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Abstract
Exposure to environmental chemicals can modulate the developing immune system, but its role in the pathogenesis of type 1
diabetes is largely unexplored. Our objective was to study the levels of circulating concentrations of environmental pollutants
during the first years of life and their associations with the later risk of diabetes-predictive autoantibodies. From two birth-cohort
studies including newborn infants with HLA-conferred susceptibility to type 1 diabetes (FINDIA and DIABIMMUNE), we
identified case children with at least one biochemical diabetes-associated autoantibody (n = 30–40) and from one to four
autoantibody-negative controls per each case child matched for age, gender, diabetes-related HLA-risk, delivery hospital, and,
in FINDIA, also dietary intervention group. Plasma levels of 13 persistent organic pollutants and 14 per- and polyfluorinated
substances were analyzed in cord blood and plasma samples taken at the age of 12 and 48 months. Both breastfeeding and the
geographical living environment showed association with circulating concentrations of some of the chemicals. Breastfeeding-
adjusted conditional logistic regression model showed association between decreased plasma HBC concentration at 12-month-
old children and the appearance of diabetes-associated autoantibodies (HR, 0.989; 95% Cl, 0.978–1.000; P = 0.048). No asso-
ciation was found between the plasma chemical levels and the development of clinical type 1 diabetes. Our results do not support
the view that exposure to the studied environmental chemicals during fetal life or early childhood is a significant risk factor for
later development of β-cell autoimmunity and type 1 diabetes.
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Introduction

Type 1 diabetes is an autoimmune disease caused by T cell-
mediateddestructionof thepancreaticβ-cells.Thediseaseprocess
takes usually years from its initiation to overt diabetes. In the
asymptomatic preclinical period, autoantibodies against several
β-cell-derived antigens appear into the peripheral circulation
(Bottazzo et al. 1974). These autoantibodies include islet cell anti-
bodies (ICA), insulin autoantibodies (IAA), GAD antibodies
(GADA), insulinoma-associated-2 antibodies (IA-2A), and zinc
transporter 8 antibodies (ZnT8A) (Pietropaolo et al. 2012). The
destructionof thepancreaticβ-cells isperceived tobemediatedby
autoreactive T cells. Overactivation of IFN-γ-secreting Th1
(Foulis et al. 1991; Kallmann et al. 1997) and IL-17-secreting
Th17 cells (Honkanen et al. 2010) and impaired function of regu-
latoryTcells (Treg) (Lindley et al. 2005; Putnamet al. 2009) have
been reported inanimalmodels of autoimmunediabetes aswell as
inhumantype1diabetes. Inaddition,aberrancies in thephenotype
and function of dendritic cells have been associated with the de-
velopment of type 1 diabetes (Nieminen et al. 2012).

In industrialized countries, the widespread use of chemicals
has been increasing simultaneously with the rise in the inci-
dence rate of type 1 diabetes (Onkamo et al. 1999). Some of
the chemicals are very persistent in the environment,
bioaccumulative, and capable of interfering with biological
systems at different levels. One of the known harmful effects
of environmental pollutants is that they are able to modulate
the functions of the human immune system. Exposure of lab-
oratory animals to immunotoxic chemicals at early develop-
mental stages may result in more severe effects on the immune
system than exposure during adult life (reviewed in Holladay
1999). Also in humans, exposure in utero and in the first years
of life is of special concern since the developing immune
system of fetuses and young children is highly vulnerable to
toxicant exposure (Holsapple et al. 2004).

Persistent organic pollutants (POPs) are a diverse group of
organic compounds including dioxins, polychlorinated biphenyls
(PCBs), pesticides, and certain brominated flame-retardants.
Exposure to POPs may contribute to the development of auto-
immunity, such as systemic lupus erythematosus (Cooper et al.
2008; Holladay 1999). Per- and polyfluorinated substances
(PFAS) own attractive water and oil repellent characteristics
and have been used in a variety of consumer and industrial ap-
plications since the 1950s (Lau et al. 2007). Perfluorooctanoic
acid (PFOA) and perfluorooctane sulfonate (PFOS) are the most
well-known PFAS. Both have been implicated to have
immunotoxic properties (Corsini et al. 2014). Exposure to
PFAS has been associated with reduced immune responses to
routine childhood immunizations (Grandjean et al. 2012;
Granum et al. 2013) and with an increase in the incidence of
childhood asthma (Dong et al. 2011). Early life exposure to
PFAS occurs both via placental transfer (Apelberg et al. 2007)
and breastfeeding (Thomsen et al. 2010).

The possibility that environmental chemicals are involved
in the pathogenesis of type 1 diabetes has been debated but has
not so far been adequately addressed (Bodin et al. 2015;
Howard and Lee 2012). Results from epidemiological studies
focusing on a possible link between type 1 diabetes and ex-
posure to POPs are contradictory. Pregnant women with type
1 diabetes had 30% higher levels of serum PCBs than controls
(Longnecker and Daniels 2001). In contrast, elevated levels of
PCB-153 and dichlorodiphenyldichloroethylene (p,p′-DDE)
in maternal serum did not correlate with the development of
type 1 diabetes in the offspring in a Swedish cohort (Rignell-
Hydbom et al. 2010). In support of PCB effects on autoimmu-
nity, the prevalence of GADA was four times higher in em-
ployees in a factory producing PCBs compared to controls
(Langer et al. 2002). Several modes of action to trigger or
accelerate type 1 diabetes development by chemicals have
been implicated. In addition to immunomodulation, chemicals
may have direct toxic effects on β-cells, may alter hormone
levels, affect the microbiota, or alter intestinal permeability
(Bodin et al. 2015).

There is definitely a need for studies analyzing the potential
association between early life exposure to environmental
chemicals and development of type 1 diabetes. Our hypothesis
is that early life exposure to environmental chemicals plays a
role in the development and/or progression to type 1 diabetes.
In this study, we set out to investigate the association between
prenatal and postnatal exposure to environmental chemicals
(POPs including PFASs) and the development of β-cell auto-
immunity and clinical diabetes.

Materials and methods

Study design

The role of prenatal and early life exposure to environmental
chemicals in the development of β-cell autoimmunity was
studied in children participating in the FINDIA pilot study
(the Finnish Dietary Intervention Trial for the Prevention of
Type 1 Diabetes) (Vaarala et al. 2012). Exposure to environ-
mental chemicals in young children was studied from plasma
samples from 4-year-old participants in the DIABIMMUNE
study (Peet et al. 2012).

Study subjects

In the FINDIA and DIABIMMUNE studies, children with HLA
genotypes conferring susceptibility to type 1 diabetes were mon-
itored for the appearance of disease-associated autoantibodies.
Cases were selected from children who developed at least one
diabetes-associated biochemical autoantibody during the follow-
up period (from birth to 6 years of age in FINDIA and from 3 to
5 years of age inDIABIMMUNE). For each case child, fromone

Environ Sci Pollut Res



to four autoantibody-negative control, children matched for age,
gender, diabetes-related HLA-risk, delivery hospital, and dietary
intervention group (baby milk formula, in FINDIA only) were
selected. With these strict matching criteria, we identified 40
cases with plasma samples taken at birth (cord blood), 36 cases
with plasma samples taken at 12 months of age, and 30 cases
with plasma samples taken at 4 years of age (Table 1). The cord
blood samples were obtained betweenMay 2002 and November
2005 and the 12-month samples between May 2003 and
November 2006 in three pediatric hospitals in Finland as de-
scribed earlier (Vaarala et al. 2012). Blood samples from 4-
year-old children were drawn between October 2010 and
August 2011 in pediatric hospitals of Tartu, Estonia, and
Espoo, Finland (12 and 18 case-control pairs, respectively).

The local Ethical Committees approved both the FINDIA
and the DIABIMMUNE studies, and the parents gave their
written informed consent prior to their child’s participation in
these studies.

Diabetes-associated autoantibodies

In the FINDIA study, blood samples were obtained at the follow-
up visits when the children were 3, 6, and 12 months of age and
thereafter annually up to the age of 6 years. In the
DIABIMMUNE study, blood samples were drawn at 36, 48,
and 60months of age. Plasma samples were collected from fresh
heparinized blood samples and stored at − 70 °C until analyzed.
Plasma samples from both studies were screened for IAA,
GADA, and IA-2A with specific radiobinding assays as previ-
ously described (Knip et al. 2010). In addition, DIABIMMUNE
samples were also analyzed for ZnT8A (Knip et al. 2010). The
cutoff level for autoantibody positivity was 2.80 relative units
(RU) for IAA, 5.36 RU for GADA, 0.78 RU for IA-2A, and
0.61 RU for ZnT8A, representing the 99th percentiles in more
than 350 Finnish non-diabetic children.

HLA genotyping

HLA typing of major risk DR-DQ haplotypes for type 1 diabetes
was performed with a PCR-based lanthanide-labeled

hybridization method using time-resolved fluorometry for detec-
tion as described before (Hermann et al. 2003). HLA genotyping
in the FINDIA and DIABIMMUNE studies has been described
in detail earlier (Peet et al. 2012; Vaarala et al. 2012).

Chemical analysis

Plasma concentrations of 13 POP compounds including PCBs
118, 138, 153, 156, 170, and 180, pesticides hexachlorobenzene
(HCB), β-hexachlorocyclohexane (β-HCH), oxychlordane,
trans-nonachlor, dichlorodiphenyltrichloroethane (p,p′-DDT),
p,p′-DDE, and brominated diphenyl ether BDE-47 and 14
PFAS compounds including perfluorohexanesulfonic acid
(PFHxS), perfluoroheptanesulfonic acid (PFHpS),
perfluorooctanosulfonic acid (PFOS), perfluorononanosulfonic
acid (PFNS), perfluorodecanesulfonic acid (PFDS),
perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid
(PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic ac-
i d ( PFNA) , p e r f l u o r o d e c a no i c a c i d ( PFDA) ,
perfluoroundecanoic acid (PFUnA), perfluorododecanoic acid
(PFDoA), perfluorotridecanoic acid (PFTrA), and
perfluorotetradecanoic acid (PFTeA) were analyzed. Details of
sample pretreatment, instrumental analysis, and method perfor-
mance have been described elsewhere (Koponen et al. 2013). In
brief, the compounds were extracted from 25 to 200 μL plasma
using a two-stage liquid-liquid extraction after spiking with
isotope-labeled internal standards. In case of the POP measure-
ments, the case-control pairs were reduced from 39 to 34 at
12 months of age and from 30 to 29 at 48 months of age due
to insufficient sample volumes. The POP extract was further
purified with a miniaturized silica column. Quantification of the
POPs and PFASs was performed by GC-MS/MS and LC-MS/
MS, respectively. If the concentration of any chemical was below
the limit of quantification (LOQ), then the sample was given the
value of the LOQ/2 in the statistical analyses.

Statistics

Conditional logistic regression was used to estimate the haz-
ard ratios (HR) and 95% confidence intervals (CI) for the

Table 1 Characteristics of the
study subjects Study FINDIA DIABIMMUNE

Origin/age of plasma collection Cord blood 12 month 48 month

Years of plasma collection 2002–2005 2003–2006 2010–2011

Matched Aab+ cases/Aab− controls 40/111 36/62 30/30

Matched T1D cases†/Aab− controls 18/51 16/29 9/7

Seroconversion follow-up From birth to 6 years From 3 to 5 years

Age at seroconversion (years) 2.3 (0.5–6.0) 3.1 (3.0–5.0)

Age of T1D diagnosis (years)† 7.5 (1.2–12.3) 5.5 (2.6–9.8)

Breastfeeding (months) 9.1 (0.5–26.4) 8.1 (0.5–24.0)

†Type 1 diabetes diagnoses were updated by November 2017
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association between plasma chemical concentration and the
risk of emergence of diabetes-related autoantibodies.
Unadjusted analyses and analyses adjusted for the duration
of the breastfeeding period were performed. When the con-
centration of a given chemical was below the LOQ in more
than 40% of the samples analyzed, the comparisons between
groups were performed using categorized values (below the
LOQ vs. above the LOQ). No correction for multiple compar-
isons was applied; instead, multiplicity issues were taken into
account by cautious interpretation of the results. The statistical
analyses were done using SPSS 22 package.

Results

Plasma concentrations of the various chemicals in the
FINDIA and DIABIMMUNE children, who did not show
any signs of type 1 diabetes progression, i.e., remained nega-
tive for diabetes-associated autoantibodies without any type 1
diabetes diagnosis, are presented in Table 2.

A case: control conditional logistic regressionmodel was built
to establish associations between plasma chemical concentrations
and the emergence of diabetes-related autoantibodies. Cases and
controls were matched for age, gender, HLA risk genotype, and
delivery hospital and in the FINDIA study cohort also for the
milk formula given to the child.

Unadjusted plasma concentrations of the chemicals ana-
lyzed showed no association with the emergence of autoanti-
bodies, HR values being close to 1.0 (Table 3). The only

exception was that the group having PFDA above LOQ at
48 months showed an association with the appearance of au-
toantibodies (HR, 4.1; 95% Cl, 1.1–14.3; P = 0.028). The
PFDA concentrations were below the detection limit in 46%
of the 48-month samples, and therefore, the PFDA results
were analyzed as categorized variables, below the LOQ or
above the LOQ.

The duration of the breastfeeding period based on maternal
questionnaires was available for 92.5% of children in the
FINDIA study and for 84.9% of children in the
DIABIMMUNE study. Breastfeeding alone did not associate
with the appearance of autoantibodies in either study cohort.
As expected, the duration of the breastfeeding period correlat-
ed directly with the plasma chemical concentrations
(Supplemental Table S1). We performed conditional logistic
regression analysis adjusted for the duration of the
breastfeeding period (Table 3). Breastfeeding period was cat-
egorized into four groups, namely, 0–4, 4–8, 8–12, and more
than 12 months of breastfeeding. The only significant finding
in the conditional logistic regression analyses adjusted for the
duration of breastfeeding was the observation that low plasma
HCB concentrations in 12-month-old children were associat-
ed with the appearance of diabetes-associated autoantibodies
(HR, 0.989; 95% Cl, 0.978–1.000; P = 0.048).

For both study cohorts, the type 1 diabetes diagnoses were
updated as of November 2017 (Table 1). Almost all children
with type 1 diabetes were derived from the group of autoanti-
body positive cases, and accordingly, it was possible to establish
a matched type 1 diabetes case: control set for conditional

Table 2 Concentration of plasma
chemicals in children without any
signs of β-cell autoimmunity and
no progression to type 1 diabetes

Cord blood 12 month 48 month
n = 111 n = 62 n = 30

HCB, mean (SD), pg/mL < 100.7 (69.7) 58.6 (29.9)

β-HCH, mean (SD), pg/mL < 45.4 (35.6) 49.5 (52.5)

Trans-nonachlor, mean (SD), pg/mL < 24.3 (20.7) <

p,p′-DDE, mean (SD), pg/mL 41.4 (27.7) 312.1 (276.7) 411.9 (444.9)

PCB-118, mean (SD), pg/mL < 39.4 (33.5) 42.0 (62.1)

PCB-153, mean (SD), pg/mL 28.3 (103.1) 222.4 (190.2) 132.1 (115.2)

PCB-138, mean (SD), pg/mL 15.5 (10.2) 117.3 (97.9) 79.6 (72.4)

PCB-156, mean (SD), pg/mL < 13.1 (11.2) 11.5 (11.6)

PCB-180, mean (SD), pg/mL 16.7 (9.8) 99.0 (90.0) 43.4 (37.5)

PCB-170, mean (SD), pg/mL < 49.8 (43.5) 22.3 (18.5)

BDE-47, mean (SD), pg/mL < 21.3 (27.4) <

PFHpA, mean (SD), ng/mL ND 0.72 (0.77) <

PFOA, mean (SD), ng/mL 1.77 (1.36) 8.2 (4.7) 2.37 (1.02)

PFNA, mean (SD), ng/mL ND 1.04 (0.65) 0.52 (0.26)

PFDA, mean (SD), ng/mL ND 0.37 (0.26) 0.20 (0.13)

PFHxS, mean (SD), ng/mL ND 0.75 (0.58) 0.30 (0.19)

PFOS, mean (SD), ng/mL 3.6 (1.7) 5.6 (3.1) 1.71 (0.80)

<All samples below detection limit

ND, not done
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logistic regression as well. The follow-up for type 1 diabetes was
much longer than the follow-up for autoantibodies, and some
children who were initially classified as autoantibody negative
controls were later diagnosed with type 1 diabetes. These chil-
dren were excluded from the control groups and included in the
type 1 diabetes case group. When defining children diagnosed
with overt type 1 diabetes as a case, no associations with plasma
chemical concentrations were observed. That was the true both
for unadjusted and adjusted analyses.

Matching factors

Among the matching factors, only the HLA risk genotype did
not associate with plasma chemical concentrations.

Gender

Cord blood plasma PFOS concentrations were higher in boys
(4.2 ± 3.3 ng/mL; mean ± SD) than those in girls (3.1 ± 1.6 ng/

Table 3 Unadjusted odds ratios and odds ratios adjusted for the duration of breastfeeding (BF) for the appearance of diabetes-associated autoantibodies

Cord blood 12 month 48 month

Unadjusted Unadjusted BF adjusted Unadjusted BF adjusted

HCB 0.86 (0.52–1.43)‡ 0.99 (0.99–1.00) 0.99* (0.98–1.00) 1.01 (0.99–1.03) 1.03 (0.99–1.08)

β-HCH 0.94 (0.80–1.09)‡ 0.99 (0.98–1.00) 0.99 (0.98–1.00) 1.00 (0.99–1.01) 0.99 (0.98–1.01)

Trans-nonachlor 1.06 (0.86–1.29)‡ 1.00 (0.98–1.02) 0.99 (0.97–1.02) 1.00 (0.95–1.05) 0.99 (0.91–1.08)

p,p′-DDE 1.01 (1.00–1.02) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00)

PCB-118 1.07 (0.90–1.28)‡ 1.00 (0.99–1.00) 1.00 (0.98–1.01) 1.00 (0.99–1.01) 0.99 (0.97–1.01)

PCB-153 1.01 (0.99–1.03) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (0.99–1.01)

PCB-138 1.02 (0.98–1.05) 1.00 (0.99–1.00) 1.00 (0.99–1.00) 1.00 (1.00–1.01) 1.00 (0.99–1.01)

PCB-156 † 0.99 (0.95–1.03) 0.99 (0.94–1.03) 1.00 (0.96–1.04) 0.96 (0.89–1.04)

PCB-180 1.02 (0.98–1.05) 1.00 (0.99–1.00) 1.00 (0.99–1.01) 1.00 (0.99–1.01) 0.99 (0.98–1.01)

PCB-170 1.00 (0.87–1.14)‡ 1.00 (0.99–1.01) 1.00 (0.98–1.01) 1.00 (0.98–1.03) 0.99 (0.95–1.03)

BDE-47 1.00 (0.97–1.03)‡ 0.99 (0.97–1.01) 0.99 (0.97–1.01) 1.05 (0.96–1.14) 1.08 (0.96–1.21)

PFHpA ND 1.39 (0.78–2.50) 1.55 (0.74–3.21) 19.1 (0.01–25032)‡ 6.89 (0.02–1784)‡

PFOA 0.90 (0.67–1.22) 1.01 (0.93–1.10) 1.03 (0.92–1.15) 1.16 (0.80–1.67) 1.09 (0.85–1.41)

PFNA ND 1.07 (0.56–2.05) 1.39 (0.61–3.17) 4.20 (0.53–33.3) 2.24 (0.09–55.9)

PFDA ND 1.58 (0.31–7.97) 5.59 (0.61–51.4) 4.10* (1.09–14.3)‡ 3.78 (0.76–18.8)‡

PFHxS ND 0.76 (0.34–1.73) 0.88 (0.37–2.12) 5.50 (0.19–154)‡ 3.90 (0.01–1396)‡

PFOS 1.08 (0.96–1.22) 1.00 (0.88–1.14) 1.07 (0.88–1.30) 1.31 (0.78–2.19) 1.29 (0.33–5.03)

Hazard ratios (95% CL) presented

ND, not done

*P < 0.05

†All samples below detection limit, not analyzed

‡Analyzed as categorized to above LOQ vs. below LOQ

Table 4 Plasma concentrations of
environmental chemicals in cord
blood and 12-month-old children
by geographical location

Chemical Helsinki Jyväskylä Kuopio *P value

Cord blood n = 30 n = 92 n = 79

p,p′-DDE, mean (SD), pg/mL 66.8 (54.7) 42.6 (24.5) 39.0 (30.0) 0.005

PCB-153, mean (SD), pg/mL 40.7 (29.8) 29.8 (14.3) 26.7 (17.6) 0.004

PCB-138, mean (SD), pg/mL 23.6 (16.4) 17.5 (7.8) 15.9 (9.3) 0.002

12-month-old children n = 31 n = 52 n = 48

PFOA, mean (SD), ng/mL 2.2 (2.0) 1.3 (0.7) 1.8 (1.2) 0.002

PFOS, mean (SD), ng/mL 4.2 (2.1) 3.7 (1.9) 3.5 (3.5) 0.030

PFNA, mean (SD), ng/mL 1.36 (0.70) 1.02 (0.62) 0.87 (0.54) 0.009

PFDA, mean (SD), ng/mL 0.46 (0.23) 0.38 (0.24) 0.32 (0.25) 0.003

PFHxS, mean (SD), ng/mL 0.89 (0.40) 0.80 (0.60) 0.54 (0.51) 0.001

*P value from the Kruskal-Wallis test; only statistically significant results are presented
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mL; P = 0.001, Mann-Whitney U test). No other gender-
related differences were observed.

= 0.028. The PFDA concentrations were below the detec-
tion limit in 46% of the 48-month samples, and therefore, the
PFDA results were analyzed as categorized variables, below
the LOQ or above the LOQ

Geographic location

Geographic location affected the circulating concentrations of
environmental chemicals. Statistically significant findings are
presented for FINDIA in Table 4 and for DIABIMMUNE in
Table 5. In the FINDIA study, three Finnish regions were
compared. The infants residing in the capital region of
Helsinki had higher concentrations of p,p′-DDE, PCB-153,
PCB-138, PFOA, and PFOS in cord blood plasma than chil-
dren residing in smaller cities (Jyväskylä and Kuopio; Table 4)
or their surroundings. The same phenomenon was observed
for the plasma concentrations of PFNA, PFDA, and PFHxS in
12-month-old infants (Table 4).

In the DIABIMMUNE study, the 48-month-old children liv-
ing in the Estonian city of Tartu and its adjacent areas had higher
plasma levels of HCB, β-HCH, p,p′-DDE, PCB-118, and PCB-
138 than children living in the city of Espoo, Finland (Table 5). In
contrast, children residing in Espoo had higher concentrations of
plasma PFOA than children residing in Tartu.

Milk formula group

In the FINDIA study, the participants were randomized to be
weaned to three different milk formulas. One of the milk for-
mulas was offered to each participant, and breastfeeding was
encouraged. A fourth study group comprised children who
used no milk formula and relied solely on breastfeeding as
his/her milk intake. Plasma chemical concentrations did not
differ between the three milk formula groups at the age of
12 months. However, solely breastfed children had higher
concentrations of eight POP and five PFAS compounds when

combined with pooled milk formula groups (Supplemental
Table S2).

Conclusions

In our study, we analyzed the circulating concentrations of a
multitude of environmental pollutants in two matched case-
control series. We could not observe any definite associations
between increased exposure to chemical pollutants at birth, at
12 or at 48 months of age, and risk of β-cell autoimmunity.
The current work indicates that prenatal or early childhood ex-
posure to POPs, including PFASs, is not an apparent risk factor
for later β-cell autoimmunity. To our knowledge, this is the first
report based on HLA-matched case-control series where expo-
sure to environmental pollutants and the development of β-cell
autoimmunity and type 1 diabetes have been studied.

In 48-month-old children, PFDA was above the LOQ in
34% of the autoantibody-negative children, in 63% of the
autoantibody-positive children, and in 88% of the children
diagnosed with type 1 diabetes. PFDA has been demonstrated
to interfere with the function of thyroid hormones in in vitro
studies (Long et al. 2013), and endocrine disruption is an
interesting mode of action of PFDA in biological systems. It
has been shown that PFDA, at concentrations of 100 ng/mL
and above, can impair LPS-induced release of TNF-α in pe-
ripheral blood leukocytes and prevent LPS-induced I-κB deg-
radation (Corsini et al. 2012). However, it should be men-
tioned that since PFDAwas present at very low concentrations
(less than 1 ng/mL) in the current study, the results do not
really support any association between elevated circulating
concentrations of PFDA and β-cell autoimmunity and/or
emergence of type 1 diabetes.

Plasma HCB concentrations at the age of 12 months were
actually decreased in case children who developed diabetes-
associated autoantibodies by the age of 6 years when com-
pared to children who remained autoantibody-negative, but
only after adjustment for breastfeeding. It is of interest that
an inverse association has been reported earlier between HCB
and circulating concentrations of IFN-γ, indicating that expo-
sure to HCB may downregulate Th1 immunity (Daniel et al.
2001), which has been implicated to be involved in immune-
mediated β-cell destruction. Although the present study could
be interpreted as indicating slower progression to β-cell de-
struction in children with increased HCB concentrations,
which is to some extent supported by existing literature, there
are also arguments against such a view. First, the decrease in
plasma levels of HCB in affected children was present only in
plasma samples taken at 12 months of age. No changes in
plasma levels of HCB were seen in samples taken at birth or
at 48months of age. Second, this finding should be interpreted
cautiously since the comparisons were not corrected for mul-
tiple comparisons. Third, the higher circulating concentrations

Table 5 Plasma concentrations of environmental chemicals in 48-
month-old children by geographical location

Chemical Espoo (n = 30) Tartu (n = 92) *P value

HCB, mean (SD), pg/mL 40.7 (15.5) 73.8 (36.8) < 0.001

β-HCH, mean (SD), pg/mL 17.8 (6.7) 71.6 (54.6) < 0.001

p,p′-DDE, mean (SD), pg/mL 134.8 (104.0) 675.9 (676.6) < 0.001

PCB-118, mean (SD), pg/mL 15.3 (10.0) 54.1 (61.0) < 0.001

PCB-138, mean (SD), pg/mL 52.8 (36.6) 99.4 (86.5) 0.04

PFOA, mean (SD), ng/mL 3.08 (0.84) 2.49 (3.81) < 0.001

*P value from the Mann-Whitney U test. Only statistically significant
results are presented
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of chemicals in children without any signs of β-cell autoim-
munity may be explained by other factors protecting against
diabetes, e.g., their nutritional pattern. It is known that long-
chain fatty acids from fish, the main source of POPs, may
protect from β-cell autoimmunity (Rignell-Hydbom et al.
2010). As a conclusion, without further investigations, it is
too early to make the statement that increased exposure to
HCB protects from β-cell autoimmunity or from type 1 dia-
betes. Merely, the current work indicates that exposure to
HCB, at current concentrations, is not harmful in relation to
the development of type 1 diabetes.

The present study was designed to investigate whether ear-
ly exposure to environmental chemicals associates with β-cell
destruction. Although the number of cases, especially for type
1 diabetes cases, is rather low, the value of the present study
lays in powerful matching of pairs that were included in the
statistical analysis. The confounding factors introduced by
age, gender, geographical location, and milk formula groups
could be eliminated and further, the effect of the duration of
the breastfeeding period could be adjusted for in conditional
logistic regression analyses.

We found higher PFOS concentrations in cord blood plasma
in boys than in girls, which is in line with earlier studies (Wang
et al. 2011). The circulating concentrations of several POPs were
higher in Estonian children than those in Finnish children. These
are mainly chemicals used in the industry and agriculture before
their global restrictions, the usage history of which may well
explain the current findings. However, the incidence of type 1
diabetes is substantially lower in Estonia than in the less exposed
Finnish population (Harjutsalo et al. 2013; Teeaar et al. 2010)
suggesting that exposure to these POPs is not involved in the
disease process resulting in type 1 diabetes.

The current study is in line with earlier observations that
breastfeeding is an important route of certain persistent chemicals
(Kiviranta et al. 1999). Although the current study does not sup-
port the protective role of breastfeeding, it should be mentioned
that some surveys have shown that breastfeeding may protect
against type 1 diabetes (Pereira et al. 2014).

The duration of breastfeeding and geographical location
were found to be associated with plasma concentrations of
several persistent organic pollutants and per- and
polyfluorinated substances in early life. This is in line with
previous studies. Taken together, our results suggest that ex-
posure to persistent organic pollutants and per- and
polyfluorinated substances, at current levels, does not have
any effect on the induction ofβ-cell autoimmunity or progres-
sion from β-cell autoimmunity to clinical type 1 diabetes.
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