50 values lower than 50 nM (Table 3). Our docking
analysis supports these predictions, i.e., that epitope 1220FIAGLIAIV1228 could bind tightly to these
allotypes and that ternary complexes with TCRs could form. Moreover, recent data demonstrate that
patients with a severe form of COVID-19 have a stronger T-cell response after stimulation with the
SARS-CoV-2 S-protein peptide pool compared to those with a mild manifestation of the disease [22,52].
The disease progression of COVID-19 is also associated with a higher magnitude of inflammatory
cytokine-producing CD8+ T cells [52]. Whether these immune responses are due to strong binding of
SARS-CoV-2 epitopes, including 1220FIAGLIAIV1228, to certain HLA allotypes, such as HLA-A*02:01
and HLA-A*02:06, or whether tight virus epitope-HLA interaction in general can actually be harmful for
COVID-19 patients by causing, e.g., an immunological over-reaction, is not yet fully understood [53,54].
Furthermore, both CD4+ and CD8+ T-cells have been shown to be stimulated by overlapping peptides
(15-mers overlapping by 10 amino acids) of the entire S glycoprotein sequence [55]. Does this mean
that the S protein might function as a double-edged sword—that is, being crucial for viral entry into the
host cell, but also important for overstimulating the immune responses, causing severe inflammation
that aids the spread of the virus to surrounding cells? This still needs to be answered. The latter
“sword” is known to be avoided at least by HIV, which has a sophisticated mechanism to limit the
infection rate in order to better avoid immune surveillance [56,57].

A recent in vivo study shows that epitopes derived from the C-terminus of the S protein had a
significantly stronger CD4+ T helper cell response in healthy donors in comparison to those infected
with SARS-CoV-2 [22]. The CD4+ T cells’ cross-reactivity to the S protein might represent the key for
understanding the different disease manifestations of COVID-19, particularly in the asymptomatic
infections in children and adolescents. Our predicted epitope 1220FIAGLIAIV1228 overlaps with the
C-terminal sequence of the S protein containing the S2 subunit, which is internalized after TMPRSS2
cleavage. Therefore, this particular amino acid sequence may also be important for inducing a protective
immunological response towards immunity in COVID-19. However, canonically T helper cells recognize
MHC class II molecules, whereas our prediction is based on the MHC class I molecules’ ability to present
viral antigens for a possible cytotoxic T-cell response [58]. Indeed, we found four 15-mer epitopes that
include the intact 9-mer 1220FIAGLIAIV1228 epitope sequence and showed binding affinities < 500 nM
with DRB1*01:01 allotype of MHC class II (http://tools.iedb.org/mhcii/) [25], an allotype that is common
in Caucasoid and Oriental ethnic backgrounds (https://www.ebi.ac.uk/ipd/imgt/hla/ethnicity.html) [59].
Nevertheless, there are a few reports regarding MHC class I-reactive CD4+ T helper cells, including
the study where co-cultures of highly purified CD4+ T cells, together with a stimulatory MHC class

http://tools.iedb.org/mhcii/
https://www.ebi.ac.uk/ipd/imgt/hla/ethnicity.html
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II-negative cell line transfected with MHC class I molecules, were used to show the direct interaction
of T helper cells with MHC class I molecules [60]. However, whether or not the 1220FIAGLIAIV1228

epitope is presented to both cytotoxic and helper T cells needs to be experimentally verified; a recent
study that appeared while the current work was under review suggested that cross-reactivity could
affect disease progression in COVID-19 [54]. Furthermore, the latest experimental reports suggest
that the S glycoprotein of SARS-CoV-2 is both O- and N-glycosylated, especially on the RDB domain,
which could mask immunogenic epitopes and may play an important role in SARS-CoV-2 immune
evasion [61–63]. Fortunately, the predicted epitope 1220FIAGLIAIV1228 is part of a transmembrane
helix, and consequently is neither O- nor N-glycosylated; the closest glycosylation site is at Pos1194,
rendering this particular amino acid sequence potentially suitable for vaccine development.

Intriguingly, the SARS-CoV-2–derived, membrane glycoprotein epitope 148HLRIAGHHL156,
which has low binding affinity (IC50 = 1693.63 nM; Table S4) towards HLA-B*15:02, is 78% identical in
sequence with the intravirion SARS-CoV epitope HLRMAGHSL also from a membrane glycoprotein
and shown to elicit a strong T-cell response in patients with the HLA-B*15:02 allotype [19]. Furthermore,
HLA-B*15:02 has been shown to have a protective role against the severe forms of SARS-CoV [64].
This inspired us to do a separate in silico binding affinity analysis of the SARS-CoV HLRMAGHSL
epitope to the HLA-B*15:02 allotype: a high binding affinity (IC50 = 232.85 nM) of the HLRMAGHSL
epitope with the HLA-B*15:02 was predicted and agrees with the reported [19] protective immune
response against SARS-CoV. Thus, there seems to be a difference between the highly conserved
SARS-CoV-derived HLRMAGHSL and SARS-CoV-2-derived 148HLRIAGHHL156 epitopes in their
potency towards the HLA-B*15:02 allotype. Moreover, the predicted low binding affinity of the
SARS-CoV-2 epitopes with the HLA-B*15:02 allotype (Table S4) might not be sufficient to induce
immune responses, thus rendering the potential of this specific epitope unfavorable for vaccination.

Based on our predictions, HLA-B*46:01 is one of the worst allotypes for presenting
SARS-CoV-2-derived epitopes with an average binding score (IC50) of 2264 nM for the four epitopes
predicted to bind (Table S4). This is in line with similar results from the predictions for SARS-CoV-2
and previous clinical data from SARS-CoV patients, demonstrating that this particular HLA allotype
gives susceptibility to a more severe form of the viral disease [65]. Furthermore, our prediction shows
that HLA-B*46:01 is not binding to either the S or M protein-derived peptides, strengthening the
reported general view that HLA-B*46:01 is not optimal for eliciting an immune response in COVID-19
patients [58].

Taken together, identification of the predicted most immunogenic epitopes of SARS-CoV-2 could
aid vaccine development. Since the sequences of the “top” epitopes of SARS-CoV-2 and SARS-CoV
are highly conserved and the SARS epitopes are known to elicit an immunological response based
on a previous study [66], a common vaccine protecting against both viruses and potential future
strains is possible. Moreover, the selected experimentally known epitopes have been shown not
to evoke an unwanted T cell cross-reactivity in vitro, further validating the potential use of the
conserved SARS-CoV/CoV-2 peptides in vaccine development without disrupting self-tolerance [67].
However, there are many hurdles that need to be addressed; for example, due to the hydrophobic
nature of these epitopes, they probably would need to be loaded in a liposome or nanocarrier for
efficient vaccine delivery [68]. Moreover, as these conserved epitopes are presented by only a few
HLA allotypes, i.e., A*02:01, A*02:06, A*68:02, which are common in American Indian, Caucasoid,
Hispanic and Oriental ethnic backgrounds [59], the estimated world population coverage using these
epitopes would only be around 42.1% (http://tools.iedb.org/population/) [25]. Therefore, developing
a globally effective SARS-CoV-2 vaccine will probably require a pool of both novel and conserved
epitopes, making a globally effective SARS-CoV-2 vaccine development a challenging task.

5. Conclusions

In the present study, we identified SARS-CoV-2 epitopes that were predicted to be presented by the
MHC class I antigen processing pathway to the cytotoxic T cells. We report five purely in-silico-predicted
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most potent epitopes unique to SARS-CoV-2 and five potent SARS-CoV-2 epitope peptides identical to
and experimentally determined for SARS-CoV. The novel SARS-CoV-2 epitopes were analyzed for their
interaction with HLA allotypes using the IEDB and NetCTL1.2 web servers and three-dimensional
structural models of selected, molecular dynamics simulation proven ternary complexes of SARS-CoV-2
pHLA–TCRs were created to assess interactions at structural level. HLA-A*02:01 and HLA-A*02:06
were found to have the greatest potential to present the selected epitopes, which are hydrophobic in
nature and originated mainly from the transmembrane region of SARS-CoV-2 proteins. Our results
could assist in the understanding of the individual and varying disease progression of COVID-19,
as well as paving the way towards vaccine development against SARS-CoV-2.

Supplementary Materials: The following material are available online at http://www.mdpi.com/2076-393X/8/3/408/
s1, Figure S1: (A): Distribution of the predicted half-lives (log scale) of predicted (IEDB) 9-mer epitope-HLA-A*02
supertype complexes. The complexes are classified as immunogenic (IC50 ≤ 50 nM) and non-immunogenic (IC50
> 500 nM) based on the epitope binding affinity with the MHC molecule, (B): Distribution of the GRAVY scores of
immunogenic (IC50 ≤ 50 nM) and non-immunogenic (IC50 > 500 nM) epitopes, Figure S1C and S1D: Comparison
of the backbone conformation of the five epitopes docked into the cleft of HLA-A*02:01 (C) and HLA-A*02:06
(D) molecules against the canonical epitope 1GILGFVFTL9 of the influenza A virus (PDB ID: 5TEZ, chain C),
Figure S2: Structural dynamics of the HLA-A*02:01-1220FIAGLIAIV1228 S protein epitope—TCR complex during
three replicate 100 ns simulations. (A) Cα atom RMSF of the ternary complex. (B) Average Cα atom RMSF.
Table S1A: MHC Class I allotypes association with supertypes described in published scientific literature [28,29].
Superscript “X” indicates availability of X-ray crystal structure in Protein Data Bank (PDB) [36], Table S1B: PDB
codes for the X-ray crystal structures of MHC class I allotypes, Table S2: SARS-CoV-2–derived MHC class I binding
epitopes identified with IEDB and NetCTL1.2 prediction methods as having strong binding affinity (IC50 ≤ 50
nM) with MHC molecules, Table S3: SARS-CoV-2-derived MHC class I binding epitopes identified with IEDB and
NetCTL1.2 prediction methods as having weak binding affinity (50 nM < IC50 ≤ 500 nM) with MHC molecules,
Table S4: SARS-CoV-2-derived MHC class I binding epitopes identified with IEDB and NetCTL1.2 prediction
methods as having non-binding affinity (IC50 > 500 nM) with MHC molecules, Table S5: SARS-CoV-2-derived
epitopes (immunogenicity score ≥ 0.25) and their prominent interacting HLA allotypes identified with IEDB and
NetCTL1.2 prediction methods, Table S6: Most potent SARS-CoV-2-derived epitopes having immunogenicity score
≥ 0.25 and predicted binding affinity (IC50) ≤ 500 nM with their prominent interacting HLA allotypes identified
with IEDB prediction method, Table S7: Most potent SARS-CoV-2-derived MHC class I binding epitopes identified
with NetCTL1.2 (combined score ≥ 2) prediction method, Table S8: Most potent SARS-CoV-2-derived MHC class I
binding epitopes that are identical to the experimentally known epitopes (MHC ligand assays data from the IEDB
database) of SARS-CoV strains to activate cytotoxic T-cells. Predicted half-lives of the epitope—MHC-I complexes,
GRAVY scores and mutations in the epitopes are shown. Table S9: Most frequently recorded intermolecular
hydrogen bond interactions during the replicate 100 ns simulations.
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Prlić, A.; Quesada, M.; et al. The RCSB Protein Data Bank: New resources for research and education. Nucleic
Acids Res. 2013, 41, 475–482. [CrossRef]

37. London, N.; Raveh, B.; Cohen, E.; Fathi, G.; Schueler-Furman, O. Rosetta FlexPepDock web server—High
resolution modeling of peptide-protein interactions. Nucleic Acids Res. 2011, 39, 249–253. [CrossRef]

38. Tamirat, M.Z.; Kurppa, K.J.; Elenius, K.; Johnson, M.S. Deciphering the structural effects of activating EGFR
somatic mutations with molecular dynamics simulation. J. Vis. Exp. 2020, 2020, 1–12. [CrossRef]

39. Case, D.A.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E., III; Cruzeiro, V.W.D.; Darden, T.A.;
Duke, R.E.; Ghoreishi, D.; Gilson, M.K. Amber 2018; University of California, San Francisco: San Francisco,
CA, USA, 2018.

40. Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the
Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11,
3696–3713. [CrossRef]

41. Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential
functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [CrossRef]

42. Humphrey, W.; Dalke, A.; Schulten, K. Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [CrossRef]

http://dx.doi.org/10.1016/j.antiviral.2009.09.004
http://www.ncbi.nlm.nih.gov/pubmed/19748524
http://dx.doi.org/10.1101/2020.04.17.20061440
http://dx.doi.org/10.1146/annurev-immunol-032712-095910
http://dx.doi.org/10.1093/nar/gku1207
http://dx.doi.org/10.1093/nar/gky1006
http://dx.doi.org/10.1186/1471-2105-8-424
http://dx.doi.org/10.3389/fimmu.2017.00278
http://dx.doi.org/10.1007/s00251-004-0647-4
http://dx.doi.org/10.1186/1471-2172-9-1
http://dx.doi.org/10.1016/0022-2836(82)90515-0
http://dx.doi.org/10.1006/jmbi.2000.4315
http://www.ncbi.nlm.nih.gov/pubmed/11152613
http://dx.doi.org/10.1093/nar/gkv332
http://www.ncbi.nlm.nih.gov/pubmed/25883141
http://dx.doi.org/10.4049/jimmunol.1600582
http://www.ncbi.nlm.nih.gov/pubmed/27402703
http://dx.doi.org/10.1074/jbc.M117.810382
http://dx.doi.org/10.1002/eji.201041370
http://dx.doi.org/10.1093/nar/gks1200
http://dx.doi.org/10.1093/nar/gkr431
http://dx.doi.org/10.3791/61125
http://dx.doi.org/10.1021/acs.jctc.5b00255
http://dx.doi.org/10.1063/1.445869
http://dx.doi.org/10.1016/0263-7855(96)00018-5


Vaccines 2020, 8, 408 18 of 19

43. Roe, D.R.; Cheatham, T.E. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics
trajectory data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [CrossRef] [PubMed]

44. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF
Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612.
[CrossRef] [PubMed]

45. Zipeto, D.; Beretta, A. HLA-C and HIV-1: Friends or foes? Retrovirology 2012, 9, 39. [CrossRef] [PubMed]
46. Zhao, W.; Sher, X. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally

processed epitopes. PLoS Comput. Biol. 2018, 14, 1–28. [CrossRef] [PubMed]
47. Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A better

web interface. Nucleic Acids Res. 2008, 36, 5–9. [CrossRef]
48. Harndahl, M.; Rasmussen, M.; Roder, G.; Dalgaard Pedersen, I.; Sørensen, M.; Nielsen, M.; Buus, S.

Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur. J.
Immunol. 2012, 42, 1405–1416. [CrossRef]

49. Colleton, B.A.; Huang, X.-L.; Melhem, N.M.; Fan, Z.; Borowski, L.; Rappocciolo, G.; Rinaldo, C.R. Primary
Human Immunodeficiency Virus Type 1-Specific CD8+ T-Cell Responses Induced by Myeloid Dendritic
Cells. J. Virol. 2009, 83, 6288–6299. [CrossRef]

50. Bettencourt, P.; Müller, J.; Nicastri, A.; Cantillon, D.; Madhavan, M.; Charles, P.D.; Fotso, C.B.; Wittenberg, R.;
Bull, N.; Pinpathomrat, N.; et al. Identification of antigens presented by MHC for vaccines against tuberculosis.
npj Vaccines 2020, 5. [CrossRef]

51. Chowell, D.; Krishna, S.; Becker, P.D.; Cocita, C.; Shu, J.; Tan, X.; Greenberg, P.D.; Klavinskis, L.S.;
Blattman, J.N.; Anderson, K.S. TCR contact residue hydrophobicity is a hallmark of immunogenic CD8+ T
cell epitopes. Proc. Natl. Acad. Sci. USA 2015, 112, E1754–E1762. [CrossRef]

52. Anft, M.; Paniskaki, K.; Blazquez-Navarro, A.; Doevelaar, A.A.N.; Seibert, F.; Hoelzer, B.; Skrzypczyk, S.;
Kohut, E.; Kurek, J.; Zapka, J.; et al. COVID-19 progression is potentially driven by T cell immunopathogenesis.
medRxiv 2020. [CrossRef]

53. Grifoni, A.; Sidney, J.; Zhang, Y.; Scheuermann, R.H.; Peters, B.; Sette, A. A Sequence Homology and
Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2. Cell Host
Microbe 2020, 27, 671–680. [CrossRef] [PubMed]

54. Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.;
Sutherland, A.; Premkumar, L.; Jadi, R.S.; et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus
in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020, 181, 1489–1501. [CrossRef]
[PubMed]

55. Weiskopf, D.; Schmitz, K.S.; Raadsen, M.P.; Grifoni, A.; Okba, N.M.A.; Endeman, H.; van den Akker, J.P.;
Molenkamp, R.; Koopmans, M.P.G.; van Gorp, E.C.M.; et al. Phenotype of SARS-CoV-2-specific T-cells in
COVID-19 patients with acute respiratory distress syndrome. medRxiv 2020. [CrossRef]

56. Funke, J.; Dürr, R.; Dietrich, U.; Koch, J. Key words Natural Killer Cells in HIV-1 Infection: A Double-Edged
Sword. AIDS Rev. 2011, 13, 67–76.

57. Piai, A.; Fu, Q.; Cai, Y.; Ghantous, F.; Xiao, T.; Shaik, M.M.; Peng, H.; Rits-Volloch, S.; Chen, W.; Seaman, M.S.;
et al. Structural basis of transmembrane coupling of the HIV-1 envelope glycoprotein. Nat. Commun. 2020,
11, 2317. [CrossRef]

58. Nguyen, A.; David, J.K.; Maden, S.K.; Wood, M.A.; Weeder, B.R.; Nellore, A.; Thompson, R.F. Human
leukocyte antigen susceptibility map for SARS-CoV-2. J. Virol. 2020. [CrossRef]

59. Robinson, J.; Barker, D.J.; Georgiou, X.; Cooper, M.A.; Flicek, P.; Marsh, S.G.E. IPD-IMGT/HLA Database.
Nucleic Acids Res. 2020, 48, D948–D955. [CrossRef]

60. Boyle, L.H.; Goodall, J.C.; Gaston, J.S.H. Major histocompatibility complex class I-restricted alloreactive CD4
+ T cells. Immunology 2004, 112, 54–63. [CrossRef]

61. Shajahan, A.; Supekar, N.T.; Gleinich, A.S.; Azadi, P. Deducing the N- and O- glycosylation profile of the
spike protein of novel coronavirus SARS-CoV-2. Glycobiology 2020, 1–20. [CrossRef]

62. Watanabe, Y.; Allen, J.D.; Wrapp, D.; McLellan, J.S.; Crispin, M. Site-specific analysis of the SARS-CoV-2
glycan shield. bioRxiv 2020. [CrossRef]

63. Zhang, Y.; Zhao, W.; Mao, Y.; Wang, S. Site-specific N-glycosylation Characterization of Recombinant. bioRxiv
2020. [CrossRef]

http://dx.doi.org/10.1021/ct400341p
http://www.ncbi.nlm.nih.gov/pubmed/26583988
http://dx.doi.org/10.1002/jcc.20084
http://www.ncbi.nlm.nih.gov/pubmed/15264254
http://dx.doi.org/10.1186/1742-4690-9-39
http://www.ncbi.nlm.nih.gov/pubmed/22571741
http://dx.doi.org/10.1371/journal.pcbi.1006457
http://www.ncbi.nlm.nih.gov/pubmed/30408041
http://dx.doi.org/10.1093/nar/gkn201
http://dx.doi.org/10.1002/eji.201141774
http://dx.doi.org/10.1128/JVI.02611-08
http://dx.doi.org/10.1038/s41541-019-0148-y
http://dx.doi.org/10.1073/pnas.1500973112
http://dx.doi.org/10.1101/2020.04.28.20083089
http://dx.doi.org/10.1016/j.chom.2020.03.002
http://www.ncbi.nlm.nih.gov/pubmed/32183941
http://dx.doi.org/10.1016/j.cell.2020.05.015
http://www.ncbi.nlm.nih.gov/pubmed/32473127
http://dx.doi.org/10.1126/sciimmunol.abd2071
http://dx.doi.org/10.1038/s41467-020-16165-0
http://dx.doi.org/10.1128/JVI.00510-20
http://dx.doi.org/10.1093/nar/gkz950
http://dx.doi.org/10.1111/j.1365-2567.2004.01857.x
http://dx.doi.org/10.1093/glycob/cwaa042
http://dx.doi.org/10.1101/2020.03.26.010322
http://dx.doi.org/10.1101/2020.03.28.013276


Vaccines 2020, 8, 408 19 of 19

64. Ng, M.H.L.; Cheng, S.H.; Lau, K.M.; Leung, G.M.; Khoo, U.S.; Zee, B.C.W.; Sung, J.J.Y. Immunogenetics in
SARS: A casecontrol study. Hong Kong Med. J. 2010, 16, 29–33. [PubMed]

65. Sanchez-Mazas, A. HLA studies in the context of coronavirus outbreaks. Swiss Med. Wkly. 2020, 150, w20248.
[CrossRef] [PubMed]

66. A Epitopes Described in—Immune Epitope Database (IEDB). Available online: http://www.iedb.org/details_
v3.php?type=reference&id=1000425 (accessed on 15 April 2020).

67. Ishizuka, J.; Grebe, K.; Shenderov, E.; Peters, B.; Chen, Q.; Peng, Y.; Wang, L.; Dong, T.; Pasquetto, V.;
Oseroff, C.; et al. Quantitating T Cell Cross-Reactivity for Unrelated Peptide Antigens. J. Immunol. 2009, 183,
4337–4345. [CrossRef]

68. Negahdaripour, M.; Golkar, N.; Hajighahramani, N.; Kianpour, S.; Nezafat, N.; Ghasemi, Y. Harnessing
self-assembled peptide nanoparticles in epitope vaccine design. Biotechnol. Adv. 2017, 35, 575–596. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.ncbi.nlm.nih.gov/pubmed/20864745
http://dx.doi.org/10.4414/smw.2020.20248
http://www.ncbi.nlm.nih.gov/pubmed/32297958
http://www.iedb.org/details_v3.php?type=reference&id=1000425
http://www.iedb.org/details_v3.php?type=reference&id=1000425
http://dx.doi.org/10.4049/jimmunol.0901607
http://dx.doi.org/10.1016/j.biotechadv.2017.05.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Source of Sequences 
	MHC Class I Epitope Prediction 
	Comparison of Predicted and Experimentally Known Epitopes 
	Epitopes Physicochemical Properties and eMHC-I Complex Stability 
	Docking and Structural Analyses 
	Molecular Dynamics Simulations 

	Results 
	Prediction of Binding of SARS-CoV-2-Derived Peptides to MHC Class I Receptors 
	Analysis of Correlation between in Silico Identified SARS-CoV-2 (This Study) and Experimentally Validated SARS-CoV (from IEDB) Epitopes 
	Efficiency of Epitope Presentation to Stimulate an Immune Response 
	Structural Properties of the Peptide-HLA-A*02:01-Complexes Defining T Cell Receptor (TCR) Recognition 

	Discussion 
	Conclusions 
	References

