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Abstract
Purpose of Review As machine learning-based artificial intelligence (AI) continues to revolutionize the way in which we 
analyze data, the field of nuclear cardiology provides fertile ground for the implementation of these complex analytics. This 
review summarizes and discusses the principles regarding nuclear cardiology techniques and AI, and the current evidence 
regarding its performance and contribution to the improvement of risk prediction in cardiovascular disease.
Recent Findings and Summary There is a growing body of evidence on the experimentation with and implementation 
of machine learning-based AI on nuclear cardiology studies both concerning SPECT and PET technology for the 
improvement of risk-of-disease (classification of disease) and risk-of-events (prediction of adverse events) estima-
tions. These publications still report objective divergence in methods either utilizing statistical machine learning 
approaches or deep learning with varying architectures, dataset sizes, and performance. Recent efforts have been 
placed into bringing standardization and quality to the experimentation and application of machine learning-based 
AI in cardiovascular imaging to generate standards in data harmonization and analysis through AI. Machine learning-
based AI offers the possibility to improve risk evaluation in cardiovascular disease through its implementation on 
cardiac nuclear studies.

Keywords Nuclear cardiology · Artificial intelligence · Risk prediction · Deep learning

Introduction

As machine learning-based artificial intelligence (AI) con-
tinues to revolutionize the way in which we analyze data, the 
field of nuclear cardiology provides fertile ground for the 
implementation of these complex analytics in the continuous 
search for optimizing the evaluation of known or suspected 
cardiovascular disease, mainly in the form of coronary artery 
disease (CAD) [1]. The flagship techniques of single pho-
ton emission computed tomography (SPECT) and positron 
emission tomography (PET) and their now almost standard 
hybridization with coronary computed tomography angiog-
raphy (CCTA) provide a very large amount of data with both 
simple and complex patterns that continue to be harnessed 
by machine learning either its statistical form or through 
deep learning.

Given the increasing reports and recommendations regard-
ing the experimentation with and implementation of machine 
learning-based AI in nuclear cardiology [2, 3], the present 
review sought to summarize and discuss the principles regarding 
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nuclear cardiology techniques and AI, and the current evidence 
regarding its performance and contribution to the improvement 
of risk prediction in cardiovascular disease either by means of 
probability of disease estimation or longitudinal evaluation for 
the development of major adverse cardiovascular events.

Nuclear Cardiac Studies (Nuclear Cardiology)

Although nuclear imaging is a powerful and versatile 
approach to target a variety of (patho)physiological pro-
cesses to form a functional point of view (ranging from 
glucose consumption to innervation), its application in car-
diology is dominated by myocardial perfusion assessment. 
A snapshot of the nature of the techniques, prevailing tracer, 
and demonstrated clinical value is presented ahead. Of note, 
both types of imaging are additionally able to deliver ven-
tricular function proxies such as motion analysis, ejection 
fraction, and even synchrony through gated acquisition and 
reconstruction.

Single Photon‑Emission Computed Tomography

SPECT represents the most commonly used technique for assess-
ing myocardial perfusion known or suspected CAD. The most 
recent hardware makes use of solid-state cadmium zinc telluride 
(CZT) detectors that directly detect single emitted 80–140 keV 
gamma rays (photons) from the injected and redistributed radi-
otracer (mainly 99mTc-sestamibi or 99mTc-tetrofosmin) in the 
patient’s heart. Recently, detectors are being integrated into novel 
collimator designs that increase photon sensitivity in the myo-
cardial region; scanners are being reduced in size to facilitate 
implementation with high-throughput centers, and acquisition/
processing protocols and software optimized to approach dis-
crete PET performance (lower acquisition time, radiation expo-
sure with higher resolution, and potential for quantification) with 
promising results [4].

The pooled performance of SPECT myocardial perfusion 
for the evaluation of myocardial ischemia resulting from 
anatomically obstructive CAD as in [5] is represented in 
Table 1.

In terms of prognosis, the most recent long-term esti-
mates for the occurrence of major adverse cardiovascular 
events (MACE) have emerged from the REgistry of Fast 

Myocardial Perfusion Imaging with NExt generation 
(REFINE) registry. In this study evaluating all-cause mor-
tality, nonfatal myocardial infarction, unstable angina, or 
late coronary revascularization at roughly 5 years, a signifi-
cant increase in MACE with worsening of visually assessed 
perfusion deficits, namely from 2.0% in normal to 7.4% 
in abnormal scans (while for semi-quantification through 
total perfusion deficit (TPD) values of 1.3% and 7.8% were 
respectively found for a TPD of 0% and > 10%) [6].

Positron Emission Tomography

On the other hand, PET post-dates SPECT technology and 
represents the modern reference standard for quantification 
in nuclear imaging and thus, for the absolute quantification 
of myocardial blood flow. PET works through detection of 
photon pairs which are emitted from the injected radiotracer 
(82Rubidium, 13 N-ammonia, or 15O-water). A crucial dif-
ference in this detection is that by optimizing for pairs of 
photons and not for single photons, which is known as coin-
cidence, less noise is recorded and more effective and organ 
located emissions can be detected. In conjunction, these 
characteristics yield lower radiation burden, higher imag-
ing quality, and greater versatility in clinical acquisition 
logistics. Recently, fully digital PET/CT scanners are being 
deployed and are expected to boost current performance.

The pooled performance of PET myocardial perfusion for 
the evaluation of myocardial ischemia resulting from ana-
tomically obstructive CAD has been introduced in [5] and 
depict in Table 1.

Prognostically, absolute quantitative perfusion with PET 
is independently associated with a range of MACE (i.e., 
cardiac death, acute coronary syndromes, revascularization, 
heart failure, stroke, and even peripheral vascular disease) 
with hazard ratios in the spectrum of 1.19–2.93] [7, 8].

Hybrid Expansion of Nuclear Imaging Through 
Computed Tomography

Complementarily, an important proportion of nuclear 
studies is currently performed in conjunction with CT. In 
its simplest form, this provides a low-dose CT scan that 
serves as topographic base for the necessary corrections 

Table 1  The performance 
of SPECT and PET for 
anatomically and functionally 
significant CAD ( Modified 
from: Knuuti et al. Eur 
Heart J Eur Heart J. 2018 
Sep 14;39(35):3322–30, by 
permission of Oxford University 
Press) [5]

Sensitivity Specificity Positive LR Negative LR

Anatomically significant CAD
SPECT 87 (83, 90) 70 (63, 76) 2.88 (2.33, 3.56) 0.19 (0.15, 0.24)
PET 90 (78, 96) 85 (78, 90) 5.87 (3.40, 10.15) 0.12 (0.05, 0.29)
Functionally significant CAD
SPECT 73 (62, 82) 83 (71, 90) 4.21 (2.62, 6.76) 0.33 (0.24, 0.46)
PET 89 (82, 93) 85 (81, 88) 6.04 (4.29, 8.51) 0.13 (0.08, 0.22)

 Current Cardiology Reports (2022) 24:307–316308



1 3

in the acquisition/processing of SPECT and PET, espe-
cially at the quantitative standard. Alternatively, a full 
CCTA can be performed prior to the nuclear acquisition 
either as gate-keeper (selective hybrid) for the nuclear 
study or as standard support in the same diagnostic step 
(standard hybrid). In low-dose images, apparent low 
image quality hinders diagnostic statements for obstruc-
tive CAD. However, modern approaches through machine 
learning (vide infra) open the possibility to extract sensi-
tive and possibly diagnostically useful information from 
such coarse images. On the other hand, high-quality con-
trast images strongly supplement diagnostic considera-
tions (with high sensitivity and excellent negative pre-
dictive value [5]) and also present a substrate for novel 
analytics [9].

Machine Learning‑Based Artificial 
Intelligence

Machine learning represents the family of algorithms (mod-
els) whose principal feature is the capacity to improve per-
formance through iterative exposure to data (so-called train-
ing). Performance is measured with respect to the variable 
of interest that is set as outcome (“dependent variable” in 
conventional statistical terms) and the ground truth assump-
tion around it. There is a wide variety of machine learning 
algorithms with varying rationales (e.g., k-nearest neighbor 
for clustering, random trees for decision rules, ensemble 
boosting for merging approaches in order to maximize per-
formance, and deep artificial neural networks for text and 
image recognition [vide infra]). Artificial intelligence refers 
to the theory, generation, and study of systems/algorithms 
that are capable of performing applied tasks at an at least 
human intelligence level. Given the large strides achieved in 
parallel computing power and data storage, the modern AI 
era is grounded on machine learning algorithms, hence the 
term machine learning-based AI. In the context of nuclear 
cardiology, it means the chance to improve image acqui-
sition, reduce radiation burden, improve image resolution, 
and clinically, boost the identification of disease in at-risk 
patients and the prediction of cardiovascular outcomes from 
the analysis and integration of medical imaging and/or clini-
cal data.

In short, the process starts with data operationalization. 
This is then used as input to the algorithm in a parcellated 
structure that distinguishes training/validation data from 
test data. The former is used in iterations of training with 
intrinsic overfitting control through for example cross-
validation in order to learn and select relevant features or 
patterns useful for completing the segmentation, classifica-
tion, or prediction task. The latter is then used to evaluate 
the trained model’s performance in an independent dataset. 
Ideally, the test dataset may arise from a completely different 

cohort (true external validation). However, most often it is 
the original cohort that is divided into the model building 
and holdout test datasets.

Traditional machine learning methods (statistical 
machine learning), such as logistic regression, principal 
component analysis (PCA), random forest, support vector 
machine, boosting, and lasso regression, are used for classifi-
cation from numerical and structured datasets (in the form of 
spreadsheets). Out of these, PCA exemplifies unsupervised 
methods, which are trained without known categories or out-
comes. This is useful when exploring unknown subgroups or 
categories within a population or disease. In nuclear cardiac 
research, however, supervised methods have been predomi-
nantly employed.

Deep Learning

In its simplest form, artificial neural networks consist of an 
input (structured, imaging, sound data), at least one interme-
diate, and an output layer (pseudoprobability of a category, 
regression or prediction). Additional intermediate layers are 
called hidden layers, and the more layers, the deeper the 
network becomes (as such now colloquially known as deep 
learning). During the last decade, the convolutional operator 
in the intermediate layers has become the gold standard in 
image segmentation and classification. Deep learning eluci-
dates complex non-linear and high-dimensional patterns bet-
ter than other machine learning strategies. Consequently, it 
has become the state-of-the-art for image (computer vision) 
and language (natural language processing) recognition 
tasks [10]. In essence, convolutions allow to stepwise flatten 
a 2- or 3-dimensional image to an array concerning its most 
relevant patterns. For example, before deep learning existed, 
convolutions were used for edge detection in image analysis. 
In training, neural networks are typically trained by in mul-
tiple epochs (whole runs of training data through a network) 
that allow the network to adjust its weights (coefficients) 
and select features that minimize a predefined loss-function 
(the penalties the network receives for incorrect predictions). 
This method has shown excellent performance, allowing car-
diovascular researchers to deploy it in several forms using 
myocardial perfusion imaging data [11, 12]. Since training 
hyperparameters of these huge models from scratch could 
require massive amounts of data and computer resources, 
the possibility to exploit common characteristics of data 
(for example images) in pre-trained models for tasks that 
are broadly similar (picture classification vs. medical image 
classification) allows rapid adjustment of earlier networks 
to specific new tasks. The process of training a network on 
other similar data and then further fine-tuning it on actual 
data of interest is called transfer learning.

In the current standard for segmentation, a particularly 
successful image segmentation architecture is the “U-net.” 
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This network exploits the information obtained during step-
wise flattening (contracting path) in a stepwise up-sampling 
of the convolutional layers (expansive path) in order to 
propagate context information from the original image into 
the segmentation output image (https:// arxiv. org/ abs/ 1505. 
04597).

The Evaluation of Risk in Cardiovascular 
Disease

The concept of risk in cardiovascular disease directly links 
to the process of probability estimation in health sciences. 
Although risk is conventionally employed to indicate prog-
nostic estimations derived from longitudinal survival analy-
sis, we believe that even punctual estimations of probability 
of an underlying disease (e.g., CAD) are to be considered 
within such concept given their morbid and therapeutic 
implications.

The natural history of CAD (being the most prevalent of 
cardiovascular diseases) presents the need to identify and 
monitor risk factors that contribute to its development, to 
promptly diagnose its presence and severity, and to char-
acterize its expected progression or complication in order 
to implement interventions that modify it. Ergo, we perma-
nently operate within the risk of developing CAD, of having 
undiagnosed CAD, and of presenting adverse CAD-related 
events. Notably, the extensive variability of complex biologi-
cal systems presents a peculiar challenge in the estimation of 
probabilities regarding the disease’s clinical horizon at the 
level of the individual patient, one that can be approached 
through novel machine learning-based analytics.

In the following section, we summarize recent relevant 
studies in nuclear cardiology concerning the implementation 
of machine learning-based AI for the identification of CAD 
(risk of disease) and the prediction of CAD-related events 
(risk of MACE).

AI Risk Prediction in Nuclear Cardiolgy

The study form 2017 by Motwani et al. [13] hallmarked the 
utilization of machine learning (through boosted ensembles) 
on cardiovascular imaging to retrospectively identify mortal-
ity at a 5-year mark. By combining clinical and coronary CT 
imaging data, the machine learning approach demonstrated 
a significantly improved identification of patients with mor-
tality due to any cause (AUC = 0.79) a in comparison to the 
Framingham Risk Score (AUC = 0.61) or three CT-based 
statistical scores (AUCs 0.64, 0.64, and 0.62) in a large-scale 
sample of roughly 10,000 subjects. Although time to event 
did not figure within the statistical projection of this clas-
sification task, this approach has since then been reproduced 
in nuclear cardiology studies with varying compositions of 

algorithms, additional clinical predictors, and comparative 
models.

Machine learning-based AI using nuclear imaging (either 
as structured or reconstructed imaging) and clinical data 
may outperform human experts for cardiovascular outcome 
prediction. Betancur et al. evaluated the ability of machine 
learning to predict major adverse cardiac events, defined as 
all-cause mortality, nonfatal myocardial infarction, unsta-
ble angina, or late coronary revascularization during 3-year 
follow-up of 2619 patients. The machine learning model 
documented a significant improvement in predictive accu-
racy for MACE when compared with expert readers (AUC 
0.81 vs. 0.65) with a risk reclassification of 26% [14]. In 
another study, gradient tree boosting machine learning was 
used to integrate 18 clinical, 9 stress test, and 28 imaging 
variables from 1980 patients from the multi-center REFINE 
SPECT (Registry of Fast Myocardial Perfusion Imaging with 
Next Generation SPECT) registry that showed an AUC of 
0.79 (0.77, 0.80), surpassing that of regional stress TPD 0.71 
(0.70, 0.73) or ischemic TPD 0.72 (0.71, 0.74) in predicting 
per-vessel chance of early coronary revascularization [15].

Deep learning has been used to analyze perfusion, wall 
motion, and wall thickening polar maps in the same reg-
istry coupled with age, gender, end-diastolic volume, and 
end-systolic volumes aiming to identify per-patient and per-
vessel CAD probability. This model was then externally vali-
dated in 555 patients and showed an improved AUC 0.80 
(0.76–0.84) outperforming stress TPD 0.73 (0.69–0.77), and 
reader diagnosis 0.65 (0.61–0.69) in the per-patient and per-
vessel analyses. Additionally, attention maps were gener-
ated for clinical implementation and correlated strongly with 
perfusion defect areas (Pearson’s R 0.82, p < 0.001) [16••]. 
Thereon, the extended registry (20,401 patients) was ana-
lyzed through deep learning in order to identify cardiovascu-
lar outcomes during a median follow-up of 4.4 years. Deep 
learning was able to better identify patients with an adverse 
event beyond stress and ischemic TPD (AUC 0.75 vs. 0.70 
vs. 0.68) [17]; although this data is preliminary, the report 
also refers the use of attention maps in order to inform the 
user on the areas related to the classification output. Time-
to-event, however, was not modeled in these studies.

Implementing AI in clinical datasets can be prospectively 
challenging if vast data collection infrastructures are lack-
ing or if multiple variables need to be manually inputted 
in a structured manner. A recent study explored the use of 
gradient boosting models (XGBoost) with the least amount 
possible of myocardial perfusion imaging variables and 
manually inputted variables yet maintaining overall MACE 
predictive performance over expert reader and traditional 
risk estimation models using the aforementioned REFINE 
SPECT registry (n = 20,414). A model including all 40 
available variables (ML-ALL) achieved highest prognostic 
accuracy in internal validation with AUC 0.798 compared 
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to expert reader AUC 0.680 and stress TPD AUC 0.698. 
Notably, model reduction to include only imaging variables 
decreased performance with an AUC of 0.755 still overshad-
owing the comparators [18•].

On the PET myocardial perfusion imaging front, transfer 
deep learning and data augmentation have been used in a 
repurposed ResNet50 architecture to show how quantitative 
PET myocardial perfusion polar maps can predict MACE at 
2 years follow-up in a sample of 1185 patients. Notably, the 
discriminatory capacity of the deep learning model (which 
did not include clinical or functional variables as in alterna-
tive studies) even surpassed non-deep learning approaches 
integrating clinical variables, ventricular function, and abso-
lute perfusion quantification (AUC = 0.90 vs. AUC = 0.85 
p < 0.05) [11]. Of note, punctual prevalence of events was 
marked at the end of the follow-up once again negating the 
time-dependence of conventional survival analysis methods. 
Table 2 shows a summary of relevant studies in risk predic-
tion in nuclear cardiology through machine learning-based 
AI.

The clinical risk of CAD, emerging either as a pre-test 
probability or as a diagnostic post-test probability, exists 
in close relation to the variation in clinical risk factors per 
patient. In fact, the most recent European Society of Cardiol-
ogy guidelines on the diagnosis and management of chronic 
coronary syndromes [19] has evidenced the space where risk 
modifiers can enhance estimations of pre-test probability of 
CAD and deliver the so-called clinical likelihood of CAD. 
With this in mind, we more recently have reported on the 
repurposing of the deep learning method for the identifica-
tion of common cardiovascular risk factors since the network 
was never subjected to these clinical traits. Interestingly, 
this exploratory work showed how quantitative PET images 
seem to harbor complex patterns which can be exploited 
through deep learning and are inherent to such traditional 
cardiovascular risk traits [20]. This supports the notion that 
cardiovascular risk characterization can probably benefit 
from broad deployment of machine learning based-AI.

Finally, emerging work is approaching the implemen-
tation of machine learning-based AI for the integration of 
nuclear and CT imaging data for latter prognostic modeling 
through traditional survival models [21]. This advances the 
efforts to ground AI capabilities into intuitive, interpretable, 
and well-known analytics accessible to all clinicians.

In summary, there is a growing body of evidence on 
the experimentation with and implementation of machine 
learning-based AI on nuclear cardiology studies both con-
cerning SPECT and PET technology for the improvement 
of risk-of-disease (classification of disease) and risk-of-
event (prediction of adverse events) estimations. These 
publications still report objective divergence in methods 
either utilizing statistical machine learning approaches or 
deep learning with widely varying architectures, in dataset 

sizes related to the accessibility of each technique, and 
in performance gains ranging anywhere from 5 to 15% in 
AUC values. Moreover, constitutional risk estimation from 
the traditional perspective of survival modeling has not 
been addressed and represents fertile ground for advanc-
ing the edge of machine learning-based AI in the field of 
nuclear cardiology.

Parallelly, it must be recognized that in spite of the afore-
mentioned disparities, there seems to be some discrete con-
fluence on the performances delivered by AI and further 
research is strongly warranted.

Clinical Applicability

The potential benefit of machine learning-based AI for 
improving risk prediction in nuclear cardiac imaging seems 
clear when reviewing the emerging literature (vide supra) 
and the safe implementation of these algorithms in clinical 
practice is being widely discussed.

This incorporation demands heavy integration with soft-
ware report tools but also robust validation in prospective 
cohorts. Notably, also a cultural change from clinical experts 
and physicians is needed to assimilate the strengths of AI 
rather than labeling them as threatening for their clinical 
domain [22].

Machine learning algorithms derive the weights and fea-
tures of the decision model directly from data, without a 
predefined set of rules. This flexibility leads to opacity in 
the models’ decision process as features do not necessarily 
reflect human interpretable concepts. Moreover, the ever-
looming risk of overfitting and bias in the training process 
must be recognized and mitigated. Unchecked, such risk 
could lead to unexpected performance deviations when the 
algorithms are exposed to new datasets even if discrepancies 
in distributions with respect to training data seem minor to 
human interpreters.

In order facilitate safe clinical implementation, it is 
important to ensure that (a) representative training data is 
used, (b) adequate oversight/quality control of the algo-
rithms is in place, and (c) a degree of interpretability is 
implemented in the models to understand the decisions 
process (see underside checkpoints in the “Graphical 
Abstract” section).

Representative Data

In order to safeguard ensure generalizability (i.e., the capac-
ity to apply a model to new data and achieve comparable 
performance, which suggests that the learned features are 
relevant and universal for the task at hand) in clinical prac-
tice, training on broad real-world data is essential. Presently, 
a variety of hardware vendors, tracers, acquisition protocols, 
and alignment methods are used in cardiac nuclear imaging. 
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Yet, most datasets available for training have originated from 
trails or study protocols with a high degree of homogene-
ity. These datasets therefore might not reflect the full data 
variety in imaging and may prove biased towards images 
of certain quality standards. A timely argument around this 
underlying risk comes from the recent work by DeGrave 
et al. [23]. They showed that many algorithms trained to 
classify COVID-19 from chest X-rays did not in fact learn 
disease patterns within the image. Instead, they learned to 
recognize the difference in acquisition position between the 
COVID-19 and non-COVID cases in the training data as 
chest films were mostly made in a seated position in the 
COVID-19 cases at the emergency room instead of in con-
ventional acquisition positions.

Careful organization of training-dataset to reflect varia-
tions in clinical practice is therefore essential. Besides this 
database curation, image pre-processing techniques can be 
used to simulate variation in image-acquisition (such as add-
ing noise or generating variations in pixel-value distributions 
of the image data) [24].

Quality Control

In myocardial perfusion evaluation, analysts consciously and 
unconsciously perform quality control on both the acquired 
data and analysis output. Quality of the images, scatter, and 
alignment between the tracer signal and myocardial seg-
mentation are all scrutinized. In automated analysis using 
machine learning-based AI, similar quality control (QC) 
is paramount. In consequence, attention has been recently 
focused on implementing QC steps into AI analysis frame-
works. Image quality is a topic affecting all areas of medical 
imaging. With respect to cardiac imaging, image QC steps 
have been implemented for cardiac MRI analysis [25, 26] 
as well as echocardiography [27] and brain PET imaging 
[28]. For PET/CT specifically, registration steps proposed 
for alignment of PET and CT images [29] could also be 
exploited to provide a QC step for (mis)alignment.

Output data can also be scrutinized against known clini-
cal priors. For example, ventricular shape/morphology [30, 
31] and myocardial and ventricular volume dynamics over 
the cardiac cycle can be assessed for physiological conceiv-
ability [26]. Such steps aid to flag potential weaknesses or 
errors in the analysis for clinician review. Moreover, they 
could also be used to inform further training of the algorithm 
using newly analyzed data to boost its performance [32].

Interpretability

The features that machine learning-based AI uses in decision- 
making are self-taught and can be made up out of a com-
plex set of neural activations (in deep learning) that are 
not readily translated to concepts recognizable to humans. Ta
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However, understanding the motivation/decision process in 
algorithms may provide better insight in their clinical valid-
ity. Interpretability could additionally support discovery of 
previously unknown associations and concepts within the 
data that determine outcome. Although it is impossible to 
fully comprehend the algorithm’s decision process, several 
methods have been developed to gain insight in an algo-
rithm’s decisions.

Attention/activation maps are illustrations that dem-
onstrate what part of the image contributed mostly to 
the decision. In myocardial perfusion imaging through 
SPECT, such maps can be used to correlate the clas-
sification of perfusion defects to expected coronary 
anatomy [16••]. Another approach is to embed known 
clinical concepts into deep learning models. In previous 
study, we have proposed a method that ensures clinical 
concepts (in this case ejection fraction or septal flash) 
are encoded into the latent space of a variational auto-
encoder, a dimensionality reduction algorithm frequently 
used for classification [33]. This approach allows to solve 
the classification process while simultaneously interro-
gating the importance of known clinical features in the 
decision process.

In its traditional approach, the weight of a deep learn-
ing model is assigned during training as point estimates 
(single values are assigned for each weight). Predictions 
made by the model are therefore fixed maximum likelihood 
predictions, and do not include information about the cer-
tainty or uncertainty of the output. Several methods have 
been proposed to incorporate confidence estimates into DL 
algorithms. Monte Carlo drop-out is an approach in which 
random weights of a conventional neural network are tem-
porarily disabled at test-time. This results in variations in the 
model predictions that can be used to classify the confidence 
(i.e., robustness) of these predictions. Additionally, novel 
Bayesian neural networks bring the possibility to quantify 
the uncertainty of the network allowing more comprehen-
sive output interpretation by physicians for considering or 
not model’s prediction in their clinical judgment [34]. Such 
networks use distributions that allow the models to gener-
alize better over new datasets. As randomness is added to 
the weights during training, overfitting of the model to the 
training-data is reduced. This makes them suitable for appli-
cations in cardiac imaging, where variations in image-data 
(vendors and institutional differences in acquisition proto-
cols) are common.

Applicability Roadmap and International 
Statements

Very recently, efforts have been placed into bringing stand-
ardization and quality to the experimentation and appli-
cation of machine learning-based AI in cardiovascular 

imaging. The Proposed Requirements for Cardiovascular 
Imaging-Related Machine Learning Evaluation (PRIME) 
checklist is one such example. Released in 2020, this tool 
outlines a comprehensive set of seven groups of crucial 
aspects in the development and reporting of ML mod-
els within this and arguably other medical sciences set-
tings [35]. It provides ground for promoting uniform and 
nuanced reporting of ML studies while safeguarding for 
algorithmic errors and biases derived from misinterpreta-
tion of ambiguity within a novel area that has advanced at 
an unparalleled pace. Furthermore, the European Associa-
tion of Cardiovascular Imaging (EACVI) and European 
Association of Nuclear Medicine (EANM) have recently 
produced a position paper on the application of AI in 
multimodality cardiovascular imaging comprising hybrid 
SPECT and PET capabilities [3]. This document shows 
clear parallels on general opportunities and visions for 
the inclusion of AI as a powerful tool in data analysis and 
simultaneous attention to challenges posed by this poten-
tial new standard in data analysis for instance, data harmo-
nization, automation, clinical support, and responsibility 
as well as ethical principles underlining bias prevention 
and control.

Future Perspectives

Today, the full-workflow of the nuclear cardiology could be 
assisted by AI from imaging acquisition, to automatic report 
generation from robust risk-of-disease (diagnostic level) 
and risk-of-events (prognostic level) predictions. Examples 
of comprehensive frameworks that include robust quality-
control and monitoring processes have been proposed for 
cardiac imaging and will be crucial for seamless clinical 
integration [26, 36].

Indeed, regulatory bodies both in the USA (see FDA. Pro-
posed Regulatory Framework for Modifications to Artificial 
Intelligence/Machine Learning (AI/ML)-Based Software as 
a Medical Device (SaMD)) and Europe (see Dept. of Health 
and Social Care of the United Kingdom. A guide to good 
practice for digital and data-driven health technologies) [3] 
are beginning to formalize criteria for approval of machine 
learning-based AI implementations, categorizing them as 
software as a medical device.

As AI is implemented, it seems likely that the tradi-
tional validation methods might need to be updated to 
include on-going training of algorithms (such as rein-
forcement learning) that constantly evaluate and improve 
the predictions based on the data available to the net-
works [37]. Moreover, Bayesian methods are likely to 
allow better informed decision-making based on the 
confidence levels of the algorithm’s predictions. Human 
readers will find themselves at the epicenter of analysis 

 Current Cardiology Reports (2022) 24:307–316314



1 3

loop in order to ensure expert evaluation of cases with 
abnormal nuclear imaging or those with potential errors 
in the analysis. With the introduction of AI, faster scans 
at lower radiation dosages could become the new stand-
ard. Together with automated analysis, the resulting 
reduction in costs and time-intensiveness could poten-
tially see nuclear cardiology evolve from a diagnostic 
tool alone to a method for serial follow-up to evaluate 
and guide patient-specific treatments.

Conclusions

Machine learning-based AI offers the possibility to 
improve risk evaluation in cardiovascular disease 
through its implementation on cardiac nuclear stud-
ies. Current literature attest to the encouraging results 
obtained from applying statistical machine learning and 
deep learning algorithms to integrate and select numer-
ous clinical and imaging-derived variables, to automate 
detection and segmentation, and to directly analyze myo-
cardial perfusion imaging from polar maps with respect 
to the individual patient’s risk-of-disease (diagnostic 
probability) and risk-of events (prognostic estimation) 
in CAD. Although large methodological heterogene-
ity is patent in the current literature, this is a discrete 
sense of convergence in optimized performance through 
machine learning-based AI as compared to traditional 
evaluation methods (semi-quantitative, quantitative, and 
expert-based). Prospects in this field should incorporate 
regard for data quality, algorithm oversight, and model 
interpretability.
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